文档库 最新最全的文档下载
当前位置:文档库 › 史上超详细的天线知识

史上超详细的天线知识

史上超详细的天线知识
史上超详细的天线知识

天线,是我们生活中很常见的一种通讯设备。但是,大部分人其实对它并不了解,可能只知道它是收发信号的。

本文面向零基础读者,专业或非专业人士,皆可阅读,绝对通俗易懂,干货满满。

废话不多说,直入正题!

话说,自从1894年老毛子科学家波波夫成功发明了天线之后,这玩意迄今已有124年的历史(数了3遍,应该没错)。

波波夫和他的发明

在这漫长的历史长河之中,它对人类社会发展和进步做出了卓绝的贡献。

二战中屡立奇功的英国雷达天线

如今,不管是老百姓日常工作生活,还是科学家进行科研探索,都离不开天线君的默默奉献。

天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?

其实,天线之所以牛逼,就是因为电磁波牛逼。

电磁波之所以牛逼,一个主要原因就是,它是唯一能够不依赖任何介质进行传播的“神秘力量”。即使在真空中,它也能来去自如,而且转瞬即至。

电磁波效果图

电磁波传播示意图

想要充分利用这股“神秘力量”,你就需要天线。

在无线电设备中,天线就是用来辐射和接收无线电波的装置。

天线的英文名:Antenna(也有触须、直觉之意)

再通俗点,天线就是一个“转换器”——把传输线上传播的导行波,变换成在自由空间中传播的电磁波,或者进行相反的变换。

天线的作用

什么叫导行波?

简单来说,导行波就是一种电线上的电磁波。

天线是怎么实现导行波和空间波之间转换的呢?

看下图:

中学物理学过,两根平行导线,有交变电流时,就会形成电磁波辐射。

两根导线很近时,辐射很微弱(导线电流方向相反,产生的感应电动势几乎抵消)。

两根导线张开,辐射就会增强(导线电流方向相同,产生的感应电动势方向相同)。

当导线的长度增大到波长的1/4时,就能形成较为的辐射效果!

有了电场,就有了磁场,有了磁场,就有了电场,如此循环,就有了电磁场和电磁波。。。

电生磁,磁生电

再来个动图,大家感受一下这个优美的过程:

导线电流方向的变化,产生了变化的电场

产生电场的这两根直导线,就叫做振子。

通常两臂长度相同,所以叫对称振子。

长度像下面这样的,叫半波对称振子。

半波对称振子

把导线两头连起来,就变成了半波对称折合振子。

半波对称折合振子

有点像刷墙的油漆刷子。

对称振子是迄今最为经典,使用最为广泛的天线。

理论还是有点枯燥啊,赶紧的,我们来结合一下实物。

真实世界中的振子,是个什么样?

Duang!就是这样——

就是这么个金属片。。。半波对称振子(非折合)

好吧,其实上面这个只是振子的一个传统形态,它还有N种变(身)态:

造型怪异的振子

懵逼了吧?如果说振子就是天线,那这哪里是天线嘛?我们现实生活中看到的天线不是这个鸟样啊?

确切地说,振子不是一个完整的天线。振子是天线的核心部件,形态会随天线的形态变化而变化。

而天线的形态,实在是太TM多了。。。多了。。。了。。。

总而言之,成百上千。。。

虽然天线的形态千奇百怪,但是根据相似度,也可以进行大致归类。

按波长分:中波天线、短波天线、超短波天线、微波天线...

按性能分:高增益天线、中增益天线...

按指向分:全向天线、定向天线、扇区天线...

按用途分:基站天线、电视天线、雷达天线、电台天线...

按结构分:线天线、面天线...

按系统类型分:单元天线、天线阵...

……

如果按照外型来分,常见的几种,如下图:

鞭状天线

抛物面天线

八木天线

PS:八木天线并不是八根木头,虽然我数学不好,但是八我还是数得来的。之所以叫八木,是因为它是二十世纪20年代日本人八木秀次和宇田太郞发明的,叫“八木宇田天线”,简称“八木天线”(可怜的宇田)。

我们通信汪最关心的,当然是——通信基站天线!

