文档库 最新最全的文档下载
当前位置:文档库 › 2012高中物理压轴题集

2012高中物理压轴题集

2012高中物理压轴题集
2012高中物理压轴题集

高中物理压轴题

1(20分)

如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:

(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向

2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:

(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少?

3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)

12

4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度

03

2

v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。 5

如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。求(取g =10m/s 2)

(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇?

(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 6

如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V

即U AB =300V 。一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N·m 2/C 2)

(1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。

7光滑水平面上放有如图所示的用绝缘材料制成的L 形滑板(平面部分足够长),质量为4m ,

距滑板的A 壁为L 1距离的B 处放有一质量为m ,电量为+q 的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E 的匀强电场中,初始时刻,滑板与物体都静止.试问:

(1)释放小物体,第一次与滑板A 壁碰前物体的速度v 1, 多大?

(2)若物体与A 壁碰后相对水平面的速度大小为碰前速率 的3/5,则物体在第二次跟A 碰撞之前,滑板相对于 水平面的速度v 2和物体相对于水平面的速度v 3分别为 多大?

(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)

8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔 O 和O',

水平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T 的匀强磁场中,导轨间距L =0.50m ,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =3.2×10 -21kg 、电量q =1.6×10 -19C 的带正电的粒子(设飘入速度很小,可视为零).在D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不计),求

(1)0到4.Os 内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ?

B

A

R E

F

(2)粒子从边界MN 射出来的位置之间最大的距离为多少?

9(20分)如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B .边长为l 的正方形金属框abcd (下简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (仅有MN 、NQ 、QP 三条边,下简称U 型框),U 型框与方框之间接触良好且无摩擦.两个金属框每条边的质量均为m ,每条边的电阻均为r .

(1)将方框固定不动,用力拉动U 型框使它以速度0v 垂直NQ 边向右匀速运动,当U 型框的MP 端滑至方框的最右侧(如图乙所示)时,方框上的bd 两端的电势差为多大?此时方框的热功率为多大?

(2)若方框不固定,给U 型框垂直NQ 边向右的初速度0v ,如果U 型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少?

(3)若方框不固定,给U 型框垂直NQ 边向右的初速度v (0v v >),U 型框最终将与方框分离.如果从U 型框和方框不再接触开始,经过时间t 后方框的最右侧和U 型框的最左侧之间的距离为s .求两金属框分离后的速度各多大.

10(14分)长为0.51m 的木板A ,质量为1 kg .板上右端有物块B ,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v 0=2m/s.木板与等高的竖直固定板C 发生碰撞,时间极短,没有机械能的损失.物块与木板间的动摩擦因数μ=0.5.g 取10m/s 2.求:

(1)第一次碰撞后,A 、B 共同运动的速度大小和方向.

(2)第一次碰撞后,A 与C 之间的最大距离.(结果保留两位小数) (3)A 与固定板碰撞几次,B 可脱离A 板.

11

如图10是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖

直平面内的

1

4

光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直

面内的截面为半径r =的1

4

圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上

端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求: (1)发射该钢珠前,弹簧的弹性势能p E 多大?

(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)

12(10分)

建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为12.5m ,高为1.5m ,如图所示。

(1)试求黄沙之间的动摩擦因数。

(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?

13(16分)

如图17所示,光滑水平地面上停着一辆平板车,其质量为2m ,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有摩擦,与中点C 为界, AC 段与CB 段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C 时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v 0,车的速度为2v 0,最后金属块恰停在车的左端(B 点)。如果金属块与车的AC 段间的动摩擦因数为1μ,与CB 段间的动摩擦因数为2μ,求1μ与2μ的比值.

F

A

C

B

L 图17

14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d为多大;

(2)带电粒子在两个磁场区域中的运动时间之比;

(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.

15.(20分)如图10所示,abcd是一个正方形的盒子,

在cd边的中点有一小孔e,盒子中存在着沿ad方向

的匀强电场,场强大小为E。一粒子源不断地从a处

的小孔沿ab方向向盒内发射相同的带电粒子,粒子

的初速度为v0,经电场作用后恰好从e处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁

场,磁感应强度大小为B(图中未画出),粒子仍恰

好从e孔射出。(带电粒子的重力和粒子之间的相互作用力均

可忽略)

(1)所加磁场的方向如何?

(2)电场强度E与磁感应强度B的比值为多大?

16.(8分)

如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,

(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L 的值.

(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.

17(8分)

如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖

直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:

(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动? (2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)

18(12分)如图所示,气缸放置在水平平台上,活塞

质量为10kg ,横截面积50cm 2,厚度1cm ,气缸全长21cm ,气缸质量20kg ,大气压强为1×105Pa ,当温度为7℃时,活塞封闭的气柱长10cm ,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通。g 取10m/s 2求:

(1)气柱多长?

(2)当温度多高时,活塞刚好接触平台?

