文档库 最新最全的文档下载
当前位置:文档库 › IV溶液粘度测定新技术Y501 讲义

IV溶液粘度测定新技术Y501 讲义

表面活性剂的性能和测试1

广西纺织工业学校教案

在印染实际生产中,常采用对比法和模拟法对应用的助剂进行试验。 对比法是将样品(试样)与标样进行平行试验,一般用于测定印染助剂的应用性能。如:润湿性、乳化性等。 模拟法是模拟印染加工过程中的工艺条件进行小样试验,通过测定加工产品的有关性能来评判助剂的质量或生产适用性。主要用于工厂工艺适应性试验。 一、表面张力的测定 1、实验目的:使学生了解表面张力的测定方法 2、实验药品器材:表面张力仪、测量杯(直径大于8cm)玻璃仪器、表面活 性剂试样溶液。 3、试验步骤: 1)清洗仪器:用铬酸洗液浸洗铂金圆环和测量杯,后用蒸馏水冲洗至中性。2)校准仪器: 3)测定方法:用界面张力仪来测定,在恒温室内进行。 测量时,用待测液冲洗测量杯几次,后在待测液中部吸取大量试样于量杯中,使铂金圆环浸入测试液中部,调节拉力,使环上下两力平衡。圆环露出液面时形成一液膜,拉力增大到一定程度时,液膜破裂,读出此时刻度盘上的读数,即为试验表面张力值P。连续测试五次。 4)结果计算:取五次数值的平均值 表面张力ν=P×F 校正因子F公式复杂,在此略。 二、水溶液pH值测定 1、实验目的:使学生了解溶液pH值的测定; 2、实验仪器药品:酸度计、磁力搅拌器、烧杯、容量瓶(100ml)温度计、水 浴锅、蒸馏水(无CO2)、标准缓冲溶液、试液 3、实验步骤

1)将被测液、标准缓冲溶液、洗涤用水调节在20±1℃,校准酸度计; 2)将待测试样溶液置于磁力搅拌器上搅拌30s,停止搅拌后插入电极,待指针稳定1min后读数。每个试样平行测定两次。 4、结果:取算术平均值,修约至0.1pH 三、润湿(渗透)性测试 帆布沉降法:将一定质量帆布放入一定浓度的助剂溶液中,帆布被溶液润湿增重而下沉,记下帆布从接触溶液到沉降所需时间。 1、实验目的:使学生掌握润湿性(渗透性)测试。 2、实验仪器药品:800ml高型烧杯、秒表、420号鱼钩、铁丝架、0.1%表面活性剂试样溶液、棉帆布试片(直径30mm,质量0.38~0.39g) 3、实验步骤:取500ml0.1%表面活性剂试样溶液置于800ml高型烧杯中,调温。用鱼钩钩住布片,另一端绑尼龙丝线,线端打一小圈,套入铁丝架底的小圆钩上,用镊子夹住布片,随铁丝架进入液面,达烧杯底中心,开始秒表计时。当帆布片从下沉至烧杯底部时,停表,记下沉降时间。实验结果:连续做3次,取平均值。 四、表面活性剂乳化力的测定 方法:分相法——将一定量的表面活性剂溶液与不溶于水的油类用机械方法搅拌或者振荡,使其成乳液,经过一定时间静置分层后,根据分离出来一定数量的油剂所需时间的长短来判断乳化力的大小。 1、实验目的:使学生了解乳化力的测定; 2、仪器药品:具塞量筒、秒表、液状石蜡、25g/L标准样品溶液、25g/L待测液; 3、实验步骤:分别量取25g/L标准样品溶液和待测试样溶液各20ml,置于100ml 具塞量筒中,加20ml液蜡,34℃水浴保温5min,剧烈摇动10次后静置1min,重复上述操作5次后静置并立即记下时间,至水相分离出10ml为止。 4、结果

液体黏度的测定-实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

表面活性剂含量测定方法

表面活性剂含量测定方法 1.阴离子表面活性剂含量测定(两相滴定) 1.1主要试剂 (1)十六烷基三甲基溴化铵(CTAB),分析纯; (2)十二烷基磺酸钠,分析纯; (3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯; (4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml; (5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml; (7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度, 其浓度为C1=取样质量*样品纯度/272.38,单位mol/L; (9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至 0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其 准确浓度C2可用十二烷基磺酸钠标准溶液标定; 1.2实验原理 阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。 1.3 实验步骤 取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。 测定样品的浓度C=CTAB标准溶液体积*C2/10 注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。 2.两性离子表面活性剂含量测定 2.1 所需试剂 (1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯; (2)乙醇95%; (3)海明1622、二硫化蓝VN-150; (4)十二烷基硫酸钠,分析纯; (5)溴化底米迪鎓; (6)刚果红指示剂; (7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。 2.2.方法原理 在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

