文档库 最新最全的文档下载
当前位置:文档库 › 孔道压浆浆液自由泌水率和自由膨胀率试验

孔道压浆浆液自由泌水率和自由膨胀率试验

孔道压浆浆液自由泌水率和自由膨胀率试验
孔道压浆浆液自由泌水率和自由膨胀率试验

水泥浆泌水率试验

水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即 为泌水率,计算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:

膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果

热膨胀实验

实验一热膨胀实验 一.实验目的 1.了解材料线膨胀系数测定的意义、方法。 2.了解WTD2智能型热膨胀仪的原理、结构和操作步骤。 3.学会初步掌握测试数据和曲线的分析方法。 二.实验原理 现代化大型工程,如高层建筑、铁路、桥梁、航空航天器件等,都是由多种复杂的材料构成,要经过酷暑寒冬甚至太空中的急剧温度变化,因此必须确切地掌握有关材料的热膨胀系数以及其随温度变化的规律。 利用热膨胀方法对材料进行测定和研究称为“膨胀分析”。它不仅用于膨胀系数的测定,也是研究动态相变过程的有效手段,例如钢中过冷奥氏体的等温转变过程(TTT曲线)和连续冷却转变过程(CCT曲线)的测定,最常用的方法就是膨胀分析。在金属材料研究中,材料的结构转变、再结晶、时效固溶和沉淀析出,往往都伴随着体积的变化,因此可以用膨胀分析法来研究。又如粉末冶金中材料烧结致密度的评定,非晶体材料的软化温度的测定等,也可以用这一方法。 1.线膨胀系数 线膨胀系数是指与单位温度变化对应的试样单位长度的线膨胀量,当温度从T1变到T2时,试样的长度相应地从L1变到L2, 则材料在该温度区间的平均线膨胀系数α为: L2-L1 ΔL α=—————=———— L1(T2-T1) L1 ΔT 线膨胀系数α单位为: mm·mm-1·℃-1 2. 体膨胀系数 体膨胀系数是指与单位温度变化对应的试样单位体积的体积膨胀量,当温度从T1变到T2时,试样的体积相应地从V1变到V2,则材料在该温度区间的平均体膨胀系数β为: V2-V1 ΔV β=——————=———— V1 (T2-T1) V1ΔT 由于体膨胀系数测定较为复杂,所以对于热膨胀各向同性的材料,平均

水泥浆泌水率试验图文稿

水泥浆泌水率试验 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即为泌水率,计 算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的 高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下: 膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始

长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液 都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在 14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果 ⑴水胶比为0.34~0.35之间的水泥净浆的稠度符合规范要求。 ⑵静置20min后,水泥浆的稠度损失较大,故要求浆液配置好以后 应该尽快注完。 2.2.2 水泥净浆泌水率测试结果,见(表2)

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量班级:姓名:学号:实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受 热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了 △L,则有 () 1 2 t t L L- = ?α(1)(2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系 数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测 量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远 镜和米尺组成的。光杠杆放大原理如下图所示: () 1 2 t t L L - ? = α

当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有:带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读 数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升 高10度时标尺读数直至温度升高到90度止 l L D b b? = - 2 1 2 () D l b b L 2 1 2 - = ? () ()k DL l t t DL b b l 2 2 1 2 1 2= - - = α