(3)当温度多高时,缸筒刚好对地面无压力。(活塞摩擦不计)。

19(14分)如图所示,物块A 的质量为M ,物块B 、C 的质量都是m ,并都可看作质点,且m <M <2m 。三物块用细线通过滑轮连接,物块B 与物块C 的距离和物块C 到地面的距离都是L 。现将物块A 下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力。求: (1) 物块A 上升时的最大速度; (2) 物块A 上升的最大高度。

20.M是气压式打包机的一个气缸,在图

示状态时,缸内压强为P l,容积为Vo.N是一

个大活塞,横截面积为S2,左边连接有推板,

推住一个包裹.缸的右边有一个小活塞,横截面

积为S1,它的连接杆在B处与推杆AO以铰链

连接,O为固定转动轴,B、O间距离为d.推

杆推动一次,转过θ角(θ为一很小角),小活塞

移动的距离为dθ,则

(1) 在图示状态,包已被压紧,此时再推—

次杆之后,包受到的压力为多大?(此过程中大活塞的位移略去不计,温度变化不计)

(2) 上述推杆终止时,手的推力为多大? (杆长AO=L,大气压为Po)

.21.(12分)如图,在竖直面内有两平行金属导轨AB、CD。导轨间距为L,电阻不计。

一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R、R和R。在BD间接有一水平放置的平行板电容器C,板间距离为d。

(1)当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止。试判断微粒的带电性质,及带电量的大小。

(2)ab棒由静止开始,以恒定的加速度a向左运动。讨论电容器中带电微粒的加速度

如何变化。(设带电微粒始终未与极板接触。)

22(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。在第四象限,存在沿y轴负方向,场强大小与第三象限电场场强相等的匀强电场。一质量为m、电量为q的带电质点,从y轴上y=h处的

p 1点以一定的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x=-2h处的p

2

点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过y轴上y=-2h处的p

3

点进入第四象限。已知重力加速度为g。求:

(1)粒子到达p

2

点时速度的大小和方向;

(2)第三象限空间中电场强度和磁感应强度的大小;

(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。

23.(20分)如图所示,在非常高的光滑、绝缘水平高台边缘,静置一个不带电的小金属块B ,另有一与B 完全相同的带电量为+q 的小金属块A 以初速度v 0向B 运动,A 、B 的质量均为m 。A 与B 相碰撞后,两物块立即粘在一起,并从台上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E =2mg /q 。求:

(1)A 、B 一起运动过程中距高台边缘的最大水平距离

(2)A 、B 运动过程的最小速度为多大 (3)从开始到A 、B 运动到距高台边缘最大水平距离的过程 A 损失的机械能为多大?

24(20分)

如图11所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界。质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90o)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场。第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场。不计重力的影响,粒子加速前速度认为是零,求:

(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。

(2)加速电压12

U

U 的值。

25.(20分)空间存在着以x =0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B 1和B 2,且B 1:B 2=4:3,方向如图所示。现在原点O 处一静止的中性原子,突然分裂成两个带电粒子a 和b ,已知a 带正电荷,分裂时初速度方向为沿x 轴正方向,若a

粒子在

L

第四次经过y 轴时,恰好与b 粒子第一次相遇。求:

(1)a 粒子在磁场B 1中作圆周运动的半径与b 粒子在磁场B 2中圆周运动的半径之比。 (2)a 粒子和b 粒子的质量之比。

26如图所示,ABCDE 为固定在竖直平面内的轨道,ABC 为直轨道,AB 光滑,BC 粗糙,CDE

为光滑圆弧轨道,轨道半径为R ,直轨道与圆弧轨道相切于C 点,其中圆心O 与BE 在同一水平面上,OD 竖直,∠COD =θ,且θ<5°。现有一质量为m 的小物体(可以看

作质点)从斜面上的A 点静止滑下,小物体与BC 间的动摩擦因数为μ,现要使小物体

第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g )。求:

(1)小物体过D 点时对轨道的压力大小 (2)直轨道AB 部分的长度S

27两水平放置的金属板间存在一竖直方向的匀强电

场和垂直纸面向里的匀强磁场,磁感应强度为B ,一质量为4m ,带电量为-2q 的微粒b 正好悬浮在板间正中间O 点处,另一质量为m ,带电量为 +q 的微粒a ,从p 点以水平速度v 0(v 0未知)进入两板间,正好做匀速直线运动,中途与b 碰撞。: 匀强电场的电场强度E 为多大 微粒a 的水平速度为多大

若碰撞后a 和b 结为一整体,最后以速度0.4v 0从Q 点穿出场区,求Q 点与O 点的高度差

若碰撞后a 和b 分开,分开后b 具有大小为0.3v 0的水平向右速度,且带电量为-q /2,假如O

点的左侧空间足够大,则分开后微粒a 的运动轨迹的最高点与O 点的高度差为多大 28

有个演示实验,在上下面都是金属板的玻璃盒内,放了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。

如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的a 倍(1a )。不计带电小球对极板间匀强电场的影响。重力加速度为g 。