流体粘度测定

流体粘度的测定 一、实验目的 液体的粘度表示它的流动性的大小,粘度大则流动性小,反之亦然。液体的粘度随着温度的升高而降低,通过实验,要求了解液体恩格拉(Engler)粘度的工业测定方法和温度对粘度的影响。 二、实验原理 粘度是表示流体质点之间摩擦力大小的一个物理指标,粘度大即摩擦力大,流动性小。 根据牛顿粘度定律: dn du A F μ= 式中:F ——内摩擦力,N ; μ——粘性系数(粘度),Pa.s ; A ——面积,m ; du/dn —速度梯度,s -1。 当各值均采用C 、G 、S 制时,μ的单位为泊(poise )。 测定粘度的方法很多。在工业上,多采用泄流法来测定流体的粘度。泄流法的内容是:在一定条件下,一定容量的液体经由锐孔流出所需要的时间,就表示该液体的粘度。 工业上用的粘度计也很多,如恩格拉(Engler)粘度计,赛波尔(Saybolt)粘度计,雷德乌德(Redwood)粘度计等。 恩氏粘度计测粘度的方法是:在实验的温度下测定200ml 试样油从小孔流出所需要的时间,该时间与20℃时200ml 蒸馏水流出所需要的时间相除,所得的商就是该试样油在实验温度下的粘度,即: E t =) 蒸馏水流出的时间(秒时)试样油流出的时间(秒时ml C ml C t 20020200 其单位为条件度,用oE 来表示。 一般地20℃的蒸馏水流出的时间为51±1秒,本实验不进行这项测定,对每台仪器,都已测量好(标准水值)并标明在粘度计外表面上。

三、实验设备 实验装置如下图所示 1.棒式温度计 2.温控仪探头 3.手动搅拌器 4.恩氏温度计 5.加热器 6.内锅盖 7.内锅 8.外锅 9.油面高度标志10.木栓11.流出管(锐孔) 12.支架13.粘度计接收瓶14.调整螺丝15温度控制仪 图1、恩氏粘度计 四、实验步骤 1、用木栓堵住内锅底部之小孔,注意必须严堵,但不能用力过度。 2、将试样油沿着玻璃棒缓慢注入到内锅中,注意不能产生气泡。 3、调节调整螺丝,使得油面高度标志(三个尖顶)的刚好露出试样油液面。 4、往外筒中加水。注意:水面应比油面高10毫米以上,把温控仪探头及棒式温度计固定在支架上,探头和温度计头部要插入水中。 5、盖上内锅盖,并插上恩氏温度计。 6、在流出口下面放置洁净、干燥的接收瓶。 7、用搅拌器搅拌外筒中的水,用温度计搅拌试样油。 8、当试样油的温度计基本稳定时,停止搅拌,并保持五分钟。 9、五分钟后,若试样油的温度没有变化,则迅速提起木栓,同时按动秒表。 10、当接收瓶中试样油正好达到刻度时,立即停止秒表,并将读数记入下表。 11、打开温控仪开关,分别先后把温控选择旋钮旋至40℃、50℃的位置上,重复实验步骤1、2、3、4、5、6、7、8、9、10。 本实验所需的试样油为20#机油,由于粘度较大,流动性小。为节约时间起见,我们只测定100ml试样油流出所需的时间。将该时间乘以一个系数即得200ml试样油在同一温度下流出的所需要的时间,该系数随着温度的变化而变化,20℃左右为2.3556,40℃左右为2.3348,50℃左右为2.3283。 五、实验报告

粘度测定法

运动粘度测定法1)清洗玻璃毛细管粘度计; 2)将油品吸入玻璃毛细管粘度计; 3)将毛细管粘度计放入粘度测定器中; 4)开始计时; 5)十分钟后开始做实验; 6)从第一个刻度线开始计时,下面刻度线计时结束;7)记录时间(以秒为单位); 8)重复三次实验,记录时间并计算平均值; 9)计算100℃或40℃的运动粘度:时间*粘度管系数。注意: 1)选择合适的粘度管; 2)吸入油品时不要有气泡进入; 3)观察是否堵管; 4)计算粘度时看清是哪个粘度管; 5)全浸式温度计的温度是否为100℃或40℃; 6)眼睛一定要平视刻度线时计时。