基站天线,是基站天馈系统的组成部分,也是移动通信系统的重要组成部分。基站天线一般分为室内天线和室外天线。

室内天线通常包括全向吸顶天线和定向壁挂天线等。

我们重点说说室外的。

室外基站天线也分为全向的和定向的。定向天线再细分为定向单极化天线和定向双极化天线。

什么是极化?别急,我们待会再说。我们先说说全向和定向。

其实顾名思义,全向天线就是向四周发射和接收信号的,而定向天线,是向指定方向。

室外全向天线,是这样的:

就是一根棒子,有粗的,也有细的。

它里面的振子,是这样的:

相比全向天线,现实工作生活中,定向天线使用最为广泛。

它大部分时候看上去就是一个板子,所以叫板状天线。

板状天线,主要由以下部分组成:

? * 辐射单元(振子)

? * 反射板(底板)

? * 功率分配网络(馈电网络)

? * 封装防护(天线罩)

之前我们看到那些奇怪形状的振子,其实都是基站天线的振子。

大家注意到没,这些振子的角度,有一定的规律:要么是“+”,要么是“×”。

嗯,这就是前面我们提到的“极化”。

无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为

无线电波的极化。

如果电波的电场方向垂直于地面,我们称它为垂直极化波。同理,平行于地面,就是水平极化波。另外,还有±45°的极化。

不仅如此,电场的方向还可以是螺旋旋转的,叫椭圆极化波。

双极化,就是2个天线振子在一个单元内,形成两个独立波。

采用双极化天线,可以在小区覆盖时减少天线的数量,降低天线架设的条件要求,进而减少投资,还能保证覆盖效果。总之,就是好处多多。

密集恐惧症又犯了。。。

我们继续前面全向和定向天线的话题。

为什么定向天线可以控制信号的辐射方向呢?

我们先来看个图:

这种图,叫做天线方向图。

因为空间是三维立体的,所以这种从上往下的俯视,以及从前往后的正视,会

更加清晰直观地观察到天线辐射强度的分布。

上图也是一对半波对称振子产生的天线方向图,有点像个平放的轮胎。

话说,天线的诸多特性中,一个很重要的能力,就是辐射距离。

怎样才能让这个天线的辐射距离更远呢?

答案就是——

拍它。。。

啪叽!

这下辐射距离不就远了嘛。。。

问题是,辐射这玩意,看不见抓不着,你想拍它,也拍不着啊。

在天线理论里,如果你想拍这一巴掌,正确的做法是——增加振子。

振子越多,轮胎越扁。。。

这个造型有点像那啥啊。。。呵呵

好了,轮胎被拍成了饼,信号距离是远了,而且,它是向周围360°发散的,是个全向天线。这种天线,放在荒郊野外,是极好的。但是,在城市里,这种天线就很难玩得转了。

城市里,人群密集,建筑林立,通常需要使用定向天线,对指定范围进行信号覆盖。

城区基本上都是定向天线

于是乎,我们就需要对全向天线进行“改造”。

首先,我们要想办法把其中一侧“挤一挤”:

怎么挤呢?我们加上反射板,挡在一侧。然后,配合多个振子,进行“聚焦”。最后,我们得到的辐射形状,是这样的:

图中,辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣,屁股上还会有一点尾巴,叫后瓣。

呃,这个造型,有点像。。。茄子?

对于这个“茄子”,你可以想一想,怎样才能最大化利用它进行信号覆盖呢?

抱着它站在马路上,肯定是不行的,障碍物太多。

站得高,看得远,我们肯定要往高处走啊。

到了高处,怎么才能往下照呢?聪明如我的你,一定想到了,很简单啊,天线本体往下倾斜不就OK啦?

是的,在安装时,直接倾斜天线,是一个办法,我们称之为“机械下倾”。

现在的天线,安装时都具备这个能力,一个机械臂,搞定。

但是,机械下倾也存在一个问题——

采用机械下倾时,天线垂直分量和水平分量的幅值是不变的,所以天线方向图严重变形。

这肯定不行啊,影响了信号覆盖。于是,我们采用了另外一种办法,就是电调下倾,简称电下倾。

简而言之,电下倾就是保持天线本体的物理角度不变,通过调整天线的振子相位,改变场强强度。

来个动图,就看明白了:

相比于机械下倾,电下倾的天线方向图变化不大,下倾度数更大,而且,前瓣和后瓣都朝下。

当然啦,在实际使用中,经常会机械下倾和电调下倾配合使用。

下倾之后,就变成了这样——

在这种情况下,天线的主要辐射范围,得到了较充分的利用。

但是,还是有问题存在的:

1 主瓣和下旁瓣之间,有一个下部零深,会造成这个位置的信号盲区。通常,我们称之为“灯下黑”。

2 上旁瓣的角度较高,影响距离较远,很容易造成越区干扰,也就是说,信号会影响到别的小区。

所以,我们必须努力填补“下部零深”的空缺,压制“上旁瓣”的强度。

具体的办法,就是调节旁瓣的电平,采用波束赋形等手段,里面的技术细节就有点复杂了。大家感兴趣的话,可以自行搜索相关资料。

这里面的学问,真的很深,所以,无数的天线专家都在钻研这方面的课题,不断地研发、测试。

上图为天线测试暗室

一款优秀的天线,离不开良好的工艺,可靠的材料,还有不断的测试。

好啦,文章写到这里,就该结束啦!能看到这里的,绝对都是真爱啊!

实际上,天线的知识还有很多,远不止本文所述。限于篇幅,今天还是先到这里吧。

总之,天线确实是一门精深的学问,远比大家想象得复杂。而且,目前也处于高速发展的阶段,还有很大的潜力可以挖掘。

尤其是即将到来的5G,天线技术革新是其中的重中之重,各大设备厂家一定会

在5G天线上全力以赴,做足文章。

到时候会有什么样的天线黑科技出现?让我们拭目以待吧!

天线的基本知识

一、发射天线的作用 广播电视发射台的主要设备包括了:信号源系统、发射机设备以及铁塔和天馈线系统。 在广播电视传输的各个环节中,天馈线系统是各环节中最终的主要设备之一,其作用是将广播电视信号以电磁波的形式向空间传送能量。 天线可以向周围辐射电磁波能量,在计算天线辐射场强时,天线的增益若能提高3dB,则相当于发射机有效功率提高一倍。因此,使用较高增益的天线更具有较大的使用价值。 二、天线的发展 1、1887年郝兹在验证电磁波存在时使用了双球发射天线和单环天线。 2、1897年出现了能实现5Km通信的大型长波天线。 3、1901年马可尼研制出第一付大型垂直极化天线实现3700Km远程通信。 4、20年代初中波天线兴起和发展,从T型、Г型和伞型天线到后来的拉线 式或自立式铁塔天线。凌风公司在2003年又率先研制出了自立式缩短型曲线式中波电小天线。 5、30年代雷达的出现推动了喇叭天线透镜天线介质天线、缝隙天线等超 短波天线的诞生。1928年著名的八木天线研制成功并推广应用至今。 6、40—50年代:蝙蝠翼天线、带有反射板的各种半波振子天线、大功率缝 隙天线迅速发展。长、中、短天线基本定型。 7、随着科技的发展,高增益、宽频带、高分辨率、快速扫描的天线大量出现, 相控天线取得了突破性发展,现代天线已有微带天线、有源相控天线、超导天线、四维天线等。更有向小型化、轻便、隐形化的发展趋势。 三、天线问题求解的基本方法 1、解析法:对形状极为简单的天线求得精确解。 2、近似解析法:变分法、微扰法、迭代法、几何光学法几何绕射法、物理绕射法等。 3、数值法:利用计算机进行运算,可用纯数值法,也可用矢量法。但是,较 为复杂的天线,仍然是用多次实验的方法优化出来的,某些电参数用经验公式或实验曲线计算。 四、天线的主要参数 1、天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。 天线与馈线的连接,最理想的情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波。

WIFI天线基础知识

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强 用事实拆穿双天线成倍增益的神话 双天线只能减少覆盖范围内的盲点 先看总结: 性能的区别主要来自芯片而不是品牌 这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。 现阶段802.11N无线路由器已大幅度超越54M 从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系 虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。(天线原理介绍过了,和我们的实际情况是一致的。当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。 新的功能将改善人们使用无线网络的习惯 譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。 802.11N是构建数字家庭的主干 除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。 目前产品单调需要更多个性化产品问世 不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。 802. 11N横评第一波结束更多低价产品会接踵而来 这次评测历时1个月,在测试过程中又出现了多个新品,它们没有赶上这次横评很遗憾,但是我们还有的是机会,因为低价11N时代马上就要来临了,各个品牌都会有更多更优秀的产品放出,请继续关注泡泡网无线频道,更多的精彩会接踵而来.....