(1)欲使小球能够不断地在两板间上下往返运动,电动势 至少应大于多少

(2)设上述条件已满足,在较长的时间间隔T内小球做了很多次往返运动。求在T时间内小球往返运动的次数以及通过电源的总电量

29一玩具“火箭”由质量为m l和m2的两部分和压在中间的一

根短而硬(即劲度系数很大)的轻质弹簧组成.起初,弹簧被压紧

后锁定,具有的弹性势能为E0,通过遥控器可在瞬间对弹簧解

除锁定,使弹簧迅速恢复原长。现使该“火箭”位于一个深水池面的上方(可认为贴近水面),释放同时解除锁定。于是,“火箭”的上部分竖直升空,下部分竖直钻入水中。设火箭本身的长度与它所能上升的高度及钻入水中的深度相比,可以忽略,但体积不可忽略。试求.(1)“火箭”上部分所能达到的最大高度(相对于水面)(2)若上部分到达最高点时,下部分刚好触及水池底部,那么,此过程中,“火箭”下部分克服水的浮力做了多少功?(不计水的粘滞阻力)

30如图所示,在某一足够大的真空室中,虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E、方向水平向左的匀强电场。在虚线PH上的一

Ra)。某时刻原来静止的镭核水平向右点O处有一质量为M、电荷量为Q的镭核(226

88

放出一个质量为m、电荷量为q的α粒子而

衰变为氡(Rn)核,设α粒子与氡核分离后

它们之间的作用力忽略不计,涉及动量问题

时,亏损的质量可不计。

经过一段时间α粒子刚好到达虚线PH

上的A点,测得OA=L。求此时刻氡核的

速率

31宇航员在某一星球上以速度v0竖直向上抛出一个小球,经过时间t,小球又落回原抛出点。然后他用一根长为L的细线把一个质量为m的小球悬挂在O点,使小球处于静止状态,如图所示。现在最低点给小球一个水平向右的冲量I,使小球能在竖直平面内运

动,若小球在运动的过程始终对细绳有力的作用,则冲量I应满足什么条件

32

如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm。

电源电动势E=24V,内电阻r=1Ω,电阻R=15Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度υ0=4m/s竖直向上射入板间。若小球带电量为q=1×10-2C,质量为m=2×10-2kg,不考虑空气阻力。那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?此时,电源的输出功率是多大?(取

g=10m/s2)

33

如图所示,光滑的水平面上有二块相同的长木板A和

B,长为l=0.5m,在B的右端有一个可以看作质点的

小铁块C,三者的质量都为m,C与A、B间的动摩擦因数都为μ。现在A以速度ν0=6m/s 向右运动并与B相碰,撞击时间极短,碰后A、B粘在一起运动,而C可以在A、B上滑

动,问:

(1)如果μ=0.5,则C会不会掉下地面

(2)要使C最后停在长木板A上,则动摩擦因数μ必须满足什么条件

(g=10m/s2)

34

如图所示,质量M=3.5 kg的小车静止于光滑水平面上靠近桌

子处,其上表面与水平桌面相平,小车长L=1.2 m,其左端放有一质

量为m2=0.5 kg的滑块Q。水平放置的轻弹簧左端固定,质量为

m1=1 kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为W F,撤去推力后,P 沿桌面滑动到达C点时的速度为2 m/s,并与小车上的Q相碰,最后Q停在小车的右端,P 停在距小车左端S=0.5 m处。已知AB间距L1=5 cm,A点离桌子边沿C点距离L2=90 cm,P与桌面间动摩擦因数μ1=0.4,P、Q与小车表面间动摩擦因数μ2=0.1。(g=10 m/s。)求:(1)推力做的功WF

(2)P与Q碰撞后瞬间Q的速度大小和小车最后速度v

35如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。已知A点与轨道的圆心O的连线长也为R,且AO

连线与水平方向的夹角为30°,C点为圆弧

轨道的末端,紧靠C点有一质量M=3kg的长

木板,木板的上表面与圆弧轨道末端的切线

相平,小物块与木板间的动摩擦因数3.0

μ,

=

g取10m/s2。求:

(1)小物块刚到达B点时的速度

υ;

B

(2)小物块沿圆弧轨道到达C点时对轨道压力F

的大小;

C

(3)木板长度L至少为多大时小物块才不会滑出长木板?

36磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场B l和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场B l、B2同时以v=5m/s的速度向右匀速运动时,求

(1)如果导轨和金属框均很光滑,金属框对地是否运动?若不运动,请说明理由;如运动,原

因是什么?运动性质如何?

(2)如果金属框运动中所受到的阻力恒为其对地速度的K 倍,K=0.18,求金属框所能达到的最大速度v m 是多少?

(3)如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?