闪点的测定GB/T3536 闪点:在规定实验条件下,试验火焰引起试样蒸汽着火,并使火焰蔓延至液体表面的最低温度。 1)将试样装入试验杯至规定的刻度线; 2)开始加热,此时迅速升高试样的温度; 3)点燃实验火焰,并调节火焰直径为3.2mm~4.8mm; 4)当试样温度达到预期闪点前约56℃时减慢加热速度,使试样在达到闪点前的最后23℃左右时升温速度为5~6(℃/min); 5)在预期闪点前至少23℃左右,开始用试验火焰扫划,温度每升高2℃扫划一次; 6)当在试样液面上的任何一点出现闪火时,立即记录温度计的温度读书,作为观察闪点; 注意: 1)试样装入试验杯时,是试样的弯月面顶部恰好位于试验杯的装样刻线; 2)温度计垂直放置,使其感温泡底部距试验杯底部6mm; 3)试验过如果试样表面形成一层膜,应把油膜拨到一边再继续试验;4)程中,避免他人在试验杯附近随意走动,以防扰乱试样蒸气;5)不要把有时在试验火焰周围产生的淡蓝色光环与真正的闪火相混淆。

表面活性剂的性能测定与评价

中国石油大学(油田化学基础实验)实验报告 实验日期:成绩: 班级:石工学号:1302姓名:教师: 同组者: 表面活性剂的性能测定及评价 一.实验目的 1、了解用指示剂和染料通过显色反应鉴别表面活性剂类型的原理和方法; 2、了解离子型表面活性剂克拉夫特点和非离子表面活性剂浊点的测定方法及不同类型表面活性剂的性质; 3、学会一种表面活性剂的界面张力的测定原理和方法,并掌握由表面张力计算临界胶束浓度(CMC)的原理和方法,学习Gibbs公式及其应用; 4、学会表面活性剂溶液与原油的油水界面张力的测定原理和方法,并掌握超低界面张力在三次采油中的作用机理; 5、学会观察表面活性剂溶液与原油混合后的乳化现象,并掌握不稳定体系数法评价表面活性剂的乳化能力。 二.实验原理 表面活性剂分子是由亲水性的极性基团和憎水性的的非极性基团所组成的有机化合物,当它们一低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,从而使表面自由能明显降低。 1、表面活性剂类型的鉴别 不同类型的表面活性剂具有不同的性质,因此可采用不同的方法将它们鉴别出来。离子表面活性剂可利用他们的离子反应来鉴别,非离子表面活性剂则利用其与金属离子形成络合物的颜色来鉴别。 亚甲基蓝属阳离子型有色物,在容量分析中可作指示剂使用,当它遇阴离子表面活性剂时,生成不溶于水而溶于氯仿的产物,使氯仿层色泽变深;如果实验液中含有阳离子表面活性剂,由于阴阳离子表面活性剂的结合,使亚甲基蓝脱离

阴离子表面活性剂而从氯仿中重新回到水中,使氯仿色泽变浅。 2、表面活性剂克拉夫特点和浊点 离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度又称克拉夫特点。 浊点是非离子表面活性剂的一个特性参数,其受表面活性剂的分子结构和共存物质的影响。表面活性剂在水溶液中,当温度升到一定值时,溶液中出现浑浊,而不完全溶解的现象,此时的温度称为浊点温度。 3、表面活性剂的表面张力及CMC的测定 由于净吸引力的作用,处于液体表面的分子倾向于到液体内部来,因此液体表面倾向于收缩。要扩大面积,就要把内部分子移到表面来,这就要克服净吸引力作功,所作的功转变为表面分子的位能。单位表面具有的表面能叫表面张力。 在一定温度、压力下纯液体的表面张力是定值。但在纯液体中加入溶质,表面张力就会变化。若溶质使液体的表面张力升高,泽荣指在溶液相表面层的浓度小于在溶液相内部的浓度;若溶质使液体的表面张力降低,则溶质在溶液相表面层的浓度大于在溶液相内部的浓度。这种溶质在溶液相内部和溶液相表面浓度不同的现象叫吸附。 在一定温度、压力下,溶质的表面吸附量与溶液的浓度、溶液的表面张力之间的关系,可用吉布斯吸附等温式表示: Γ= 式中Γ-吸附量(mol/L) c-吸附质在溶液内部的浓度(mol/L) -表面张力(N/m) R-通用气体常数() T-绝对温度(K) d/dc<0,溶质为正吸附;反之,溶质为负吸附。通过实验若能测出表面张力与溶质浓度的关系,则可作出-c曲线,并在此曲线上任取若干个点作曲线的切线,这些曲线的斜率即为浓度对应的d/dc,将此值代入公式可求出此浓度