混凝土膨胀剂限制膨胀率试验过程中的常见问题

混凝土膨胀剂限制膨胀率试验过程中的常见问题 【摘要】随着科学技术的迅速发展,建筑工程试验检测的相关标准也在逐步更新,以便在实际应用中规范操作及验收。针对混凝土膨胀剂试验检测中的限制膨胀率这项重要指标,笔者根据自身从事试验检测的相关经验,从试验操作细节入手,对该试验的常见问题进行了一一梳理。特做此文章,以便相互学习和交流。 【关键词】建筑工程试验检测;混凝土外加剂;限制膨胀率 自2010年3月1日起,《混凝土膨胀剂》GB23439-2009代替原行业标准《混凝土膨胀剂》JC476-2001,作为新的混凝土膨胀剂产品标准。限制膨胀率是新标准中的唯一强制性检测项目。采用千分表对水中养护7d及空气中养护21d的时间长度进行测量,计算不同养护条件下的膨胀率(数值为负时,也叫干缩率)。由于影响因素的多样性,测量结果的准确性和重现性均比较差。笔者根据最近几年从事膨胀剂检测的经历,就几个对试验结果影响较大的因素做了梳理,其中包括:环境相对湿度与避风、脱模时间的确定、纵向限制器的重复使用以及怎样保证长度测量值的稳定性。 1.试验及说明 1.1恒温恒湿环境中的相对湿度与避风 限制膨胀率试件在水中养护7d后需放置在(20±2)℃、(60±5)%RH恒温恒湿环境中继续养护21d,在此环境条件下,试件将发生干缩变形,干缩变形量与试件的失水程度密切相关,而环境湿度和试件表面风速是试件失水程度的外部决定因素。 1.1.1环境相对湿度 首先要准确地测量环境的相对湿度;其次要能够保证试件在养护期间,环境相对湿度稳定。 目前,多数用于测量湿度的仪器是干湿球湿度计,养护环境湿度的准确测定取决于干湿球湿度计的正确使用及选择合适的校准方式。要正确的使用干湿球湿度计,首先要了解其测湿原理:用两只相同的温度计,其中一只球部缠有湿润的纱布称为湿球温度计,另一只用来测量空气温度称为干球湿度计,由于湿球纱布上的水分不断蒸发吸热使湿球温度下降,结果干、湿球温度示值就出现了一个差值。这个差值的大小,取决于水分蒸发的快慢程度,而蒸发的快慢又取决于空气的湿度大小和当时的风速。由测试原理可知,测定空气湿度的准确度除与干球、湿球温度计精度有关外,与湿球温度示值是否准确也有很大关系,而影响湿球表面良好蒸发的因素都将影响湿球示值。

自由膨胀率试验

自由膨胀率试验(T 0124-1993) 1.8.1 目的和适用范围 1.8.1.1 自由膨胀率为松散的烘干土粒在水中和空气中分别自由堆积的体积之差与在空气中自由堆积的体积之比,以百分数表示,用以判定无结构力的松散土粒在水中的膨胀特性。 1.8.1.2 本试验方法适宜用于膨胀土。 1.8.2 仪器设备 玻璃量筒:容积50mL,最小刻度1mL。 量土杯:容积10mL,内径20mm,下口直径4~5mm。 无颈漏斗:上口直径50~60mm,下口直径4~5mm。 搅拌器:由直杆和带孔圆盘构成 天平:称量200g,感量0.01g。 其他:烘箱、平口刀、支架、干燥器、0.5mm筛。 1.8.3 试剂 5%纯氯化钠溶液。 1.8.4 试验步骤 1.8.4.1 取代表性风干土样碾碎,使其全部通过0.5mm筛。混合均匀后,取约50g放入盛土盒内,移入烘箱,在105~110℃温度下烘干至恒量,取出,放在干燥器内冷却至室温。 1.8.4.2 将无颈漏斗装在支架上,漏斗下口对正量土杯中心,并保持杯口10mm距离、 1.8.4.3 从干燥器内取出土样,用匙将土样倒入量土杯中,盛满后沿杯口刮平土面,再将量土杯中土样倒入匙中,将量土杯放在漏斗下口正中处。将匙中土样一次倒入漏斗,用玻璃棒或者铁丝轻轻刮去多余土样(严防振动)称记杯中土质量。 1.8.4.4 按本试验4.3规定,称取第二个试样,进行平行测定,两次质量差值不得大于0.1g。

1.8.4.5 将量筒至于试验台上,注入蒸馏水30mL ,并加入5mL5%的分析纯氯化钠溶液,然后将量土杯中的土样倒入量筒内。 1.8.4.6用搅拌器搅拌量筒内悬液,搅拌器应上至液面下至底,搅拌10次(时间约10s )取出搅拌器,将搅拌器上附着的土粒冲洗入量筒,并冲洗内壁,使量筒内液面约至50mL 刻度处。 1.8.4.7 量筒中土样沉积后约每隔5h ,记录一次试样体积,体积估读至0.1mL ,读数时要求视线与土面在同一平面上,如土面倾斜,取高低面读数的平均值。当两次读数相差不大于0.2mL 时,即认为膨胀稳定。用此稳定读数计算自由膨胀率。 1.8.5 结果整理 1.8.5.1 按下式计算土样的自由膨胀率: 100?-= O O ef V V V δ 式中: ef δ——自由膨胀率(%)计算1%; V ——土样在量筒中膨胀稳定后的体积(mL ); V O ——量土杯的容积(mL )即干土自由堆积体积。 1.8.5.2 精密度和允许差。 本试验应做两次平行测定,取其算术平均值,其平行差值应为:δef ≥60% 时不大于8%;δef <60%时不大于5%。

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: ()12t t L L -?= α

当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 l L D b b ?=-212()D l b b L 212-= ?()()k DL l t t DL b b l 221212=--= α