37如图左所示,边长为l 和L 的矩形线框a a '、b b '互相垂直,彼此绝缘,可绕中心轴O 1O 2

转动,将两线框的始端并在一起接到滑环C ,末端并在一起接到滑环D ,C 、D 彼此绝缘.通过电刷跟C 、D 连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45°,如图右所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头所示).不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l 的线框边所在处的磁感应强度大小恒为B ,设线框a a '和b b '的电阻都是r ,两个线框以角速度ω逆时针匀速转动,电阻R =2r . (1)求线框a a '转到图右位置时感应电动势的大小; (2)求转动过程中电阻R 上的电压最大值;

(3)从线框a a '进入磁场开始时,作出0~T (T 是线框转动周期)时间内通过R 的电流 i R 随时间变化的图象;

(4)求外力驱动两线框转动一周所做的功。

38(20分)如图所示,质量为 M 的长板静置在光滑的水平面上,左侧固定一劲度系数为 k 且足够长的水平轻质弹簧,右侧用一根不可伸长的细绳连接于墙上(细绳张紧),细绳所能承受的最大拉力为 T .让一质量为 m 、初速为v 0的小滑块在长板上无摩擦地对准弹簧水平向左运动.已知弹簧的弹性势能表达式为E P =

2

2

1kx ,其中x 为弹簧的形变量.试问: ( l )v 0的大小满足什么条件时细绳会被拉断?

( 2 )若v 0足够大,且 v 0已知.在细绳被拉断后,长板所能获得的最大加速度多大? ( 3 )滑块最后离开长板时,相对地面速度恰为零的条件是什么?

39 ( 16分)如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为 d ,电场方向在纸平面内,而磁场方向垂直纸面向里.一带正电粒子从 O 点以速度 v 0 沿垂直电场方向进入电场,在电场力的作用下发生偏转,从 A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C 点穿出磁场时速度方向与进入电场O 点时的速度方向一致,(带电粒子重力不计)求:

(l )粒子从 C 点穿出磁场时的速度v ;

(2)电场强度 E 和磁感应强度 B 的比值 E / B ; (3)拉子在电、磁场中运动的总时间。

40( 19分)

如图所示,在xoy 坐标平面的第一象限内有沿-y 方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。现有一质量为m ,带电量为+q 的粒子(重力不计)以初速度v 0沿-x 方向从坐标为(3l、l)的P 点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y 轴方间夹角为45o,求:

(1)粒子从O 点射出时的速度v 和电场强度E ; (2)粒子从P 点运动到O 点过程所用的时间。

41(20分)

如图所示,在光滑的水平面上固定有左、右两竖直挡板,挡板间距离足够长,有一质量为M ,长为L 的长木板靠在左侧挡板处,另有一质量为m 的小物块(可视为质点),放置在长木板的左端,已知小物块与长木板间的动摩擦因数为μ,且M >m 。现使小物块和长木板以共同速度v 0向有运动,设长木板与左、右挡板的碰撞中无机械能损失。试求:

(1)将要发生第二次碰撞时,若小物块仍未从长木板上落下,则它应距长木板左端多远?

(2)为使小物块不从长木板上落下,板长L 应满足什么条件?

(3)若满足(2)中条件,且M =2kg ,m =1kg ,v 0=10m/s , 试计算整个

系统从开始到刚要发生第四次碰撞前损失的机械能。

42(18分)

如图1所示,真空中相距5d cm =的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图2所示

将一个质量27

2.010

m kg -=?,电量11.610q C -=+?的带电粒子从紧临B 板处释放,

不计重力。求

(1)在0t =时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A 板电势变化周期8

1.010T -=?s ,在0t =时将带电粒子从紧临B 板处无初速

释放,粒子到达A 板时动量的大小;

(3)A 板电势变化频率多大时,在4T t =到2

T

t =时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板。

43(20分)

磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。

如图2所示,通道尺寸 2.0a m =、0.15b m =、0.10c m =。工作时,在通道内沿z 轴正方向加8.0B T =的匀强磁场;沿x 轴负方向加匀强电场,使两金属板间的电压

99.6U V =;海水沿y 轴方向流过通道。已知海水的电阻率0.20m ρ=Ω

(1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向;

(2)船以 5.0/s v m s =的速度匀速前进。若以船为参照物,海水以5.0/m s 的速率涌入进水口,由于通道的截面积小于进水口的截面积,在通道内海水速率增加到8.0/d v m s =。求此时两金属板间的感应电动势U 感;

(3)船行驶时,通道中海水两侧的电压按'U U =-U 感计算,海水受到电磁力的80%可以转化为对船的推力。当船以 5.0/s v m s =的速度匀速前进时,求海水推力的功率。

44(20分)

如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B =1.57T 。小球1带正电,其电量与质量之比q 1/m 1=4C/kg ,

所受重力与电场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上。小球1向右以υ0=23.59m/s 的水平速度与小球2正碰,碰后经过0.75s 再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。(取g =10m/s 2)

问:(1)电场强度E 的大小是多少?