粘度的测量

如何计算黏度? 黏度系指流体对流动的阻抗能力,采用动力黏度、运动黏度或特性黏数以表示之。测定液体药品或药品溶液的黏度可以区别或检查其纯杂程度。 流体分牛顿流体和非牛顿流体两类。牛顿流体流动时所需剪应力不随流速的改变而改变,纯液体和低分子物质的溶液属于此类;非牛顿流体流动时所需剪应力随流速的改变而改变,高聚物的溶液、混悬液、乳剂分散液体和表面活性剂的溶液属于此类。 黏度的测定可用黏度计。黏度计有多种类型,本药典采用毛细管式和旋转式两类黏度计。毛细管黏度计因不能调节线速度,不便测定非牛顿流体的黏度,但对高聚物的稀薄溶液或低黏度液体的黏度测定影响不大;旋转式黏度计适用于非牛顿流体的黏度测定。液体以1cm/s的速度流动时,在每1cm<2>平面上所需剪应力的大小, 称为动力黏度,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度的比值,再乘10<6>,即得该液体的运动黏度,以mm<2>/s为单位。本药典采用在规定条件下测定供试品在平氏黏度计中的流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm<2>/s<2>)相乘,即得供试品的运动黏度。 溶剂的黏度η<[o]>常因高聚物的溶入而增大,溶液的黏度η与溶剂的黏度η<[o]> 的比值(η/η<[o]>)称为相对黏度(η<[r]>), 常用在乌氏黏度计中的流出时间的比值(T/T<[o]>)来表示;当高聚物溶液的浓度较稀时,其相对黏度的对数值与高聚物溶液浓度的比值,即为该高聚物的特性黏数[η]。根据高聚物的特性黏数可以计算其平均分子量。 仪器用具 (1)恒温水浴可选用直径30cm以上、高40cm以上的玻璃缸或有机玻璃缸,附有电动搅 拌器与电热装置,供测定运动黏度时应能恒温±0.1℃,供测定特性黏数时应能恒温 ±0.05℃。 (2) 5mm;测定球A的容量为3.5ml±0.5ml(选用流出时间在120~180秒之间为宜)。 第一法(用平氏黏度计测定运动黏度或动力黏度) 照各药品项下的规定,取毛细管内径符合要求的平氏黏度计1支,在支管F上连接一橡皮管,用手指堵住管口2,倒置黏度计,将管口1插入供试品(或供试溶液,下同)中,自橡皮管的另一端抽气,使供试品充满球C 与A并达到测定线m<[2]>处,提出黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管使连接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15分钟后,自橡皮管的另一端抽气,使供试品充满球A并超过测定线m<[1]>,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m<[1]>下降至测定线m<[2]>处的流出时间。依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。另取一份供试品同样操作,并重复测定3次以上。以先后两次取样测得的总平均值按下式计算,即为供试品的运动黏度或供试溶液的动力黏度。运动黏度(mm<2>/s)=Kt 动力黏度(Pa·s)=10<6>·Kt·ρ 式中 K为用已知黏度的标准液测得的黏度计常数,mm<2>/s<2>; t 为测得的平均流出时间, s;ρ为供试溶液在相同温度下的密度,Kg/m<3>。 第二法(用旋转式黏度计测定动力黏度)照各药品项下的规定,按照仪器说明书操作,并按下式计算供试品的动力黏度。 动力黏度(Pa·s)=K'α式中 K'为用已知黏度的标准液测得的旋转式黏度计常数;α为偏转角。 第三法(用乌氏黏度计测定特性黏数)取供试品,照各品种项下的规定制成一定浓度的溶液,用3号垂熔玻璃漏斗滤过,弃去初滤液(约1ml),取续滤液(不得少于7ml)沿洁净、干燥乌氏黏度计的管2内壁注入B中,将黏度计垂直固定于恒温水浴(水浴温度除另有规

粘度测量

粘度测定 1.粘度 1.1 粘度——液体的粘稠程度,它是液体在外力作用下发生流动时,分子间所产生的内摩擦力。 粘度的大小是判断液态食品品质的一项重要物理常数。 粘度有绝对粘度、运动粘度、条件粘度和相对粘度之分。 1.2粘度分类 1.2.1 绝对粘度——也叫动力粘度。 它是液体以1cm/s 的流速流动时,在每l cm2 液面上所需切向力的大小,单位为“Pa·s”。 1.2.2. 运动粘度——也叫动态粘度。 它是在相同温度下液体的绝对粘度与其密度的比值,单位为“m2/s ”。 1.2.3 条件粘度——是在规定温度下,在指定的粘度计中,一定量液体流出的时间(s)或将此时间与规定温度下同体积水流出时间之比。 1.2.4相对粘度——是在一定温度时液体的绝对粘度与另一液体的绝对粘度之比,用以比较的液体通常是水或适当的液体。 2. 影响粘度的因素 粘度的大小随温度的变化而变化。 温度愈↑,粘度愈↓。 纯水在20℃时的绝对粘度为10—3 pa·s。 测定液体粘度可以了解样品的稳定性,亦可揭示干物质的量与其相应的浓度。粘度的数值有助于解释生产、科研的结果。 3. 粘度测试方法 粘度的测定方法按测试手段分为: 毛细管粘度计法、 旋转粘度计法、 滑球粘度计法等。 毛细管粘度计法设备简单、操作方便、精度高。后两种需要贵重的特殊仪器,适用于研究部门 3.1 毛细管粘度计法 3.1.1 原理 毛细管粘度计测定的是运动粘度。由样液通过一定规格的毛细管所需的时间求得样液的粘度。 3.1.2 仪器 取一定体积的液体在严格的温度与固定的液面高度的控制下,使其流经毛细管粘度计而计算其流经时间。根据流经时间与粘度计的校正常数的乘积即可得动力粘度。

