文档库 最新最全的文档下载
当前位置:文档库 › 预应力混凝土连续梁桥分析

预应力混凝土连续梁桥分析

预应力混凝土连续梁桥分析
预应力混凝土连续梁桥分析

本文来自:中国范文网【】详细出处参考:相关文章在网站其他栏目里面。

北京迈达斯技术有限公司

目录

概要 (1)

桥梁概况及一般截面 (2)

预应力混凝土梁的分析顺序 (3)

使用的材料及其容许应力 (4)

荷载 (5)

设置操作环境 (6)

定义材料和截面 (7)

定义截面 (8)

定义材料的时间依存性并连接 (9)

建立结构模型 (11)

定义结构组、边界条件组和荷载组 (12)

输入边界条件 (15)

输入荷载 (16)

输入恒荷载 (17)

输入钢束特性值 (18)

输入钢束形状 (19)

输入钢束预应力荷载 (22)

定义施工阶段 (24)

输入移动荷载数据 (29)

运行分析 (33)

查看分析结果 (34)

通过图形查看应力 (34)

定义荷载组合 (38)

利用荷载组合查看应力 (39)

查看钢束的分析结果 (43)

查看荷载组合条件下的内力 (46)

概要

本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应

力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,

以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的

步骤和方法。

图1. 分析模型

桥梁概况及一般截面

分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。

桥梁形式:两跨连续的预应力混凝土梁

桥梁长度:L = 2@30 = 60.0 m

图2. 立面图和剖面图

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。

1.定义材料和截面

2.建立结构模型

3.输入荷载

恒荷载

钢束特性和形状

钢束预应力荷载

4.定义施工阶段

5.输入移动荷载数据

6.运行结构分析

7.查看结果

使用的材料及其容许应力

? 混凝土

设计强度:2ck cm /kgf 400=f 初期抗压强度:2ci cm /kgf 270=f

弹性模量:Ec=3.000Wc1.5 √fck+ 70.000 = 3.07×105kgf/cm 2

容许应力:

?

预应力钢束 (ASTM A416-92低松弛270级,Φ15.2mm (0.6" strand)

屈服强度: 2py mm /kgf 160=f →strand /tonf 6.22=P y 抗拉强度: 2pu mm /kgf 190=f →strand /tonf 6.26=P u 截面面积: 2387.1cm A p = 弹性模量: 26p cm /kgf 10×

0.2=E 张 拉 力: fpi=0.7fpu=133kgf/mm 2

锚固装置滑动: mm 6=s Δ 磨擦系数: rad /30.0=μ m /006.0=k

荷载

? 恒荷载

自重

在程序中按自重输入

?

预应力

钢束(φ15.2 mm ×31 (φ0.6" - 31))

截面面积 : Au = 1.387 × 31 = 42.997 cm 2

孔道直径 : 133 mm 张拉力 : 抗拉强度的70%

fpj = 0.7 fpu = 13,300 kgf/cm 2

Pi = Au × fpj = 405.8 tonf 张拉后的瞬间损失(程序自动计算)

摩擦损失 :)(0)(kL X e P P +?=μα

30.0=μ, 006.0=k

锚固装置滑动引起的损失 : mm 6=I Δc 弹性收缩引起的损失 : 损失量 SP P E A f P ??=? 最终损失(程序自动计算)

钢束的松弛(Relaxation ) 徐变和收缩引起的损失

?

徐变和收缩

条件

水泥 : 普通硅酸盐水泥

长期荷载作用时混凝土的材龄 : =o t 5天 混凝土与大气接触时的材龄 : =s t 3天 相对湿度 : %70=RH 大气或养护温度 : C °20=T 适用规范 :中国规范 徐变系数 : 程序计算 混凝土收缩变形率 : 程序计算

?