天线基础知识大全

天线基础知识大全 1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。 1.3 天线方向性的讨论

最新天线基本知识试题

天线基本知识试题 1、天线的基本作用是什么? 转成为自由空间的电磁波,将传输线中的高频电磁能转成为自由空间的电磁波,或反之将自由空间中的电磁波转化为传输线中的高频电磁能。因此,的电磁波转化为传输线中的高频电磁能。 2、天线的基本结构形式是什么?天线的工作带宽是如何确定的?它的物理本质是什么? 天线的基本结构是两根长度大于波长的电流增加形成较强辐射导线天线的工作宽带是在规定的驻波比下天线的工作频带宽度决定的驻波比下天线的工作频带宽度决定的。天线的工作宽带是在规定的驻波比下天线的工作频带宽度决定的。它的物理本质是张开并且长度相当于波长的两导线载入方向相同的交变电流产生相同方向感应电动势产生较强辐射。流产生相同方向感应电动势产生较强辐射。 4、天线的极化是如何定义的?它可分为哪几种极化不同的天线? 天线辐射的电磁场的电场方向就是天线的极化方向。可分为双极化天线,天线辐射的电磁场的电场方向就是天线的极化方向。可分为双极化天线,圆极化天线,垂直极化天线,水平极化天线,度倾斜的极化、圆极化天线,垂直极化天线,水平极化天线,+45 度倾斜的极化、-45 度倾斜的极化天线 5、天线的方向图表明了天线的什么特性?3dB 波束宽度及 10dB 波束宽度是如何定义? 天线的方向图表明了天线的方向性的特性 3dB 天线的方向性的特性。天线的方向图表明了天线的方向性的特性。波束宽度是主瓣两半功率点度的波瓣宽度,间的夹角为 60 度的波瓣宽度,10dB 波束宽度是主瓣两半功率点间的夹角为 120 度的波瓣宽度。度的波瓣宽度。 6、为了使天线辐射的方向性更强即波束的方向图更窄,我们通常采用什么方法来改变天线辐射的方向性,它的物理原理是什么? 一般说来,为了使天线辐射的方向性更强即波束的方向图更窄,一般说来,为了使天线辐射的方向性更强即波束的方向图更窄,我们通常采用提高天线的增益来改变天线辐射的方向性,采用提高天线的增益来改变天线辐射的方向性,它的物理原理是主瓣波束宽度越窄,天线增益越高。可将对称振子组阵控制辐射能,或使用反射面等方法。越窄,天线增益越高。可将对称振子组阵控制辐射能,或使用反射面等方法。使用的是改变磁场、光反射等物理原理。使用的是改变磁场、光反射等物理原理。 7、天线的前后比是如何定义的?前后比与水平瓣宽的关系? 方向图中,前后瓣最大电平之比称为前后比,水平瓣宽的宽度越窄,方向图中,前后瓣最大电平之比称为前后比,水平瓣宽的宽度越窄,前后比越大。比越大。当旁瓣电平及前后比正常的情况下,当旁瓣电平及前后比正常的情况下,可用下式近似表示 8、天线的上副瓣及下副瓣的零点对网络覆盖产生什么影响? 上副瓣零点易形成跨区干扰,下副瓣零点易形成塔下黑。上副瓣零点易形成跨区干扰,下副瓣零点易形成塔下黑。 9、什么是天线的增益?天线的增益与天线的水平波束宽度及垂直波束宽度有什么关系?在移动通信应用中,天线的增益越高越好,这句话对吗? 天线的增益是指在输入功率相等的条件下,天线的增益是指在输入功率相等的条件下,实际天线与理想天线的辐射单元在空间同一点处所产生的场强的平方之比及功率比。

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

WIFI天线基础知识

WIFI天线基础知识 2008年04月16日星期三上午 09:53 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

天线基本知识解析

天线基本知识 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。

1.3 天线方向性的讨论 1.3.1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。 1.3.2 天线方向性增强

(整理)天线的基础知识.