(2)两小球的质量之比2

1

m m 是多少? 45.(19分)

有人设想用题24图所示的装置来选择密度相同、大小不同的球状纳米粒子。粒子在电离室中电离后带正电,电量与其表面积成正比。电离后,粒子缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域I,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B ,方向如图。收集室的小孔O 3与O 1、O 2在同一条水平线上。半径为r 0的粒子,其质量为m 0、电量为q 0,刚好能沿O 1O 3直线射入收集室。不计纳米粒子重力。(2

34,3

4r S r V ππ==球球)

(1)试求图中区域II 的电场强度;

(2)试求半径为r 的粒子通过O 2时的速率; (3)讨论半径r ≠r 0的粒子刚进入区域II 时向哪个极板偏转。

46.(20分)

如题46图,半径为R 的光滑圆形轨道固定在竖直面内。小球A 、B 质量分别为m 、βm (β为待定系数)。A 球从在边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 4

1

,碰撞中无机械能损失。重力加速度为g 。试求:

(1)待定系数β;

(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。

47(20分)

地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁 漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为 m ,带电量为q )在x =0,y =0处沿y 方向以某一速度v 0运动,空间存在 垂直于图中向外的匀强磁场,在y >0的区域中,磁感应强度为B 1,在y <0的区域中,磁感应强度为B 2,B 2>B 2,如图所示,若把粒子出发点x =0处作为第0次过x 轴。求:

(1)粒子第一次过x 轴时的坐标和所经历的时间。 (2)粒子第n 次过x 轴时的坐标和所经历的时间。

(3)第0次过z 轴至第n 次过x 轴的整个过程中,在x 轴方向的平均速度v 与v 0之比。 (4)若B 2:B 1=2,当n 很大时,v :v 0趋于何值?

48(20分)如图所示,xOy 平面内的圆O ′与y 轴相切于坐标原点O 。在该圆形区域内,有与y 轴平行的匀强电场和垂直于圆面的匀强磁场。一个带电粒子(不计重力)从原点O 沿x 轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T 0。若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过圆形区域的时间为0

2

T ;若撤去电场,只保留磁场,其他条件不变,求该带电粒子穿过圆形区域的时间。

49(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为

B ,今有一质子以速度v 0由Y 轴上的A 点沿Y 轴正方向射人磁场,质子在磁场中运动一段 时间以后从

C 点进入χ轴下方的匀强电场区域中,在C 点速度方向与χ轴正方向夹角为

450,该匀强电场的强度大小为E ,方向与Y 轴夹角为450

且斜向左上方,已知质子的质量为

m ,电量为q ,不计质子的重力,(磁场区域和电场区域足够大)求: (1)C 点的坐标。

(2)质子从A 点出发到第三次穿越χ轴时的运动时间。

(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E 方向的夹角。(角度用反三角 函数表示)

50 (22分)如图所示,电容为C 、带电量为Q 、极板间距为d 的电容器

固定在绝缘底座上,两板竖直放置,总质量为M,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m、带电量为+q的弹丸以速度v0从小孔水平射入电容器中(不计弹丸重力,设电容器周围电场强度为0),弹丸最远可到达距右板为x的P 点,求:

(1)弹丸在电容器中受到的电场力的大小;

(2)x的值;

(3)当弹丸到达P点时,电容器电容已移动的距离s;

(4)电容器获得的最大速度。

51两块长木板A 、B 的外形完全相同、质量相等,长度均为L =1m ,置于光滑的水平面上.一小物块C ,质量也与A 、B 相等,若以水平初速度v 0=2m/s ,滑上B 木板左端,C 恰好能滑到B 木板的右端,与B 保持相对静止.现在让B 静止在水平面上,C 置于B 的左端,木板A 以初速度2v 0向左运动与木板B 发生碰撞,碰后A 、B 速度相同,但A 、B 不粘连.已知C 与A 、C

与B 之间的动摩擦因数相同.(g =10m/s 2

)求:

(1)C 与B 之间的动摩擦因数; (2)物块C 最后停在A 上何处?

52(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=3

8

m/s ,下落到经过圆心时棒的速度大小为v 2 =

3

10

m/s ,(取g=10m/s 2) 试求:

?下落距离为r /2时棒的加速度,

?从开始下落到经过圆心的过程中线框中产生的热量.

53(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0.1,(小车不带电,货柜及货物体积大小不计,g 取10m/s 2)求:

?第二次电场作用的时间; ?小车的长度;

?小车右端到达目的地的距离.

54.如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m 。

质量为2m ,大小可忽略的物块C 置于A 板的左端,C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10。最大静摩擦力可以认为等于滑动摩擦力。开始时,三个物体处于静止状态。现给C 施加一个水平向右,大小为0.4mg 的恒力F ,假定木板A 、B 碰撞时间极短,且碰撞后粘连在一起。要使C 最终不脱离木板,每块木板的长度至少应为多少?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ?