活荷载

适用规范:城市桥梁设计荷载规范 荷载种类:C-AL

C-AD(150)

设置操作环境

打开新文件(

新项目),以 ‘PSC beam ’ 为名保存(

保存)。

将单位体系设置为 ‘tonf ’和‘m ’。该单位体系可根据输入数据的种类任意转换。

文件 / 新项目

文件 /

保存 ( PSC beam )

工具 / 单位体系

长度> m ; 力>tonf

图3. 设置单位体系

单位体系还可以通过点击画面下端状态条的单位选择键()来进行转换。

定义材料和截面

下面定义PSC beam 所使用的混凝土和钢束的材料特性。

模型 / 材料和截面特性 /

材料

类型>混凝土 ; 规范>GB-civil(RC)

数据库>40

名称( 钢束 ) ; 类型>用户定义 ; 规范>无 分析数据

弹性模量 (2.1e7)

图4. 定义材料对话框

同时定义多种材料特性时,使用

键可以连续输入。

定义截面

PSC beam的截面使用比较简单的矩形截面来定义。

模型 /材料和截面特性 / 截面

数据库/用户> 截面号 ( 1 ) ; 名称 (Beam)

截面类型>实腹长方形截面>用户

H ( 3 ) ; B ( 2 )

偏心>中-下部

图5. 定义截面的对话框

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

曲线梁桥的受力施工特点及设计方法分析_百度文库

曲线梁桥的受力施工特点及设计方法分析 中华硕博网核心提示:摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。:曲线梁桥,结构,施工近年来,随着公路建设事业 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 :曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1、曲线梁桥的力学特性 1。1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1轴向变形与平面内弯曲的耦合; (2竖向挠曲与扭转的耦合; (3它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的

箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1。2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产 生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2、曲线梁桥的结构分析 2。1上部结构分析 2。1。1结构力学方法 这种方法沿用杆系系统的结构力学方法。首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。 2。1。2梁格法 梁格法是目前最常用的分析弯梁桥的方法。梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。

[整理]MIDAS连续梁桥建模.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,

大跨度预应力混凝土梁桥施工技术

大跨度预应力混凝土梁桥施工技术 一、我国预应力混凝土梁桥的现状与发展 1、预应力混凝土梁式桥的结构特点 各种形式的预应力混凝土梁式桥在桥梁建设中占有主导地位,而且有着广阔的发展前景。 按结构体系划分一般有:简支梁、连续梁、T形刚构、连续刚构、刚构连续组合梁以及V型墩刚构等。按截面形式划分有:I形梁、T形梁、 形梁、槽形梁、箱形梁等,大跨度超静定梁桥绝大多数采用箱形截面。 预应力混凝土简支梁桥由于结构简单、受力明确、施工方便,仍将是我国量大面广的中小跨径桥梁的首选结构。一般认为,简支梁桥的合理跨径在50m以下,超出这一范围,梁高会急剧加大,失去其经济合理性。 与简支梁相比,其它超静定梁则具有较大的跨越能力,那就是预应力混凝土连续梁与连续刚构。预应力混凝土连续刚构桥对地形、地质和通航要求适应性强、施工方便、较经济,已成为国内大跨径桥梁的首选桥型。 预应力混凝土连续梁与连续刚构同为大跨度梁式桥,但受力上存在着一定的差异。与连续梁相比,连续刚构由于在墩顶处的墩梁固结,对梁跨形成附加约束,因而能够增加顺桥向的抗弯刚度和横桥向的抗扭刚度,从而提高桥梁的跨越能力;同时由于墩柱的约束,温度变化、收缩徐变等对连续刚构造成的内力影响,也比连续梁大得多;尽管在高墩桥