土工试验报告

土常规实验总结 土常规实验包括一压四剪,密度,含水率,液、塑限。 开样 1.将土样筒按里标签为主的方向放置,里标签方向为上面,剥掉图样同外的塑料膜和胶带,用切土刀的锋利一侧敲击土样筒的盖子,开启土样筒,取出土样,取出土样时应小心尽量保持土样完整。检查土样结构,查看土样是否已受扰动或取土质量是否符合规定。 2.若土样符合规定,即可以取样。将内壁涂抹了凡士林的环刀,刀口向下放在土样上,垂直下压环刀,并用批灰刀沿环刀外侧倾斜切削土样防止破坏环刀下层土样,边压边切直至环刀压入土样,再用另一只环倒扣在压入土样的环刀上,对齐,再向下压直至环刀没入土样中,用批灰刀在接近环刀底部的土样转圈切,取下环刀。用切土刀整平环刀两端的土样,擦净环刀外壁,称环刀和土的总质量。 3.取两个称量盒,从余土中取不含姜石或姜石含量少的土样放入盒内,土样至少25g多不超过30g用来做含水率实验,两盒土的质量应差不多。 4.从余土中去不含姜石或姜石含量少的土样放入碗中,越多越好,用来做液塑限的实验。 5.对土样的层次、气味、颜色、夹杂物、裂隙和均匀性进行描述。 1剪切试验 本方法适用细粒土。 1.1主要仪器设备: 1.ZJ应变控制式直剪仪(四联剪); 2.环刀(内径61.8mm,高度20mm) 3.位移量设备(量程10mm,分度值0.01mm的百分表)。 1.2试验过程: 1.对准剪切容器上下盒,插入固定销,在下盒放入滤纸,将带有试样的环刀刀刃对准剪切盒,用透水板将试样压入剪切盒中,在试样上放上滤纸和盒盖,拔出固定销。 2.移动传动装置,使上盒前端钢珠和测力计接触, 3.对4个试样分级施加压力至少一个小时。

水泥浆配比

关于孔道压浆用水泥浆配比设计的几点说明,我在刚开始搞搞水泥浆配比的时候有好多疑惑,后来查阅资料,搜索中,发现网上的一些经验,转过来供大家参考 《公路桥涵施工技术规范》JTJ041-2000(P93)11.3.2“普通混凝土的配合比,可参照现行《普通混凝土配合比设计规程》(JGJ/T55-2000)通过试配确定;砌体砂浆配合比也就相应的采用了现行《砌筑砂浆配合比设计规程》JGJ98-2000,那么后张孔道压浆配合比怎么确定?用于质量评定的资料怎样出? 我在各省各项目中发现很不统一,很多建设单位、管理单位、承建单位试验室均采用了砂浆配合比设计规程,28天抗压强度试件采用每组6块,一个工作班两组整理资料,这样做对吗?可以肯定的告诉大家,这样是不正确的,没有任何依据的,应当予以纠正。下面我就现行规范、规程中有关孔道压浆的相关资料整理出来,供大家学习参考。 A、《公路桥涵施工技术规范》JTJ041-2000(P135)12.11.2条款“孔道压浆宜采用水泥浆,所用材料应符合下列要求:1、水泥:宜采用硅酸盐水泥或普通水泥。采用矿渣水泥时,应加强检验,防止材性不稳定。水泥的强度等级不宜低于42.5。水泥不得含有任何团块。2、水:应不含有对预应力筋或水泥有害的成分,每升水不得含500mg以上的氯化物离子或任何一种其他有机物。可采用清洁的饮用水。3、外加剂:宜采用具有低含水量,流动性好,最小渗出及膨胀性等特性的外加剂,他们应不得含有对预应力筋或水泥有害的化学物质。外加剂的用量通过试验确定。12.11.3条款水泥浆的强度应符合设计规定,设计无具体规定时,应不低于30Mpa,水泥浆的技术条件应符合下列规定:①水灰比宜为0.40-0.45,掺入适量减水剂时,水灰比可减小到0.35;②水泥浆的泌水率最大不得超过3%,拌合后3h泌水率宜控制在2%泌水应在24h内重新全部被浆吸回③通过试验后,水泥浆中可掺入适量膨胀剂,但其**膨胀率应小于10%④水泥浆稠度宜控制在14-18s之间。12.11.11条款:压浆时,每一工作班应留取不少于3组的70.7mm×70.7mm×70.7mm立方体试件,标准养护28d,检查其抗压强度,作为评定水泥浆质量的依据。 B、《公路工程国内招标文件范本》(2003年版)P243对孔道压浆的规定摘录如下:(10)压浆时,每一工作班应留取不少于3组试件(每组70.7mm×70.7mm×70.7mm立方体试件3个)标准养生28d,检查其抗压强度作为水泥浆质量的评定依据。 综上所述,可以肯定孔道压浆质量评定的依据是每工作班留取3组70.7mm×70.7mm×70.7mm 立方体试件,每组3个,就不要再搞什么每组6块、每工作班两组了。那么孔道压浆配合比怎么确定?设计单位一般要求压浆强度同梁体强度,就在建高速公路而言,预应力梁板多设计强度为C 50,那么就以C50压浆配合比示例,以供参考吧! 在示例之前,我们在看看《公路桥涵施工技术规范》实施手册(P210-211)后张孔道压浆的目的;主要有①防止预应力筋的腐蚀;②为预应力筋与结构混凝土之间提供有效的粘结;因此,要求压入孔道内的水泥浆在结硬后应用可靠的密实性,能起到对预应力筋的防护作用,同时也要具备一定的粘结强度和剪切强度,以便将预应力有效地传递给周围的混凝土。孔道内水泥浆的密实性是最重要的,水泥浆应充满整个管道,以保证对力筋防腐的要求,至于水泥浆的强度,原规范未作明确规定,仅提出不应低于设计规定,而以往的设计对此也没有统一的标准,但设计人员往往对水泥浆强度提出比较高的指标要求,如有的要求达到梁体混凝土强度的80%,甚至有的要求与梁体混凝土强度相同。在具体的施工中,要使纯水泥浆满足高强度的指标要求是比较困难的,同时对于后张预应力混凝土结构力筋与混凝土的粘结靠压浆来提供,因而所压注的水泥浆应有一定的强度以满足粘结力的要求。但实际上,挠曲粘结应力无论是在梁体混凝土开裂之前或开裂之后都是很低的,设计时并不需要加以验算,现行的设计规范也未要求对其进行验算,而且一些发达国家的规范在涉及预应力混凝土梁内的粘结时,都是用力筋的锚固而不是粘结应力来保证的,所以对压浆强度要求过高并不适用。《混凝土结构工程施工及验收规范》(GB50204-92)要求压浆强度不低于20Mpa,国际预应力协

