文档库 最新最全的文档下载
当前位置:文档库 › 实验六开环增益与零极点对系统性能的影响

实验六开环增益与零极点对系统性能的影响

实验六开环增益与零极点对系统性能的影响
实验六开环增益与零极点对系统性能的影响

实验六 开环增益与零极点对系统性能的影响

一.实验目的

1.研究闭环、开环零极点对系统性能的影响; 2.研究开环增益对系统性能的影响。

二.实验内容

1.搭建原始系统模拟电路,观测系统响应波形,记录超调量σ%、峰值时间tp 和调节时间ts ;

2.分别给原始系统在闭环和开环两种情况下加入不同零极点,观测加入后的系统响应波形,记录超调量σ%和调节时间ts ;

3.改变开环增益K ,取值1,2,4,5,10,20等,观测系统在不同开环增益下的响应波形,记录超调量σ%和调节时间ts 。

三.实验步骤

在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。 如果选用虚拟示波器,只要运行ACES 程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。具体用法参见用户手册中的示波器部分。

1.原始二阶系统

实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 原始二阶系统模拟电路如图1-6-1所示,系统开环传递函数为:

0.1(0.21)

K

s s ,

图1-6-1原始二阶系统模拟电路

(1) 设置阶跃信号源:

A .将阶跃信号区的选择开关拨至“0~5V ”;

B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接;

C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。

(2) 搭建原始二阶系统模拟电路:

A .将A3的“OUT3”与A1的“IN11”、“IN13”同时连接,将A1的“OUT1”与A2的“IN21”相连接,将A2的“OUT2”与A3的“IN33”相连接;

B.按照图1-6-1选择拨动开关:

图中:R1=200K、R2=200K、R3=200K、R4=100K、R5=64K、R6=200K、

R7=10K、R8=10K、C1=1.0uF、C2=1.0uF

将A3的S5、S6、S10,A1的S3、S6、S9,A2的S3、S8、S13拨至开的位置;(3)连接虚拟示波器:

将实验电路A2的“OUT2”与示波器通道CH1相连接。

(4)输入阶跃信号,通过虚拟示波器观测原始二阶系统输出响应曲线,记录超调量σ%、峰值时间tp和调节时间ts。

2.闭环极点对原始二阶系统的影响

实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3、实验电路A4、实验电路A5、实验电路A6。

给原始二阶系统加入闭环极点后的模拟电路如图1-6-2所示

图1-6-2加入闭环极点的二阶系统模拟电路

(1)设置阶跃信号源:

A.将阶跃信号区的选择开关拨至“0~5V”;

B.将阶跃信号区的“0~5V”端子与实验电路A3的“IN32”端子相连接;

C.按压阶跃信号区的红色开关按钮就可以在“0~5V”端子产生阶跃信号。(2)搭建加入闭环极点的二阶系统模拟电路:

A.按照步骤1中的(1)、(2)搭建原始二阶系统;

B.加入闭环极点环节

模拟电路中的表示不同的极点环节,

请分别将下表中的极点环节加入到原始二阶系统中。

(3) 连接虚拟示波器:

将实验电路Ax 的“OUTX ”与示波器通道CH1相连接。

(4) 输入阶跃信号,通过虚拟示波器观测加入闭环极点的二阶系统输出响应曲线,记

录超调量σ%、峰值时间tp 和调节时间ts 。

3.闭环零点对原始二阶系统的影响

实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3、实验电路A4、实验电路A5、实验电路A6。

原始二阶系统加入闭环零点后的模拟电路如图1-6-3所示

图1-6-3加入闭环零点的二阶系统模拟电路

(1) 设置阶跃信号源:

A .将阶跃信号区的选择开关拨至“0~5V ”;

B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接;

C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。

(2) 搭建加入闭环零点的二阶系统模拟电路:

A .按照步骤1中的(1)、(2)搭建原始二阶系统;