位,经常采用柔性墩结构,但桥墩的材料用量、设计难度要比连续梁大得多。 与连续刚构相比,连续梁桥在支座处仅提供竖向约束。所以,在正常“恒载+活载”作用下的跨中截面弯矩要比连续刚构大,但由温度变化所产生的各种内力要比连续刚构小很多;大跨度连续梁对支座的承载能力要求很高,甚至需要特别设计(如南京长江大桥二桥北汊桥连续梁的支座吨位达到65000KN)。但它要求桥墩只承受竖向反力,在深水基础的情况下允许采用高桩承台,能够大大简化基础及桥墩的设计与施工。 刚构、连续组合梁桥的受力特点则介于连续梁桥和连续刚构之间;V 型墩刚构则具有增加桥梁刚度的特点。总之,在大跨度桥梁的桥式方案中,应当结合具体的技术经济条件,权衡选择。 2、我国预应力混凝土桥梁的现状与发展 桥梁跨越能力,也就是常说的跨径大小,是桥梁建设水平的一个重要指标,在一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。 近二十年来,随着我国交通运输业的蓬勃发展,预应力混凝土桥梁的建设取得了很大的成就,其技术进步主要表现在: 在结构材料方面,高强、早强混凝土,又发展到高性能混凝土,以及在特殊使用要求下的特种混凝土正在得到推广应用,商品混凝土和泵送混凝土正在取代传统的施工方法;在预应力技术上,高强钢绞线、大吨位群锚技术日益普及,目前1860MPa级的高强低松驰钢绞线,几乎包揽了新建大跨度预应力混凝土桥梁天下(已研制出2000MPa的钢绞

曲线梁桥平面位移机理分析

总第222期交 通 科 技Ser ial No.222 2007年第3期T r anspor tation Science&T echno log y N o.3June.2007 收稿日期:2007 01 23曲线梁桥平面位移机理分析 刘柱国 (河北省交通厅公路管理局 石家庄 050051) 摘 要 分析了曲线梁桥平面位移的机理,探讨了影响平面位移的主要因素,并结合工程实例对影响因素进行了验证。 关键词 曲线梁桥 平面位移 温度效应 收缩 徐变 连续曲线梁桥在使用过程中,由于预加力、温度效应、车辆行驶或一些其他影响因素的作用,会产生侧向的变位。由于曲线梁桥的结构特点、支承形式等原因,当外荷载等影响因素消失后,弯梁发生的侧向变位并不能够完全恢复,会产生部分不可恢复的残余位移,在长期反复作用下,侧向的残余位移就会累积,产生较大的位移,即曲线梁桥的侧向位移(或称 爬移)。曲线梁桥的侧向位移问题轻则导致梁段伸缩缝的剪切破坏,影响其使用寿命;严重的则会出现支承结构破坏,梁体滑移和翻转。桥梁在使用过程中出现该类问题,不仅影响交通,而且加固起来非常困难,造成巨大的经济损失。 1 影响曲线梁桥平面位移的因素 1.1 支承方式 支承方式是影响曲线梁桥平面位移的内在因素,支承方式直接影响全桥的内力分布,合理的支承方式可以承受自重和活载、偏载等因素所产生的组合扭矩作用,限制结构的平面位移。 曲线梁桥可以采用多种支承布置形式。理论上讲,连续曲线梁桥的所有支承均可采用点铰支承,但在荷载作用下梁端将产生扭转变形,从而在梁端与桥台背墙间产生上下相对变形,这会导致伸缩缝破坏。一般在两端的桥台设置能抵抗外扭矩的抗扭支座,中间支承可以采用抗扭支承,或点铰支承,或者交替使用两种支承形式,从而限制梁端的扭转变形,以保证伸缩缝正常工作[1 2]。 主梁在各种荷载作用下,除了梁端扭转变形外,在支座位置处还会产生纵桥向与横桥向的变位,为了保证结构的正常工作,总希望沿着 切线方向移动。为此,除了在桥台处设置抗扭支座外,还必须采取一些 限制措施,一般可以在活动端的定向切线支座上安置 限制位移方向的措施,以保证桥头的位移能符合 切线方向的运动要求,但在设计计算时,必须计及这个 强制力的影响。根据具体桥型,充分考虑各种因素,设置合理的支承方式,就可以使曲线梁桥的平面变形顺着目标方向进行,阻止非正常变位的发生。 1.2 温度和混凝土收缩的影响 温度变化和混凝土收缩引起在平面内的位移 属于弧段膨胀或收缩性质的位移[1],涉及到弧段的半径变化但圆心角不变,即r0!r,而 0= (见图1)。 图1 曲线梁桥平面内变形 在此情况下: r=r0(1- ), =?!t+ cs ?3=2(r0-r)sin 0 2 式中: cs为混凝土的收缩应变。 因此温度变化和混凝土收缩时,曲线梁桥会发生两个方向的位移分量:#沿桥轴线方向的纵向分量;?沿桥轴线垂直方向的分量(见图2)。 温度变化和收缩在各种活动支座处将引起纵桥向与横桥向的变形,横桥向的变形不仅给伸缩缝的活动带来困难,而且产生了曲线梁桥的支座受力、布置以及一些侧向问题。