自由膨胀率试验实施细则

土工作业指导书自由膨胀率试验实施细则 文件编号: 版本号: 编制: 批准: 生效日期:

自由膨胀率试验实施细则 1. 目的 为了规范标准固结试验中的各个环节,特制定本细则。 2. 适用范围 本试验方法适用于粘土。 3. 引用文件 GB/T50123-1999 土工试验方法标准。 4. 检测设备 本试验所用的主要仪器设备,应符合下列规定: a、量筒:容积为50mL,最小刻度为1mL,容积与刻度需经过校正。 b、量土杯:容积为10mL,内径为20mm。 c、搅拌器:由直杆和带孔圆盘构成。 d、天平:称量200g,最小分度值0.01g。 e、无颈漏斗:上口直径50~60mm,下口直径4~5mm 5.操作步骤进行: 5.1用四分对角法取代表性风干土,碾细并过0.5mm筛。将筛下土样拌匀,在105~110℃温度下烘干,置于干燥器内冷却至室温。 5.2将无颈漏斗放在支架上,漏斗下口对准量土杯中心并保持距离10mm。 5.3用取土匙取适量试样倒入漏斗中,倒土时取土匙应与漏斗壁接触,并尽量靠近漏斗底部,过倒边用细铁丝轻轻搅动,当量杯装满土样并溢出时,停止向漏斗倒土,移开漏斗刮去杯口多余土,称量土杯中试样质量,将量土杯中试样倒入匙中,再次将量土杯按要求置于漏斗下方,将匙中土样按上述方法全部倒回漏斗并落入量土杯,刮去多余土,称量土杯中试样质量。本步骤应进行两次平行测定,两次测定的差值不得大于0.1g。 5.4在量筒内注入30mL纯水,加入5mL浓度为5%分析纯氯化钠(NaCl)溶液,将试样