B

o

55(19分)24

如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿。x轴正方向的匀强电场,电场强度大小为E,y轴为磁场和电场的理想边界。一个质量为m ,电荷量为e的质子经过x轴上A点时速度大小为v o,速度方向与x轴负方向夹角θ=300。质子第一次到达y轴时速度方向与y轴垂直,第三次到达y轴的位置用B点表示,图中未画出。已知OA=L。

(1)求磁感应强度大小和方向;

(2)求质子从A点运动至B点时间

56(20分)25

如图所示,质量M=4.0kg,长L=4.0m的木板B静止在光滑水平地面上,木板右端与竖直墙壁之间距离为s=6.0m,其上表面正中央放置一个质量m=1.0kg的小滑块A,A与B之间的动摩天楼擦因数为μ=0.2。现用大小为F=18N的推力水平向右推B,两者发生相对滑动,作用1s后撤去推力F,通过计算可知,在B与墙壁碰撞时A没有滑离B。设B与墙壁碰撞时间极短,且无机械能损失,重力加速度g=10m/s2.求A在B上滑动的整个过程中,A,B 系统因摩擦产生的内能增量。

57。(15分)平行导轨L1、L2所在平面与水平面成30度角,平行导轨L3、L4所在平面与水平面成60度角,L1、L3上端连接于O点,L2、L4上端连接于O’点,OO’连线水平且与L1、L2、L3、L4都垂直,质量分别为m1、m2的甲、乙两金属棒分别跨接在左右两边导轨上,且可沿导轨无摩擦地滑动,整个空间存在着竖直向下的匀强磁场。若同时释放甲、乙棒,稳定后它们都沿导轨作匀速运动。

(1)求两金属棒的质量之比。

(2)求在稳定前的某一时刻两金属棒加速度之比。

(3)当甲的加速度为g/4时,两棒重力做功的瞬时功率和回路中电流做功的瞬时功率之比为多少?

高考物理压轴题集(精选)

1(20分) 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 图12 2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、 ,放手后,木板沿斜面下滑,稳定后弹小球放在斜面上,用手固定木板时,弹簧示数为F 1 簧示数为F ,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地 2 面上)

高考物理复习资料高中物理综合题难题汇编(三)高考物理压轴题汇编

高考物理复习资料高考物理压轴题汇编高中物理综合题难 题汇编(3) 1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,重力加速度为g。求: (1)金属杆达到最大速度时安培力的大小; (2)磁感应强度的大小; (3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。 2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数 =0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量 m=1.0kg。带正电的小滑块A质量 B m=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。 A t=0时刻,小滑块A从B表面上的a点以相对地面的速度 v=1.6m/s向左运动,同时,B A (连同极板)以相对地面的速度 v=0.40m/s向右运动。(g取10m/s2)问: B

(1)A 和B 刚开始运动时的加速度大小分别为多少? (2)若A 最远能到达b 点,a 、b 的距离L 应为多少?从t=0时刻至A 运动到b 点时,摩擦力对B 做的功为多少? 3. (18分)如图所示,一个质量为m 的木块,在平行于斜面向上的推力F 作用下,沿着倾角为θ的斜面匀速向上运动,木块与斜面间的动摩擦因数为μ.(θμtan <) (1)求拉力F 的大小; (2)若将平行于斜面向上的推力F 改为水平推力F 作用在木块上,使木块能沿着斜面匀速运动,求水平推力F 的大小。 4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。质量为m =0.20kg 的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A 点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B 点。现用力沿斜面向下缓慢压乙,当其沿斜面下降到C 点时将弹簧锁定,A 、 C 两点间的距离为△L =0.06m 。一个质量也为m 的小球丙从距离乙的斜面上方L =0.40m 处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。当甲第一次刚要离开挡板时,乙的速度为v =2.0m/s 。(甲、乙和小球丙均可看作质点,g 取10m/s 2)求:

2019浙江高考物理压轴题练习

浙江高考物理压轴题练习 1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量04.0=m kg 、电量4102-?+=q C 的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B 点,并沿轨道滑下。已知AB 的竖直高度h =0.45m ,倾斜轨道与水平方向夹角为0 37=α、倾斜轨道长为2.0=L m ,带电小球与倾斜轨道的动摩擦因数5.0=μ。倾斜轨道通过光滑水平轨道CD 与光滑竖直圆轨道相连,在C 点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强3100.2?=E V/m 。(cos37°=0.8,sin37°=0.6,取g=10m/s 2 ) 求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径9.0=R m ,小球进入轨道后可以有多 少次通过竖直圆轨道上距水平轨道高为0.01m 的某一点P ? 解:(1)A 到B 平抛运动:gh v y 22 = 解得: 3=y v m/s 1分 A x v v ==4 m/s 2分 2分 33.01=R m 2分 825.02=R m 2分