连续梁桥计算

第一章混凝土悬臂体系和连续体系梁桥的计算 第一节结构恒载内力计算 一、恒载内力计算特点 对于连续梁桥等超静定结构,结构自重所产生的内力应根据它所采用的施工方法来确定其计算图式。 以连续梁为例,综合国内外关于连续梁桥的施工方法,大体有以下几种: (一)有支架施工法; (二)逐孔施工法; (三)悬臂施工法; (四)顶推施工法等。 上述几种方法中,除有支架施工一次落梁法的连续梁桥可按成桥结构进行分析之外,其余几种方法施工的连续梁桥,都存在一个所谓的结构体系转换和内力(或应力)叠加的问题,这就是连续梁桥恒载内力计算的一个重要特点。 本节着重介绍如何结合施工程序来确定计算图式和进行内力分析以及内力叠加等问题,并且仅就大跨径连续梁桥中的后两种的施工方法——悬臂浇筑法和顶推施工法作为典型例子进行介绍。理解了对特例的分析思路以后,就可以容易地掌握当采用其它几种施工方法时的桥梁结构分析方法了。 二、悬臂浇筑施工时连续梁的恒载内力计算 为了便于理解,现取一座三孔连续梁例子进行阐明,如图1-1所示。该桥上部结构采用挂篮对称平衡悬臂浇筑法施工,从大的方面可归纳为五个主要阶段,现按图分述如下。 (一)阶段1 在主墩上悬臂浇筑混凝土 首先在主墩上浇筑墩顶上面的梁体节段(称零号块件),并用粗钢筋及临时垫块将梁体与墩身作临时锚固,然后采用施工挂篮向桥墩两侧分节段地进行对称平衡悬臂施工。此时桥墩上支座暂不受力,结构的工作性能犹如T型刚构。对于边跨不对称的部分梁段则采用有支架施工。 此时结构体系是静定的,外荷载为梁体自重q自(x)和挂篮重量P挂,其弯矩图与一般悬臂梁无异。 (二)阶段2 边跨合龙 当边跨梁体合龙以后,先拆除中墩临时锚固,然后便可拆除支架和边跨的挂篮。 此时由于结构体系发生了变化,边跨接近于一单悬臂梁,原来由支架承担的边段梁体重量转移到边跨梁体上。由于边跨挂篮的拆除,相当于结构承受一个向上的集中力P挂。 (三)阶段3 中跨合龙 当中跨合龙段上的混凝土尚未达到设计强度时,该段混凝土的自重q及挂篮重量2P 将以2个集中力 挂 R0的形式分别作用于两侧悬臂梁端部。

预应力混凝土桥梁工程施工方案

预应力混凝土桥梁工程 本标段内桥梁为石院子中桥长67米,上部为预应力混凝土T梁,下部采用柱式墩,U 型桥台,钻孔灌注桩基础。 1、基础施工 1、1桩基施工方法 钻机施工工艺见钻孔灌注桩施工工艺框图。 1.1.1施工准备: 开钻前根据地层岩性等地质条件、技术要求确定钻进方法和选用合适的钻具;规划施工场地,合理布置临时设施;开孔前,测量班放出桩位中心后将钢护筒埋入土中正确对位。开孔时,采用短钻具、低钻速、轻压慢进。 1.1.2钢护筒的制作: 桩基护筒用δ=10mm的A3钢板卷制,护筒焊接采用开坡口双面焊,要求焊逢连续,保证不漏水。护筒埋置深度须符合下列规定:黏性土不小于1m,砂类土不小于2m,当表层土松软时将护筒埋置到较坚硬密实的土层中至少0.5m;岸滩上埋设护筒,在护筒四周回填黏土并分层夯实;护筒顶面中心与设计桩位偏差不大于5cm,倾斜度不大于1%。 1.1.3钻进施工:

钻孔灌注桩施工工艺框图 钻进施工时,再次将钻头、钻杆、钢丝绳等进行全面检查;钻进时,钻头对准设计桩位中心,匀速下放至作业面,液压装置加压,旋转钻进,钻进过程中,应根据地质资料掌握土层变化,及时捞取钻碴取样,判断土层,记入钻孔记录表,并与地质资料进行核对。根据核对判定的土层调整钻机的转速和钻孔进尺。 1.1.4护壁: 钻孔护壁采用泥浆护壁的形式。选用成品膨润土配制优质泥浆,其具有相对密度低、粘度低、含砂量少、失水量少、泥皮薄、稳定性强、固壁能力高等优点。根据不同的地质情况选择不同的泥浆比重。根据地层情况及时调整泥浆性能,参照<公路桥梁施工规范>(JTG/T F50-2011)泥浆性能指标。 1.1.5第一次清孔: 钻孔至设计高程,经过检查,孔深符合要求后,开始进行清空。清孔采用换浆法,在钻进至设计深度后,稍稍提起钻头,同时保持原有的泥浆比重进行循环浮碴,随着 终 孔 清 孔 测 孔 安放钢筋笼 安放导管 测孔深、孔径、倾斜度 测泥浆性能指标 监理工程师签字认可 监理工程师签字认可 水密性试验 测孔深、孔径 钢筋笼及检测管制作 凿桩头 二次清孔 灌注混凝土 检查泥浆指标及沉渣厚度 制作混凝土试件

预应力混凝土连续梁桥结构设计

预应力混凝土连续梁桥结构设计 第一章绪论 第一节桥梁设计的基本原则和要求 一、使用上的要求 桥梁必须适用。要有足够的承载和泄洪能力,能保证车辆和行人的安全畅通;既满足当前的要求,又照顾今后的发展,既满足交通运输本身的需要,也要兼顾其它方面的要求;在通航河道上,应满足航运的要求;靠近城市、村镇、铁路及水利设施的桥梁还应结合有关方面的要求,考虑综合利用。建成的桥梁要保证使用年限,并便于检查和维护。 二、经济上的要求 桥梁设计应体现经济上的合理性。一切设计必须经过详细周密的技术经济比较,使桥梁的总造价和材料等的消耗为最小,在使用期间养护维修费用最省,并且经久耐用;另外桥梁设计还应满足快速施工的要求,缩短工期不仅能降低施工费用,面且尽早通车在运输上将带来很大的经济效益。 三、设计上的要求 桥梁设计必须积极采用新结构、新设备、新材料、新工艺利新的设计思想,认真研究国外的先进技术,充分利用国际最新科学技术成果,把国外的先进技术与我们自己的独创结合起来,保证整个桥梁结构及其各部分构件在制造、运输、安装和使用过程中具有足够的强度、刚度、稳定性和耐久性。 四、施工上的要求 桥梁结构应便于制造和安装,尽量采用先进的工艺技术和施工机械,以利于加快施工速度,保证工程质量和施工安全。 五、美观上的要求 在满足上述要求的前提下,尽可能使桥梁具行优美的建筑外型,并与周围的景物相协 调,在城市和游览地区,应更多地考虑桥梁的建筑艺术,但不可把美观片面地理解为豪华的细部装饰。 第二节计算荷载的确定 桥梁承受着整个结构物的自重及所传递来的各种荷载,作用在桥梁上的计算荷载有各种不同的特性,各种荷载出现的机率也不同,因此需将作用荷载进行分类,并将实际可能同时出现的荷载组合起来,确定设计时的计算荷载。 一、作用分类与计算 为了便于设计时应用,将作用在桥梁及道路构造物上的各种荷载,根据其性质分为:

预应力混凝土桥梁转体施工技术

浅谈预应力混凝土桥梁转体施工技术【摘要】近年来随着我国经济高速发展的需要,国家不断扩大对运输部门的投资,并高度重视桥梁的修建工作,同时预应力技术也得到了突破发展,预应力混凝土桥梁的转体施工技术也得到越来越广泛的应用。本文从桥梁施工的特点、流程、方法等方面对预应力混凝土桥梁施工技术进行介绍和探讨。 【关键词】预应力混凝土桥; 转体施工; 转盘制作 【 abstract 】 in recent years as china’s rapid economic development needs, the state of the transportation sector continues to expand the investment, and pay close attention to the construction of the bridge, while prestressed technique also get the breakthrough, prestressed concrete bridge construction technology also swivel get applied more and more. this article from the characteristics of the bridge construction, process and method of bridge construction of prestressed concrete technology are introduced and discussed. 【 keywords 】 prestressed concrete bridge; swivel construction; turntable production 中图分类号:tu37文献标识码:a 文章编号: 随着我国经济建设的发展,交通事业的建设也取得了重大进展,而在交通线的扩展方面桥梁的修筑有着重要地位和作用,但是在桥

曲线梁桥的受力施工特点及设计方法分析

曲线梁桥的受力施工特点及设计方法分析 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 关键词:曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等)进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1曲线梁桥的力学特性 1.1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1)轴向变形与平面内弯曲的耦合; (2)竖向挠曲与扭转的耦合; (3)它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1.2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2曲线梁桥的结构分析 2.1上部结构分析 2.1.1结构力学方法

三跨连续梁桥动力特性分析

三跨连续梁桥动力特性分析 第一章在桥梁设计中,动力特性的研究尤为重要。对动力特性进行分析与研究最主要的原因是为了避免共振。本文通过比较惯性矩变化导致的刚度分配变化和跨径布置对多跨变截面连续梁桥自振特性的影响,并运用有限元软件对三跨连续梁桥进行动力特性分析,得出三跨连续梁桥的自振频率的变化规律,从而为冲击系数的合理取值提供依据。 1.1多跨连续梁桥的跨径布置 连续梁桥分为等截面连续梁桥和变截面连续梁桥。 等截面连续梁桥可以选用等跨布置和不等跨径布置两种布置方式。等跨布置的跨径大小主要取决于分孔是否经济和施工技术条件等。当桥梁按照等跨径布置会使标准跨径较大时,为了减少边跨的正弯矩,将边跨跨径取小于中跨的结构布置,即不等跨布置,一般边跨与中跨跨长之比在0. 6-0. 8之间,边跨与中跨跨长之比简称边中跨比。 当连续梁桥主跨的跨径接近或者大于70m时,若主梁仍然釆用等截面的布置方式,在恒载和活载作用时,将会出现主梁支点截面的负弯矩比跨中截面的正弯矩大很多。为了使受力更加合理和建造更加经济,此时,釆用变截面连续梁桥的设计,不仅更加经济,也使受力更加符合要求,高度变化和内力变化基本相适应。对于跨径,变截面连续梁桥立面一般采用不等跨径布置。对于三跨以上的连续梁桥,除边跨之外,其余中间跨一般采用等跨径布置以方便施工。对于多于两跨的连续梁桥,其跨径比一般为0. 6-0. 8左右。当釆用箱形截面的三跨连续梁桥时, 该比值甚至可减少至0. 5-0.7,当接近0.618时,桥跨变化会显得平顺、流畅, 较为美观。此时,连续箱梁的梁高宜采用变高度设汁,其底曲线采用折线(釆用折线形截面布置可使构造简单、施工方便)、二次抛物线和介于折线与二次抛物线之间的1. 5-1. 8次抛物线的设计形式,从而使底曲线变化规律与连续梁弯矩变化规律基本接近。 1.2分析动力特性的原因 所谓动力特性是指自振周期(自振频率)、振型、阻尼比三个主要方面。分析与研究动力特性的首要原因是为了了解自振频率及振型以在桥梁设计时避开共振。历

最新多跨静定连续梁受力分析

多跨静定连续梁受力 分析

多跨铰接连续静定梁内力分析 第1跨内力分析: R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=1 M i=qL i2*[1-(A i/L i)2]2/8,i=1 第2跨内力分析: P i=R Bi-1,i=2 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=2 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=2 M A2=-(P i*A i+qA i2/2),(i=2) 第3跨内力分析: P i=R Bi-1,i=3 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=3 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=3 M A3=-(P i*A i+qA i2/2),(i=3) 第4跨内力分析: P i=R Bi-1,i=4 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=4 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=4 M A4=-(P i*A i+qA i2/2),(i=4) 第5跨内力分析: P i=R Bi-1,i=5 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=5