实验三 液体粘度的测定

实验三 液体粘度的测定 一.实验目的 1. 掌握用Ostwald 粘度计测定液体粘度的原理和方法。 2. 进一步掌握调节恒温槽的技术。 3. 了解温度对液体粘度的影响。 二.实验原理 液体的粘度η,亦称粘度系数,是指单位面积的液层以单位速度流过相隔单位距离的固定液层时所受的力。粘度的大小与分子间力有关,即与液体的性质有关。温度对液体的粘度的影响较大,一般温度升高,液体粘度变小。 若液体在毛细管中流动,则根据波华须尔公式可得: 48r Pt VL πη= 式中,r :毛细管半径;L :毛细管长度;V :液体的体积;t :液体流经长为L 的毛细管所经历的时间;P :管两端的压力。 按上式由实验来测定液体的绝对粘度是困难的,但测定液体对标准液体的比粘度是适用的,若已知标准液体的绝对粘度,则可求出另一种液体的粘度。 奥氏粘度计是毛细管粘度计的一种,适宜于测定低粘度液体,方法是用同一粘度计,分别测定两种液体在重力作用下流经同一毛细管,且流出体积相等时各所需时间,这样有: 411 18r Pt VL πη= , 422 28r P t VL πη= 从而, 111222 Pt P t ηη=。 式中,P = hgd 。h ,推动液体流动的液位差;d ,液体密度;g ,重力加速度。 如每次取样的体积一定,则可保持h 始终一致,则有: 111 222 d t d t ηη= 假如液体2的粘度η2为已知,则液体1的粘度η1可由下式求得: 11 12 22 d t d t ηη= 由于温度对液体粘度的影响很大,故测定液体在某一温度时的粘度,必须注意控制温度恒定。 本实验以25℃时的水为标准,测定20℃、25℃温度下无水乙醇及丙酮的粘度。 已知25℃下水的粘度为0.8904×10-3 Pa·s ,水的密度为0.99707 g·cm -3 ,乙醇的密度为 图3-1奥氏粘度计

粘度法测定聚合物的分子量

实验十 粘度法测定聚合物的分子量 一、 实验目的 掌握用乌氏粘度计测定高分子溶液粘度的方法并计算粘均分子量M η。 二、 实验原理 高分子溶液具有比纯溶剂高得多的粘度,其粘度大小与高聚物分子的大小、形状、溶剂性质以及溶液运动时大分子的取向等因素有关。因此,利用高分子粘度法测定高聚物的分子量基于以下经验式: Mark 经验式: 式中:[η]-特性粘数 M -粘均分子量 K -比例常数 α-与分子形状有关的经验参数 K 和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定得[η]。 粘度除与分子量有密切关系外,对溶液浓度也有很大的依赖性,故实验中首先要消除浓度对粘度的影响,常以如下两个经验公式表达粘度对浓度的依赖关系: []α ηKM =(10-2) (10-3) (10-1)

式中:r η-相对粘度 sp η-增比粘度 sp η/c -比浓粘度 c -溶液浓度 βκ,-均为常数 1-=r sp ηη (10-5) 式中:t -溶液流出时间,0t -纯溶剂流出时间 显然 ][η即是聚合物溶液的特性粘数,和浓度无关,由此可知,若以c sp /η和 c sp /ln η分别对c 作图,则它们外推到 0→c 的截距应重合于一点,其值等于][η。 ln r ηsp C η或 C 图1 外推法求[η]值 图10-1 外推法求][η值 三、仪器和试剂 试剂:聚乙烯醇,蒸馏水 []c c r c sp c ηηηln lim lim 0 →→==(10-4) (10-6)

阴离子表面活性剂的测定

阴离子表面活性剂的测定 亚甲蓝分光光度法 GB7497-37 阴离子表面活性剂是普通合成洗涤剂的主要活性成分,使用最广泛的阴离子表面活性剂是直链烷基苯磺酸钠(LAS)。本方法采用LAS 作为标准物,其烷基碳链在C10~C13之间,平均碳数为12,平均分子量为344.4。 1 适用范围 本标准规定了测定水溶液中的阴离子表面活性剂的亚甲蓝分光光度法。 本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。在实验条件下,主要被测物质是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。 当采用10mm光程的比色皿,试份体积为100ml时,本方法的最低检出浓度为0.05mg/LLAS,检测上限为2.0mg/LLAS。 2 原理 阴离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。 3 试剂 3.1 氢氧化钠(NaOH):1mol/L