要使小球不离开轨道,竖直圆弧轨道的半径33.0≤R m 或825.0≥R m 2分 (3) 9.0=R m >R 2,小球冲上圆轨道H 1=0.825m 高度时速度变为0,然后返回倾斜轨道h 1高处再滑下,然后再次进入圆轨道达到的高度为H 2。 之后物块在竖直圆轨道和倾斜轨道之间往返运动 , 当n =4时,上升的最大高度小于0.01m 则小球共有6次通过距水平轨道高为0.01m 的某一点。 2分 2、如图所示,MN 、PQ 是足够长的光滑平行导轨,其间距为L ,且MP ⊥MN .导轨平面与水平面间的夹角θ=30°.MP 接有电阻R .有一匀强磁场垂直于导轨平面,磁感应强度为B 0.将一根质量为m 的 金属棒ab 紧靠MP 放在导轨上,且与导轨接触良好,金属棒的电阻也为R ,其余电阻均不计.现用与导轨平行的恒力F =mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP 平行.当金属棒滑行至cd 处时已经达到稳定速度,cd 到MP 的距离为S .已知重力加速度为g ,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd 的过程中,电阻R 上产生的热量; (3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B 随时间t 变化的关系式. 解:(1)当金属棒稳定运动时做匀速运动,则有 F =mg sin θ+F 安 又安培力 F 安=R v L B 222 解得:2 2L B mgR v = (2)金属棒从静止开始运动到cd 的过程,由动能定理得:

高考物理压轴题和高级高中物理初赛难题汇集一

高考物理压轴题和高级高中物理初赛难题汇集 一 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

高考物理压轴题和高中物理初赛难题汇集-1 1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定 物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G r Mm .国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能 解析: 由G 2r Mm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 = G ) (2h R Mm +。 卫星在空间站上的引力势能在 E p = -G h R Mm + 机械能为 E 1 = E k + E p =-G ) (2h R Mm + 同步卫星在轨道上正常运行时有 G 2r Mm =m ω2 r 故其轨道半径 r = 3 2 ω MG 由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G 2 Mm 3 2 GM ω =-2 1 m (3ωGM )2

卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离 开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32ωGM +G h R Mm + 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=,cos37°=,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 解析: (1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡 解得 f=20N N=40N 因为N F N =,由N F f μ=得5.02 1 === N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。当物体匀速上行时力F '取最小。由平衡条件 且有N f '='μ 联立上三式求解得 N F 100=' 3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m·s-2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的 流体中以速度v 运动时受到的阻力F 可表示为F =21 ρACv2,式中A 是物体的

挑战高中物理压轴题

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道 高为0.01m的某一点P?

2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R. .将一根质量为有一匀强磁场垂直于导轨平面,磁感应强度为B m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电 阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P? 2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使 金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

(完整版)高中物理压轴题精选

50 (22分)如图所示,电容为C 、带电量为Q 、极板间距为d 的电容器固定在绝缘底座上, 两板竖直放置,总质量为M ,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m 、带电量为+q 的弹丸以速度v 0从小孔水平射入电容器中(不计弹丸重力,设电容器周围电场强度为0),弹丸最远可到达距右板为x 的P 点,求: (1)弹丸在电容器中受到的电场力的大小; (2)x 的值; (3)当弹丸到达P 点时,电容器电容已移动的距离s ; (4)电容器获得的最大速度。 51两块长木板A 、B 的外形完全相同、质量相等,长度均为L =1m ,置于光滑的水平面上.一小物块C ,质量也与A 、B 相等,若以水平初速度v 0=2m/s ,滑上B 木板左端,C 恰好能滑到B 木板的右端,与B 保持相对静止.现在让B 静止在水平面上,C 置于B 的左端,木板A 以初速度2v 0向左运动与木板B 发生碰撞,碰后A 、B 速度相同,但A 、B 不粘连.已知C 与A 、C 与B 之间的动摩擦因数相同.(g =10m/s 2 )求: (1)C 与B 之间的动摩擦因数; (2)物块C 最后停在A 上何处? 52(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=3 8 m/s ,下落到经过圆心时棒的速度大小为v 2 = 3 10 m/s ,(取g=10m/s 2) 试求: ⑴下落距离为r /2时棒的加速度, ⑵从开始下落到经过圆心的过程中线框中产生的热量. 53(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作 C B A 2v 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? B o

历年高考物理压轴题精选(三)详细解答

历年高考物理压轴题精选(三) (宁夏卷) 23.(15分) 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。(引力常量为G ) 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。 质点到达x 轴上A 点时,速度方向与x 轴的夹角?,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角为?,求 (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。 24.(17分) (1)质点在磁场中的轨迹为一圆弧。由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的 速度方向垂直的直线,与OC 交于O '。由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。设圆弧的半径为R ,则有 R =dsin ? ? 由洛化兹力公式和牛顿第二定律得 R v m qvB 2 = ②

将?式代入②式,得 ?sin m qBd v = ③ (2)质点在电场中的运动为类平抛运动。设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有 v 0=v cos ? ④ v sin ?=at ⑤ d =v 0t ⑥ 联立④⑤⑥得 d v a ??cos sin 2= ⑦ 设电场强度的大小为E ,由牛顿第二定律得 qE =ma ⑧ 联立③⑦⑧得 ??cos 3sin 2m d qB E = ⑨ (海南卷) 16.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x=R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求 (I)粒子到达x=R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (Ⅱ)M 点的横坐标x M . 16.(I)设粒子质量、带电量和入射速度分别为m 、q 和v 0,则电场的场强E 和磁场的磁感应强度B 应满足下述条件 qE=qv o B ①