M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=5 M A5=-(P i*A i+qA i2/2),(i=5) 第6跨内力分析: P i=R Bi-1,i=6 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=6 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=6 M A6=-(P i*A i+qA i2/2),(i=6) 第7跨内力分析: P i=R Bi-1,i=7 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=7 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=7 M A7=-(P i*A i+qA i2/2),(i=7) 第8跨内力分析: P i=R Bi-1,i=8 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=8 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=8 M A8=-(P i*A i+qA i2/2),(i=8) 第9跨内力分析: P i=R Bi-1,i=9 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=9 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=9 M A9=-(P i*A i+qA i2/2),(i=9) 第10跨内力分析: P i=R Bi-1,i=10 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=10 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=10 M A10=-(P i*A i+qA i2/2),(i=10)

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

箱型曲线梁桥结构理论发展现状论文

浅析箱型曲线梁桥结构理论研究发展现状摘要:国内外许多学者致力于曲线桥结构受力的相关研究,提出了各种精确的或者是近似的分析方法。本文主要对曲线梁桥结构研究与分析的现状进行阐述和分析,希望能够在之后的分析之中提供相关的研究依据。 关键字:箱型曲线梁桥;理论;研究进展;发展方向 abstract: many scholars at home and abroad to curve bridge structure stress related research, puts forward all kinds of precise or is an approximate analysis method. this paper focuses on the research and analysis of the structure of the curved girder bridges on the current situation of explained and analyzed, and hope to be able to provide relevant analysis of after the research basis. key word: box girder bridge type curve; theory; research progress; development direction 中图分类号:u443文献标识码:a 文章编号: 一、绪论 随着我国高等公路建设的修建进程的加快,各种曲线桥结构在我国已经被广泛使用。曲线梁桥具有独特的流线型结构,其线条十分明快并且流畅,能够给人们以美的感受。并且曲线梁桥的设置可以让交通路线的规划很好地适应当地的地形特点,从而使得交通线

预应力混凝土连续梁桥分析

本文来自:中国范文网【】详细出处参考:相关文章在网站其他栏目里面。 北京迈达斯技术有限公司

目录 概要 (1) 桥梁概况及一般截面 (2) 预应力混凝土梁的分析顺序 (3) 使用的材料及其容许应力 (4) 荷载 (5) 设置操作环境 (6) 定义材料和截面 (7) 定义截面 (8) 定义材料的时间依存性并连接 (9) 建立结构模型 (11) 定义结构组、边界条件组和荷载组 (12) 输入边界条件 (15) 输入荷载 (16) 输入恒荷载 (17) 输入钢束特性值 (18) 输入钢束形状 (19) 输入钢束预应力荷载 (22) 定义施工阶段 (24) 输入移动荷载数据 (29) 运行分析 (33) 查看分析结果 (34) 通过图形查看应力 (34) 定义荷载组合 (38) 利用荷载组合查看应力 (39) 查看钢束的分析结果 (43) 查看荷载组合条件下的内力 (46)

概要 本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应 力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法, 以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的 步骤和方法。 图1. 分析模型

桥梁概况及一般截面 分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。 桥梁形式:两跨连续的预应力混凝土梁 桥梁长度:L = 2@30 = 60.0 m 图2. 立面图和剖面图

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。 1.定义材料和截面 2.建立结构模型 3.输入荷载 恒荷载 钢束特性和形状 钢束预应力荷载 4.定义施工阶段 5.输入移动荷载数据 6.运行结构分析 7.查看结果