倒入量筒内,用搅拌器上下搅拌悬液各10次,用纯水冲洗搅拌器和量筒壁至悬液达50mL 。 5.5待悬液澄清后,每2h 测读1次土面读数(估读至0.1mL )。 6.计算结果: 6.1自由膨胀率应按下式计算,准确至1.0% 100-δ0 0×=V V V we ef 式中 ef δ------自由膨胀率(%); V we ------试样在水中膨胀后的体积(mL ); V 0------试样初始体积,10mL 。 6.2本试验应进行两次平行测定,当ef δ小于60%时,平行差值不得大于5%;当ef δ大于、等于60%时,平行差值不得大于8%。取两次测值的平均值。 7. 相关质量记录表格 7.1 膨胀率试验记录表

24__膨胀率试验

24 膨胀率试验 24.1 一般规定 24.1.1 膨胀率是试样在有侧限条件下浸水后的单向膨胀量与试样原始高度 3天平:称量500 g,分度值0.01 g。 4其他:切土刀、吸水球等。 24.2.2 试验操作应按下列步骤进行: 1 在环刀内壁涂一薄层凡士林,切取原状土试样或所需状态的击实试样,修平两端。称环刀和土的总质量准确至0.1g。并测定试验前的含水率、密度及计算孔隙比。 2 将烘干冷却的透水板埋置于切削下的余土内1h,取出刷尽后,放入仪器中。将环刀套上接环,钝口端用压环固定在底座上,使试样底面与透水板顶面密贴,然后一起放入水盒中。将有孔活塞板轻轻放在试样的顶面,对准活塞中心,安装百分表,并记下初读数。 3 在水盒中注入纯水,使水自下而上进入试样,并保持水面高出试样顶 177

178 面约5 mm 。注水后,每隔2h 测记百分表读数一次,直至两次读数之差值不超过0.01 mm 为止。 4 试验完毕后,吸去容器中的水。从环刀内推出试样,并称其质量。将试样烘干后再称其干质量,计算膨胀后的含水率、密度和孔隙比。 24.2.3 试验结果应按下式计算: 1000 t H ?-= H R R V (24.2.3) 式中 V H ——时间t 时的无荷载膨胀率(%),计算至0.1%; R t ——时间t 时的百分表读数(mm); R 0——试验开始时百分表读数(mm); H 0——试验原始高度(mm)。 24.2.4 记录格式应符合表24.2.4的要求。

179 24.3 有荷载膨胀率试验 24.3.1 本试验应采用下列仪器设备: 1 固结仪:见本规程图15.2.1,另备一个与环刀内径相同的接环,高10mm 。试验前,应按附录D 对固结仪在不同压力下进行仪器变形量校正。 2 其他与本规程第24.2.1条第2~4款相同。 24.3.2 试验操作应按下列步骤进行: 1 在环刀内壁涂一薄层凡士林,按第5.2.2条要求切取有代表性的试样,称环刀和试样的总质量,准确至0.1 g 。并测定试验前的含水率、密度及计算孔隙比。 2 将试样放入容器内,放上接环透水石和盖板,安好百分表,施加1 kPa 的预压力,使仪器各部件之间接触良好。将百分表指针调整到全量程的中值整数,记下初读数,卸下预压力。 3 按要求分级连续施加压力,直至达到要求的压力为止。如要求的压力大于或等于150 kPa 时,每级增量应为50 kPa 。如要求的压力小于150 kPa 时,每级增量应为25 kPa 。每级加压的间隔时间为10 min 。加压时应避免冲击。当施加最后一级压力后,每小时变形小于0.01 mm 即可认为变形已稳定。 4 随后向容器内注入纯水,使水自下而上进入试样,并保持水面高出试样顶面约 5 mm 。 5 浸水后每隔2h 测记百分表读数一次,直至两次读数差值不超过0.01mm 为止。 6 试验完毕后,吸去容器中的水,卸除荷载,取出试样称量,烘干冷却后再称量,计算膨胀后的含水率、密度和孔隙比。 24.3.3 试验结果应按下式计算: 1000 P t HP ?-+= H R R R V (24.3.3) 式中 V HP ——压力P 下的膨胀率(%),计算至0.1%; R P ——压力P 下的仪器压缩变形量(mm)。 24.3.4 记录格式应符合表24.2.4的要求。

有荷载膨胀率试验实施细则

土工作业指导书 有荷载膨胀率试验实施细则 文件编号: 版本号: 编制: 批准: 生效日期:

有荷载膨胀率试验实施细则 1. 目的 为了规范标准固结试验中的各个环节,特制定本细则。 2. 适用范围 本试验方法适用于测定原状土或扰动粘土在特定荷载和有侧限条件下的膨胀率。 3. 引用文件 GB/T50123-1999 土工试验方法标准。 4. 检测设备 本试验所用的主要仪器设备,应符合下列规定: 1、固结仪:应附加荷设备,试验前必须率定不同压力下的仪器变形量。注:加压上盖 应为轻质材料并带护环。 2、环刀:直径为61.8mm或79.8mm,高度为20mm。 3、位移计:量程10mm,最小分度值0.01mm的百分表或准确度为全量程0.2%的位 移传感器。 5.操作步骤进行: 5.1试样的制备: 5.1.1原状土试样制备: a.将原土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取出土样。检查土样结构,当确定土样已受扰动或取土质量不符合规定时,不应制备力学性质试验的试样。 b.根据试验要求用环刀切取试样时,应在环刀内壁涂一薄层凡士林,刃口向下放在土样上,将环刀垂直下压,并用切土刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝锯或切土刀整平环刀两端土样,擦净环刀外壁,称环刀和土的总质量。 c.切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述,对低塑性和高灵敏度的软土,制样时不得扰动。

d .测定试样的含水率和密度,比重、颗粒分析、界限含水率,取切下余土中有代表性的试样进行测定:对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 5.1.2扰动土试样的制样: a .试样的数量视试验项目而定,应有备用试样1~2个。 b .将碾散的风干土样通过孔径2mm 或5mm 的筛,取筛下足够试验用的土样,充分拌匀,测定风干含水率,装入保湿缸或塑料袋内备用。 c .根据试验所需的土量与含水率,制备试样所需的加水量应按下式计算: )ω-ω(01.0ω01.01010 0×+=m m w 式中 w m ------制备试样所需要的加水量(g ); 0m ------湿土(或风干土)质量(g ) 0ω------湿土(或风干土)含水率(%) 1ω------制样要求的含水率(%) d .称取过筛的风干土样平铺于搪瓷盘内,将水均喷洒于土样上,充分拌匀后装入盛土容器内盖紧,润湿一昼夜,砂土的润湿时间可酌减。 e .测定润湿土样不同位置处的含水率,不应少于两点,含水率差值应符合下述标准规定:根据力学性质项目要求,原状土样同一组试样间密度的允许差值为0.03g/cm 3;扰动土样同一组试样的密度与要求的密度之差不得大于0.01g/cm 3,一组试样的含水率与要求的含水率之差不得大于±1%。 f .根据环刀容积及所需的干密度,制样所需的湿土质量应按下式计算: V m d ρ)ω01.01(00+=

混凝土泌水率

混凝土在运输、振捣、泵送的过程中出现粗骨料下沉,水分上浮的现象称为混凝土泌水。泌水是新拌混凝土工作性一个重要方面。通常,描述混凝土泌水特性的指标有泌水量(即混凝土拌和物单位面积的平均泌水量)和泌水率(即泌水量对混凝土拌和物之比含水量之比)。 泌水会引起某些不良的后果,如会引起麻面、塑性开裂、表层混凝土强度降低等问题。泌水以后会使混凝土不均匀,并且泌水本身在混凝土中是不均匀的,肯定对混凝土是不利的。泌水部位的混凝土中会产生缺陷,泌水部位水灰比下降的同时,在该部位留下缺陷,导致该部位强度降。泌水还会降低混凝土的抗渗透能力、抗服饰能力和抗冻融能力。 要避免混凝土表面出现“沁水”现象,首先混凝土本身要具有较好的保水性,防止严重的泌水导致混凝土表层水灰比过大。从配合比及组成材料的选择出发,要注意控制水灰比不宜过大、外加剂不要过掺,以及凝结时间要适宜。砂、石集料要符合国家质量要求,尤其要注意砂中0.315mm以下的颗粒含量。水泥的凝结时间不易过长,比表面积不宜过小,颗粒级配不宜过分集中;其次,施工过程要防止振捣过度造成混凝土严重的离析与泌水;再次,施工后要注意及时养护,既要防止混凝土表面硬化之前被雨水冲刷造成混凝土表面水灰比过大,又要防止混凝土中的水分在表层建立起强度之前散失,尤其是掺有粉煤灰或矿渣的混凝土,由于其早期强度较低,表层没有足够多的水化产物来封堵表层大的毛细孔,若不注意早期充分的湿养护,混凝土表层水分散失较快较多,表层水泥得不到充分的水化,亦会导致表层混凝土强度偏低,结构松散。通常,在混凝土接近终凝时,要对混凝土进行二次抹面(或压面),使混凝土表层结构更加致密。