3.2 硫酸(H2SO4):0.5mol/L 3.3 氯仿(CHCl3) 3.4 直链烷基苯磺酸钠贮备溶液 秤取0.100g标准物质LAS(平均分子量344.4),准确至0.001g,溶于50ml水中,转移到100ml容量瓶中,稀释至标线并混匀。每毫升含1.00mgLAS。保存于4°C冰箱中。如需要,每周配置一次。 3.5 直链烷基苯磺酸钠标准溶液 准确吸取10.00ml直链烷基苯磺酸钠贮备溶液(3.4),用水稀释至1000ml,每毫升含10.0?gLAS。当天配置。 3.6 亚甲蓝溶液 先秤取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶内,缓慢加入 6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),摇匀。另秤取30mg亚甲蓝(指示剂级),用50ml水溶解后也移入容量瓶,用水稀释至标线,摇匀。此溶液贮存于棕色试剂瓶中。 3.7 洗涤液 秤取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶内,缓慢加入6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),用水稀释至标线。 3.8 酚酞指示剂溶液 将1.0g酚酞溶于50ml乙醇[C2H5OH,95%(V/V)]中,然后边搅拌边加入50ml水,滤去形成的沉淀。

粘度法测定高聚物摩尔质量

一、实验目的 1、掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。 2、测定线形高聚物聚乙二醇的粘均摩尔质量。 二、实验原理 单体分子经加聚或缩聚过程便可合成高聚物。并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。对于聚合和解聚过程机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。 高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。 粘性液体在流动过程中,必须克服内摩擦阻力而做功。粘性液体在流动过程中所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。 高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp,即 而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr,即 ηr反映的也是溶液的粘度行为,而ηsp则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。 高聚物溶液的增比粘度ηsp往往随质量浓度c的增加而增加。为了便于比较,将单位浓度下所显示的增比粘度ηsp/c称为比浓粘度,而lnηr/C则称为比浓对数粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于ηr和ηsp均是无因次量,所以他们的单位是浓度C单位的倒数。 在足够稀的高聚物溶液里,ηsp/c与C和lnηr/c与c之间分别符合下述经验关系式: 上两式中κ和β分别称为Huggins和Kramer常数。这是两直线方程,通过ηsp/c对C或ln ηr/c对c作图,外推至C=0时所得截矩即为[η]。显然,对于同一高聚物,由两线性方程作图外推所得截矩交于同一点,如图1。

粘度的测定方法

粘度的主要测定方法 对粘度测定有:运动粘度、动力粘度、和条件粘度三种测定方法。下面简单介绍一下 (1)运动粘度:在温度t℃时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m2/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即1cst=1mm2/s)。运动粘度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的粘度,运动粘度的测定采用逆流法 (2)动力粘度:ηt是二液体层相距1厘米,其面积各为1(平方厘米)相对移动速度为1厘米/秒时所产生的阻力,单位为克/里米·秒。1克/厘米·秒=1泊一般:工业上动力粘度单位用泊来表示。 (3)条件粘度:指采用不同的特定粘度计所测得的以条件单位表示的粘度,各国通常用的条件粘度有以下三种: ①恩氏粘度又叫思格勒(Engler)粘度。是一定量的试样,在规定温度(如:50℃、80℃、100℃)下,从恩氏粘度计流出200毫升试样所需的时间与蒸馏水在20℃流出相同体积所需要的时间(秒)之比。温度to时,恩氏粘度用符号Et表示,恩氏粘度的单位为条件度。 ②雷氏粘度即雷德乌德(Redwood)粘度。是一定量的试样,在规定温度下,从雷氏度计流出50毫升所需的秒数,以“秒”为单位。雷氏粘度又分为雷氏1号(Rt表示)和雷氏2号(用RAt表示)两种。 ③赛氏粘度,即赛波特(sagbolt)粘度。是一定量的试样,在规定温度(如100oF、F210oF 或122oF等)下从赛氏粘度计流出200毫升所需的秒数,以“秒”单位。赛氏粘度又分为赛氏通用粘度和赛氏重油粘度(或赛氏弗罗(Furol)粘度)两种。