天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类:可分为通信天线、电视天线、雷达天线等; 按工作频段分类:可分为短波天线、超短波天线、微波天线等; 按方向性分类:可分为全向天线、定向天线等; 按外形分类:可分为线状天线、面状天线等。 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长λ时,辐射很微

弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b 。

一些天线基本知识

一些天线基本知识 一、电磁波产生的基本原理? 按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。? 周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。? 电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。? 当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。? 根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。? 对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。? 高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。? 二、天线? 在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。? 综上所述,天线应有以下功能:? 1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。? 2.天线应使电磁波尽可能集

天线基础知识

一. 方向性系数: 物理意义:方向图函数E(,)θφ或f (,)θφ表示了离辐射源相同距离上各点在各个方向上辐射场的相对大小,它不能明确表示天线辐射能量在某个特定方向上集中的程度,因而必须引进方向性系数这一指标参数。方向性系数是用来表征天线辐射能量集中程度的一个参数。 定义1:在相同辐射功率r r P P =o 情况下,某天线在给定方向i i (,)θφ的辐射强度i i U(,)θφ与理想点源天线在同一方向的辐射强度U o 之比,即 2220 4r r i i i i i P i i P i i U(,) f (,) D(,)U f (,)sin d d ππ θφπθφθφθφθθφ == ?? o o @ 定义2:在给定方向i i (,)θφ产生相同电场强度M E E =o 下,理想点源天线的辐射功率r P o 与某天线辐射功率r P 之比。即: 2220 4M r i i i i r i i i E E P f (,) D(,)P f (,)sin d d πθφθφθφθθφ == ?? o o @ 图0:两种条件下的某天线方向图和理想点源方向图 一般方向性系数我们都是指最大波束(,)θφo o 处的方向性系数(是否可以这么理解,工程上主要考虑最大波束方向上的能量集中的程度),则最大波束处的方向性系数可以表示为: 20000220 4f (,) D(,)f (,)sin d d ππ πθφθφθφθθφ = ?? 方向性系数表示无量纲的量,工程上一般采用分贝表示: 10dB D (,)lg D(,)θφθφ=o o o o 方向性系数两种定义的物理解释: 前面已经提到,天线的方向性系数是用来表征天线辐射能量集中程度的一个参数,对于最大辐射方向上的方向性系数D(,)θφo o 来说,其值愈大,天线的能量辐射就愈集中,定向性能就愈强。下面针对方向性系数的两种定义方法用图解来说明。图0所示为方向性系数的 两种定义方法对应的两种条件下某天线和理想点源天线的方向图。在相同辐射功率条件下,

天线基本知识(快速入门)

天线基本知识 6.1 天线 6.1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 6.1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。 6.1.3 天线方向性的讨论 1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部 分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈” 形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。

RFID天线基础知识

RFID天线基础知识 一、RFID系统组成 二、天线基础知识 2010-05-13 alay 2010-5-13

一、RFID系统的基本组成部分 v最基本的RFID系统由三部分组成: v标签(Tag):由耦合组件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象; v阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式; v天线(Antenna):在标签和读取器间传递射频信号。 2010-5-13

RFID无线识别电子标签基础介绍v无线射频识别技术(Radio Frequency Idenfication,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。 2010-5-13

v RFID系统至少包含电子标签和阅读器两部分。电子标签是射频识别系统的数据载体,电子标签由标签天线和标签专用芯片组成。依据电子标签供电方式的不同,电子标签可以分为有源电子标签(Active tag)、无源电子标签(Passive tag)和半无源电子标签(Semi—passive tag)。有源电子标签内装有电池,无源射频标签没有内装电池,半无源电子标签(Semi—passive tag)部分依靠电池工作。 2010-5-13

v电子标签依据频率的不同可分为低频电子标 签、高频电子标签、超高频电子标签和微波 电子标签。依据封装形式的不同可分为信用 卡标签、线形标签、纸状标签、玻璃管标签、圆形标签及特殊用途的异形标签等。 v RFID阅读器(读写器)通过天线与RFID电 子标签进行无线通信,可以实现对标签识别 码和内存数据的读出或写入操作。典型的阅 读器包含有高频模块(发送器和接收器)、控 制单元以及阅读器天线。 2010-5-13

(整理)天线基本知识38898.

精品文档 天线基本知识 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等; * 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。

天线的基础知识

第一讲天线的基础知识 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1.1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保 证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为 5dB,比单极化天线提高约2dB。) 1.3 天线的增益

天线基础知识大全

天线基础知识大全 导读:无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。 关键字:天线 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。

天线的基础知识

天线的 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1.1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。)

天线地基础的知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,

在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通 信系统正常工作。 电压驻波比1.0 1.1 1.2 1.5 2.0 3.0 反射功率% 0 0.2 0.8 4.0 11.1 25.0 传输功率% 100 99.8 99.2 96 88.9 75.0 6 什么是天线的方向性? 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。 7 如何理解天线的工作频带宽度? 天线的电参数一般都于工作频率有关,保证电参数指标容许的频率变化范围,

相关文档