第六章 曲线梁桥

6 曲线梁桥 6.1一般规定 6.1.1本章适用于平面曲线钢筋混凝土、预应力混凝土、钢-混凝土联合梁式桥。 6.1.2本章仅就曲线梁桥特有的问题做出规定,其它有关问题参照相关规定执行。 6.1.3在选择曲线梁桥的结构形式及截面形状时,必须考虑有足够的抗扭刚度以适应扭转效应的影响。 6.1.4在保证结构体系受力合理的前提下兼顾桥梁美观的要求,分联处公用墩和桥梁宽度大于10m的曲线梁桥中墩宜设置为双柱;不应设置隐盖梁结构形式;箱梁的悬臂不宜过大,特别是多跨连续曲线匝道桥梁。 6.2结构体系 6.2.1曲线梁桥更需选择合理跨径,以有利于控制扭矩峰值,控制负反力的发生。 1

6.2.2曲线梁桥支座设置原则 (1)梁端支座宜设置橡胶支座,以保证适当的垂直方向的弹性约束; 沿弯梁径向应设置水平方向约束,以防止过大的径向水平位移; (2)结构中墩在满足结构受力的情况下,尽可能与主梁固结或设置固定支座、抗震型盆式支座。当采用沿曲线切线的滑动支座时, 必须保证支座具有可靠的滑动能力。中墩不应设置球形支座、球 冠支座或双向滑动支座。 6.2.3曲线梁桥中墩应设置适当的偏心值,以调整全梁的扭矩分布。其偏心值应与中墩支座选用形式相适应。 2

6.2.4曲线梁桥中墩不采用墩、梁固结时,应设置适当的径向水平限位措施,其强度应满足水平力强度要求。 6.3结构分析 6.3.1曲线梁桥结构静力分析模型的建立应满足以下要求: (1)当扭跨所对应的圆心角φ<5o时,可作为以曲线长为跨径的直线桥进行分析。 (2)当5o<φ≤30o时,弯矩及剪力可按直线桥进行分析,反力及扭矩需按空间程序进行分析,并且应考虑由于预应力、混凝土收 缩、徐变及温度作用所产生的效应。 (3)当30o<φ≤45o时,所有截面内力均应按空间程序进行分析。 (4)当φ>45o时,除按空间程序分析外,还应考虑翘曲约束扭转的影响。 (5)当采用具有相当抗扭刚度的闭口截面曲线梁桥,其扭转跨径所对应的(曲跨梁段)圆心角小于12o时,可以按直线桥进行分 3

如何用梁格法计算曲线梁桥桥梁分析

如何用梁格法计算曲线梁桥桥梁分析 一、梁格法既有相当精度又较易实行 对曲线梁桥, 可以把它简化为单根曲梁、 平面梁格计算, 也可以几乎不加简化地用块体 单元、板壳单元计算。 单根曲梁模型的优点是简单, 缺点是: 几乎所有类型的梁单元都有刚性截面假定, 因而 不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪 力中心、翼板 有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的 应力, 不能直接用于强度计算。 对于位置固定的静力荷载, 当然可以把若干点的应力换算成 横截面上的内力。 对于位置不固定的车辆荷载, 理论上必须采用影响面方法求最大、 最小内 力。板壳单元输出的只能是各点的应力影响面。 把各点的应力影响面重新合成为横截面的内 力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是: 可以直接输出各主梁的内力, 便于利用规范进行强度验算, 整体精度 能满足设计要求。 由于这个优点, 使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥 的唯一实用方法。 它的缺点在于, 它对原结构进行了面目全非的简化, 大量几何参数要预先 计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1. 纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、 于 实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分 M 个梁段, 个横截面, 每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面, 是在某个横向梁单元下面。 每一道横梁都被纵向主梁和支 点分割成数目不等的单元。 梁单元用同一种最普通的 12 自由度空间梁单元,能考虑剪切变形影响 即可。 2. 纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则: 应当使划分以 后的各工型的形心大致在同一高度上。 笔者曾经用有限条法进行过考核, 依据这一原则, 依各主梁弯矩、 剪力计算出的正应力、 剪应力, 与有限条的吻合性确实较好。 试算的具体划分步骤如下: T 型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对 共有 M+1 也就 纵、横 发现

预应力混凝土连续梁桥

6.2 预应力混凝土连续梁桥 6.2.1力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 6.2.2立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图6.1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图6.1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小主要取决于经济分跨和

相关文档
相关文档 最新文档