表面活性剂泡沫性的测定

实验四:表面活性剂泡沫性的测定 一、实验目的: 泡沫性是表面活性剂很重要的一个性质,通过实验学习表面活性剂泡沫性的简易测试方法,并熟悉常用表面活性剂的泡沫性能。 二、实验原理: 泡沫是一种有大量气体分散在液体连续相中的分散体系。绝对纯净的液体不会产生泡沫,只有加入表面活性剂等物质,才能形成气泡。这是因为气泡表面能吸附表面活性剂分子,当这些定向排列于气泡表面的分子达到一定浓度时,气泡壁就形成一层坚固的薄膜,使气液表面张力下降。 除低泡表面活性剂外,一般表面活性剂水溶液都具有丰富的泡沫。商品助剂中是否存在表面活性剂的组分,最简单的测试方法是测试其是否具有泡沫产生。 国标中合成洗涤剂发泡力的测试是通过一定体积的液体以一定流速落下时,与预先加入的一定量的试液产生冲击搅拌作用,从而产生泡沫。但国标方法比较费时,不适用于快速测定、比较多种表面活性剂或合成洗涤剂的泡沫性能。利用冲击搅拌产生泡沫的原理,可以对一定质量分数的表面活性剂或合成洗涤剂溶液,以相同力度、同一方向摇晃溶液,使其产生泡沫,测量泡沫的高度,即可快速测定、比较多种表面活性剂或合成洗涤剂的泡沫性能。泡沫高度=泡沫下边缘与泡沫顶点的平均高度(mm),并在5min末再读取第二次读数。用新的试液重复以上试验至少3次以上,每次试验前必须用试液润洗管壁。结果以起始或5min 末的泡沫高度表示,取至少3次误差在允许范围内的结果的平均值作为最后结果。 每次测试的水硬度、试液浓度、测定温度可按产品标准的要求予以改变,但应在实验报告中说明。 三、实验试剂: K12的水溶液(1%)、AEO-9的水溶液(1%)、AES的水溶液(1%)、LAS的水溶液(1%)、甜菜碱的水溶液(1%)、咪唑啉的水溶液(1%)、硫酸镁、氯化钙。 具塞比色管、比色管架、小烧杯、250mL烧杯、玻璃棒、电子称、温度计、1000mL容量瓶、25mL移液管、刻度尺。 四、实验步骤: 1、150mg/L硬水的配制:称取硫酸镁0.143g,氯化钙0.132g,溶解于1000mL容量瓶中,加蒸馏水至刻度,摇匀。 2、试液的配制:称取1.0g试样于烧杯中,加硬水至100.0g,用玻璃棒小心搅拌溶解。 3、泡沫性的测定:用润洗过的移液管小心移取试液于比色管中,盖好塞子,用食指按住塞子,用力上下摇动比色管10次,产生泡沫后用尺子量泡沫高度并记录结果。 注意:每次都必须要同一人、同一只手摇动比色管,摇动的每一下都必须要有停顿,以保证用的最大力度。 五、实验结果:

粘度测试标准大全

粘度测试标准大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

GB 265-1988 石油产品运动粘度测定法和动力粘度计算法.pdf GB-T 10247-1988 粘度测试方法.pdf GB-T 11137-1989 深色石油产品运动粘度测定法(逆流法)和动力粘度计算法.pdf GB-T 11145-1989 车用流体润滑剂低温粘度测定法(勃罗克费尔特粘度计法).pdf GB-T 11409.8-1989 橡胶防老剂、硫化促进剂粘度的测定方法(旋转粘度计法).pdf GB-T 11543-1989 表面活性剂中、高粘度乳液的特性测试及其乳化能力的评定方法.pdf GB-T 12004.3-1989 聚氯乙烯增塑糊表观粘度测定方法.pdf GB/T 21989-2008塑料聚氯乙烯糊用Severs流变仪测定表观黏度 GB-T 12005.10-1992 聚丙烯酰胺分子量测定粘度法.pdf GB-T 12008.8-1992聚醚多元醇的粘度测定.pdf GB-T 12009.3-1989多亚甲基多苯基异氰酸酯粘度测定方法.pdf GB-T 12010.3-1989 聚乙烯醇树脂粘度测定方法.pdf GB-T 12029.2-1989 洗涤剂用羧甲基纤维素钠粘度的测定.pdf GB-T 12098-1989 淀粉粘度测定方法.pdf GB-T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定.pdf