大体积混凝土泌水处理 因泵送混凝土游离水偏多,在混凝土浇筑过程中,大量游离水会流向基坑最低处,故在浇筑大承台混凝土时,大量的积水应立即用污水泵抽出。不允许混凝土向水中浇捣,避免因水浸产生蜂窝或不密实。 1、混凝土浇筑完成一个平面后为防止泵送混凝土表面因水泥浆太多水份流失太快,产生表面收水裂缝,所以混凝土在初凝前进行二次振捣,振捣应注意时机,以振捣后振动棒抽出时无振动眼,混凝土自然闭合为宜,振动完后及时用滚筒碾压后用木槎板打磨,压实以闭合收水裂缝。 2、对大体积混凝土,必须采取表面保温潮湿养护,双层塑料布加双层草包全封闭养护既要使混凝土内水份保持一定的湿度又要使混凝土内外温差控制在25℃,采取电热板照射使其表面升温,因此大体积混凝土完毕后12-14小时后加覆盖表面体温养护,养护时间不少于14天。

膨胀土的判别

膨胀土的判别 1.初判 凡野外宏观地质特征符合上述膨胀土的特征的,且自由膨胀率F S ≥40%的土,应初判为膨胀土。 所谓自由膨胀率F S 是由人工制备的烘干土,在水中增加的体积与原体积之比,按下式计算: V V V F W s -= 式中 W V ——土样在水中膨胀稳定后的体积(ml ); 0V ——土样原有体积(ml ) 。 2.详判 满足以下三项指标的任意两项时,应判定为膨胀土: (1)自由膨胀率FS ≥40%。 (2)蒙脱石含量M ≥7%。 利用二氯化锡容量法测定粘土矿物成分蒙脱石的含量: 10044 .0)/(3210?????-= m A V V T V V M 式中:0V ——加入次甲基蓝量(ml ); 1V ——所消耗0.1%二氯化锡量(ml ); 2V ——定容总体积(ml ); 3V ——取清液体积(ml ) ; T ——滴定度,即每毫升二氯化锡标准溶液相当于0.2% 次甲基蓝的毫升数,由空白求出; m ——式样质量(g ) ; A ——标准次甲基蓝浓度(g/ml ); 0.44——吸蓝量对蒙脱石的换算系数。

(3)阳离子交换量]100/)([174±≥+ g NH mmol CEC 采用EDTA 按盐速测法,可测定土对溶液中的阳离子交换吸附性能强弱的指标。 阳离子交换量]100/)([4±+ g NH mmol CEC = 100) 1()()(0?+?-?m V V HCl C ω 式中:)(HCl C ——盐酸标准溶液浓度(mol/l ); V ——滴定式样时消耗盐酸标准溶液体积(ml ); 0V ——空白试验消耗盐酸标准溶液体积(ml ); ω——风干土含水量(以小数计); m ——风干土质量(g ) 。 3.参照《规范》判定 依据《膨胀土地区建筑技术规范》规定,具有下列工程地质特征的场地,且自由膨胀率F S ≥40%的土,应判定为膨胀土:裂隙发育,常有光滑面和擦痕,有的裂隙中充填着灰白、灰绿色粘土,在自然条件下呈坚硬或硬塑状态;多出露于二级或二级以上,山前和盆地边缘丘陵地带,地形平缓,无明显自然陡坎;常见浅层塑性滑坡、地裂,新开挖坑(槽)壁易发生坍塌等;建筑物裂缝随气 候变化而张开和闭合。 4.膨胀土的潜势分类

【CN109991399A】一种压浆浆液自由泌水率及自由膨胀率的测定装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910376242.3 (22)申请日 2019.05.07 (71)申请人 中庆建设有限责任公司 地址 130117 吉林省长春市净月开发区福 祉大路5888号 (72)发明人 辛晓慧 张洪军 王汉席 张宏权  薛兴伟 孙士远 李姚 阮海涛  刘伟 王坤 皮金龙  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 罗满 (51)Int.Cl. G01N 33/38(2006.01) (54)发明名称 一种压浆浆液自由泌水率及自由膨胀率的 测定装置 (57)摘要 本发明公开一种压浆浆液自由泌水率及自 由膨胀率的测定装置,包括试验容器、固定标尺、 移动标尺、密封盖和平衡板,试验容器可拆卸地 安装于平衡板表面,密封盖可拆卸地设置于试验 容器上端,固定标尺垂直于平衡板表面设置,且 移动标尺可滑动地设置于固定标尺的尺身。本发 明提供的压浆浆液自由泌水率及自由膨胀率的 测定装置,通过在试验容器外部设置与试验容器 平行设置的固定标尺以及在固定标尺上滑动的 移动标尺,可以使在试验过程中测量、读取的压 浆浆液上表面的变化更加精准,大大提高试验的 精度;同时本发明的测定装置结构简单,制备成 本低, 可操作性强。权利要求书1页 说明书4页 附图2页CN 109991399 A 2019.07.09 C N 109991399 A