高考物理压轴题电磁场大全

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方 向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电 量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O /Q =R /。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+ - 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场, 电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

高中物理常见的物理模型-附带经典63道压轴题

高三物理第二轮总复习 (大纲版) 第9专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、理综卷第18题、天津理综卷第1题、物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、理综卷第20题、物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦

高考物理法拉第电磁感应定律-经典压轴题含答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高 (2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

历年高考物理压轴题精选(一)详细解答

页眉内容 历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 1 1核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 1 1核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高考物理磁场压轴题参考-word

2019高考物理磁场压轴题参考 高考将至,2019年高考将于6月7日如期举行,以下是一篇高考物理磁场压轴题,详细内容点击查看全文。 1如图12所示,PR是一块长为L=4 m的绝缘平板固定在水 平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为 m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为=0.4,取g=10m/s2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 2(10分)如图214所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰 撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大?

(2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F ,放手后,木板沿斜面下滑,稳定后弹簧示数为F ,测得斜面斜角为,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质 量分别为m =m =m,m =3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v 向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R 间的距离L的大小。 5 如图,足够长的水平传送带始终以大小为v=3m/s的速度向

最新高考物理压轴题常考点及解题方法汇总

最新高考物理压轴题常考点及解题方法汇 总 1,力学综合型 力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高.具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。 应试策略: (1)对于多体问题:要灵活选取研究对象,善于寻找相互联系。 选取研究对象和寻找相互联系是求解多体问题的两个关键.选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 (2)对于多过程问题:要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键.分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。 (3)对于含有隐含条件的问题:要注重审题,深究细琢,努力挖掘隐含条件。 注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键。通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。 (4)对于存在多种情况的问题:要认真分析制约条件,周密探讨多种情况。 解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。 2,带电粒子运动型 带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区.近年来高考重点就是

高考物理压轴题30道

高考物理压轴题 (30道) 1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为 q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用 下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 1.(1)由于物体返回后在磁场中无电场,且仍做 匀速 运动,故知摩擦力为0,所以物体带正电荷.且: mg =qBv 2…………………………………………………………① (2)离开电场后,按动能定理,有:-μ mg 4L =0-2 1mv 2………………………………② 由①式得:v 2=22 m/s 图12

(3)代入前式①求得:B = 2 2 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向 水 平 向 右 , 且 :( Eq -μmg ) 2 12=L mv 12 -0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ (qBv 1+mg )……………………………④ 由以上③④两式得:?? ?==N/C 2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为 零,故两物块与挡板碰撞后,C 的速度为零,即0=C v (2)炸药爆炸时有 B B A A v m v m = 解得s m v B /5.1= 又B B A A s m s m =

历年高考物理压轴题精选(二)详细解答

历年高考物理压轴题精选(二) 20XX 年理综(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、等省用) 25.(20分)有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。 如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。 (1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少? (2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。 解析25.解:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要 使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,则 q ε d >mg ① 其中 q=αQ ② 又有 Q=C ε ③ 由以上三式有 ε> mgd αC ④ (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以a 1表示其加速度,t 1表示从A 板到B 板所用的时间,则有 q ε d +mg=ma 1郝双制作 ⑤ d=12 a 1t 12 ⑥ 当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以a2 表示其

加速度,t 2表示从B 板到A 板所用的时间,则有 q ε d -mg=ma 2 ⑦ d=12 a 2t 22 ⑧ 小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数 n=T t 1+t 2 ⑨ 由以上关系式得: n= T 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd ⑩ 小球往返一次通过的电量为2q ,在T 时间内通过电源的总电量 Q'=2qn ○11 由以上两式可得:郝双制作 Q'= 2αC εT 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd 2007高考北京理综 25.(22分)离子推进器是新一代航天动力装置,可用于卫 星姿态控制和轨道修正。推进剂从图中P 处注入,在A 处电离出正离子,BC 之间加有恒定电压,正离子进入B 时的速度忽略不计,经加速后形成电流为I 的离子束后喷出。已知推进器获得的推力为F ,单位时间内喷出的离子质量为J 。为研究方便,假定离子推进器在太空飞 行时不受其他阻力,忽略推进器运动的速度。⑴求加在B C 间的电压U 离子推进器正常运行,必须在出口D 处向正离子束注入电子,试解释其原因。 ⑴JI F U 22=(动量定理:单位时间内F=Jv ;单位时间内2 2 1Jv UI =,消去v 得 U 。)⑵推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作 用,将严重阻碍正离子的继续喷出。电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。因此,必须在出口D 处发射电子注入到正离子束中,以中和正离子,使推进器持续推力。 难 三、磁场 20XX 年理综Ⅱ(黑龙江、吉林、广西、云南、贵州等省用) 25.(20分) 如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别 x O P

相关文档
相关文档 最新文档