GB-T 1233-1992 橡胶胶料初期硫化特性的测定门尼粘度计法.pdf GB-T 13217.4-1991 凹版塑料油墨检验方法粘度检验.pdf GB-T 14074.3-1993 木材胶粘剂及其树脂检验方法粘度测定法.pdf GB-T 14235.8-1993 熔模铸造模料粘度测定方法.pdf GB-T 14490-1993 谷物及淀粉糊化特性测定法粘度仪法.pdf GB-T 14797.2-1993 浓缩天然胶乳硫化胶乳粘度的测定.pdf GB-T 14906-1994 内燃机油粘度分类.pdf GB-T 15357-1994 表面活性剂和洗涤剂旋转粘度计测定液体产品的粘度.pdf GB-T 1660-1982增塑剂运动粘度的测定(品氏法) .pdf GB-T 1661-1982 增塑剂运动粘度的测定(恩氏法) .pdf GB-T 1723-1993 涂料粘度测定法.pdf GB-T 17282-1998根据运动粘度确定石油分子量(相对分子质量)的方法.pdf GB-T 17473.5-1998 厚膜微电子技术用贵金属浆料测试方法粘度测定.pdf GB-T 17477-1998 驱动桥和手动变速器润滑剂粘度分类.pdf GB-T 1841-1980 聚烯烃树脂稀溶液粘度试验方法.pdf GB-T 1995-1998 石油产品粘度指数计算法.pdf

水质 阴离子表面活性剂的测定 亚甲蓝分光光度法

水质阴离子表面活性剂的测定亚甲蓝分光光度法 1. 适用范围 本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。在实验条件下,主要被测物是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰(见第8条)。 当采用10mm光程的比色皿,试份体积为100mL时,本方法的最低检出浓度为0.05mg/L LAS,检测上限为2.0mg/L LAS。 2. 原理 阳离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。 3. 试剂 在测定过程中,仅使用公认的分析纯试剂和蒸馏水,或具有同等纯度的水。 3.1 氢氧化钠(NaOH):1mol/L。 3.2 硫酸(H2SO4):0.5mol/L。 3.3 氯仿(CHCl3)。 3.4 直链烷基苯磺酸钠贮备溶液 称取0.100g标准物LAS(平均分子量344.4),准确至0.001g,溶于50mL水中,转移到100mL容量瓶中,稀释至标线并混匀。每毫升含1.00mgLAS。保存于4℃冰箱中。如需要,每周配制一次。 3.5 直链烷基苯磺酸钠标准溶液 准确吸取10.00mL直链烷基苯磺酸钠贮备溶液(3.4),用水稀释至1000mL,每毫升含10.0μgLAS。当天配制。 3.6 亚甲蓝溶液 先称取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300mL水中,转移到1000mL 容量瓶内,缓慢加入6.8mL浓硫酸(H2SO4,ρ=1.84g/mL),摇匀。另称取30mg 亚甲蓝(指示剂级),用50mL水溶解后也移入容量瓶,用水稀释至标线,摇匀。此溶液贮存于棕色试剂瓶中。

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

黏度测定法

黏度测定法_(中国药品检验标准操作规范)_(2010年版) 黏度测定法 1 简述 黏度系指流体对流动的阻抗能力,《中国药典》2010年版二部附录ⅥG中以动力黏度、运动黏度或特性黏数表示。 液体以1cm/s的速度流动时,在每1cm2平面上所需剪应力的大小,称为动力黏度η,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度(kg/m3)的比值,再乘以10-6,即得该液体的运动黏度[ν],以mm2/s为单位。高聚物稀溶液的相对黏度的对数值与其浓度的比值,称为特性黏数[η]。 第一法用平氏黏度计测定运动黏度或动力黏度 1 简述 1.1 本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液体的运动黏度或动力黏度。 1.2 本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力黏度或运动黏度。 2 仪器与用具 2.1 平氏黏度计(见《中国药典》2010年版二部附录ⅥG中的附图1),毛细管内径有0.8mm±0.05mm,1.0mm±0.05mm,1.2mm ±0.05mm,1.5mm±0.1mm或2.0mm±0.1mm多种,可根据各品种项下规定选用(流出时间应不小于200s)。 2.2 恒温水浴直径30cm以上、高40cm以上的玻璃缸或有机

玻璃缸,附有电动搅拌器及电热装置,除另有规定外,恒温精度±0.1℃。 2.3 温度计分度0.1℃,经周期检定。 2.4 秒表分度0.2s,经周期检定。 3 操作方法 3.1 黏度计的清洗和干燥取黏度计,置铬酸洗液中浸泡2h以上(沾有油渍者,应依次先用三氯甲烷或汽油、乙醇、自来水洗涤晾干后,再用铬酸洗液浸泡6h以上),自来水冲洗至内壁不挂水珠,再用水洗3次120℃干燥,备用。 3.2 按各品种项下规定的测定温度调整恒温水浴温度。 3.3 取黏度计,在支管F上连接一橡皮管,用手指堵住管口2,倒置黏度计,将管口!插入供试品(或供试溶液)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处,提出黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15min后,自橡皮管的另一端抽气,使供试品充满球A并超过测定线m1,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m1下降至测定线m2处的流出时间;依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。 另取一份供试品同样操作,并重复测定3次以上。 以先后两次取样测得的总平均值按公式计算,即得。 3.4 测定动力黏度时,按“相对密度测定法”标准操作规程测

相关文档