权 利 要 求 书1/1页CN 109991399 A 1.一种压浆浆液自由泌水率及自由膨胀率的测定装置,其特征在于,包括试验容器(1)、固定标尺(2)、移动标尺(3)、密封盖(4)和平衡板(5),所述试验容器(1)可拆卸地安装于所述平衡板(5)表面,所述密封盖(4)可拆卸地设置于所述试验容器(1)上端,所述固定标尺(2)垂直于所述平衡板(5)表面设置,且所述移动标尺(3)可滑动地设置于所述固定标尺(2)的尺身。 2.根据权利要求1所述的测定装置,其特征在于,所述固定标尺(2)的起始刻度值与所述试验容器(1)的内部底面齐平。 3.根据权利要求2所述的测定装置,其特征在于,所述移动标尺(3)的刻度值与所述固定标尺(2)的刻度值正对设置。 4.根据权利要求1至3任意一项所述的测定装置,其特征在于,还包括设置于所述平衡板(5)上表面的调平气泡(6)。 5.根据权利要求4所述的测定装置,其特征在于,所述平衡板(5)下表面设置有三角支架(7)。 6.根据权利要求5所述的测定装置,其特征在于,所述平衡板(5)中心处设置有与所述三角支架(7)连接的固定内置件(8)。 7.根据权利要求4所述的测定装置,其特征在于,还包括与所述平衡板(5)下表面相抵接的调平立杆(9)。 8.根据权利要求7所述的测定装置,其特征在于,所述调平立杆(9)上套装有调平旋钮(10)。 9.根据权利要求8所述的测定装置,其特征在于,所述调平立杆(9)包括下部调平立杆(91)、上部调平立杆(92)和顶进螺杆(93),所述顶进螺杆(93)固定设置于所述下部调平立杆(91)上,所述调平旋钮(10)套装在所述顶进螺杆(93)上,且所述顶进螺杆(93)与所述上部调平立杆(92)螺纹连接。 2

水泥浆泌水率试验

水泥净浆配合比试验室测试研究 水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即 为泌水率,计算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:

膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果

自由膨胀率

20自由膨胀率试验 一、本试验方法适用于粘土 二、本试验所用的主要仪器设备应符合下列规定: 1.量筒:容积为50ml,最小刻度为1ml,容积与刻度需经过校正。 2.量土杯:容积为10ml,内径为20mm 。 3.无颈漏斗:上口直径50~60mm,下口直径4~5mm 。 4.搅拌器:由直杆和带孔圆盘构成(图20.0.2) 5.天平:称量最小分度值0.01g 。 图20.0.2 搅拌器示意图 图20.0.3 量样装置 1—直杆;2—圆盘 1—漏斗;2—支架;3—量土杯 三、自由膨胀率试验应按下列步骤进行 1.用四分对角法取代表性风干土,碾细并过0.5mm 筛,将筛下土样拌匀,在105~110℃温度下烘干置于干燥器内冷却至室温。 2.将无颈漏斗放在支架上漏斗下口对准量土杯中心并保持距离10mm ,见图20.0.3 3.用取土匙取适量试样倒入漏斗中,倒土时取土匙应与漏斗壁接触并尽最靠近漏斗底部边倒边用细铁丝轻轻搅动,当量杯 装满土样并溢出时停止向漏斗倒土移开漏斗刮去杯口多余土,称量土杯中试样质量将量土杯中试样倒入匙中再次将量土杯按图20.0.3所示置于漏斗下方,将匙中土样按上述方法全部倒回漏斗并落入量土杯,刮去多余土,称量土杯中试样质量,本步骤应进 行两次平行测定,两次测定的差值不得大于0.1g 。 4.在量筒内注入30ml 纯水,加入5ml 浓度为5%的分析纯氯化钠(NaCI )溶液,将试样倒入量筒内用搅拌器上下搅拌悬液各10次,用纯水冲洗搅拌器和量筒壁至是液达50ml 。 5.待悬液澄清后每2h 测读1次土面读数(估读至0.1ml) 直至两次读数差值不超过0.2ml,膨胀稳定。 四、自由膨胀率应按下式计算,准确至1.0% 10000?-= V V V we ef δ 式中 ef δ——自由膨胀率(%) we V ——试样在水中膨胀后的体积(ml )

相关文档
相关文档 最新文档