B.加入闭环零点环节

模拟电路中的表示不同的零点环节,请分别将下表中的零点环节加入到原始二阶系统中。

(3)连接虚拟示波器:

将实验电路Ax的“OUTX”与示波器通道CH1相连接。

(4)输入阶跃信号,通过虚拟示波器观测加入闭环零点的二阶系统输出响应曲线,记录超调量σ%、峰值时间tp和调节时间ts。

4.开环极点对原始二阶系统的影响

实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3、实验电路A4、实验电路A5、实验电路A6。

给原始二阶系统加入开环极点后的模拟电路如图1-6-4所示

图1-6-4加入开环极点的二阶系统模拟电路

(1)设置阶跃信号源:

A.将阶跃信号区的选择开关拨至“0~5V”;

B.将阶跃信号区的“0~5V”端子与实验电路A3的“IN32”端子相连接;

C.按压阶跃信号区的红色开关按钮就可以在“0~5V”端子产生阶跃信号。(2)搭建加入开环极点的二阶系统模拟电路:

A.按照步骤1中的(1)、(2)搭建原始二阶系统;

B.加入开环极点环节

模拟电路中的表示不同的极点环节,请分别将下表中的极点环节加入到原始二阶系统中。

(3) 连接虚拟示波器:

将实验电路Ax 的“OUTX ”与示波器通道CH1相连接。

(4) 输入阶跃信号,通过虚拟示波器观测加入开环极点的二阶系统输出响应曲线,记

录超调量σ%、峰值时间tp 和调节时间ts 。

5.开环零点对原始二阶系统的影响

实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3、实验电路A4、实验电路A5、实验电路A6。

原始二阶系统加入开环零点后的模拟电路如图1-6-5所示

图1-6-5加入开环零点的二阶系统模拟电路

(1) 设置阶跃信号源:

A .将阶跃信号区的选择开关拨至“0~5V ”;

B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接;

C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。

(2) 搭建加入开环零点的二阶系统模拟电路:

A .按照步骤1中的(1)、(2)搭建原始二阶系统;

B .加入开环零点环节

模拟电路中的表示不同的零点环节,请分别将下表中的零点环节加入到原始二阶系统中。

(3)连接虚拟示波器:

将实验电路Ax的“OUTX”与示波器通道CH1相连接。

(4) 输入阶跃信号,通过虚拟示波器观测加入开环零点的二阶系统输出响应曲线,记

录超调量σ%、峰值时间tp 和调节时间ts 。

6.开环增益K 对二阶系统的影响 实验中所用到的功能区域:

阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 二阶系统模拟电路如图1-6-6所示,系统开环传递函数为:

0.1(0.11)

K

s s +,K =R6/R5,

当R5=100K 时闭环传递函数为:22

222

2

1021010

n n n s s s s ωζωω=++++, K =1,0.5ζ=,10n ω=。在开环零点、极点保持不变的情况下,改变开环增益K ,系统的阻尼系数ζ和

固有频率n ω也将发生变化,系统的特性从而改变。

图1-6-6二阶系统模拟电路

(1) 设置阶跃信号源:

A .将阶跃信号区的选择开关拨至“0~5V ”;

B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接;

C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。

(2) 搭建原始二阶系统模拟电路:

A .将A3的“OUT3”与A1的“IN13”相连接,将A1的“OUT1”与A2的“IN24”相连接,将A2的“OUT2”与A3的“IN33”相连接;

B .按照图1-6-6选择拨动开关: 图中:R1=200K 、R2=200K 、R3=200K 、R4=50K 、R5可调、R6=100K 、 R7=10K 、R8=10K 、C1=2.0uF 、C2=1.0uF

C .K =R6/R5,调节R5的阻值,使K 分别取值:1,2,4,5,10,20 将A3的S5、S6、S10,A1的S7、S10,A2的S8、S11拨至开的位置;

(3) 连接虚拟示波器:

将实验电路A2的“OUT2”与示波器通道CH1相连接。

(4) 输入阶跃信号,通过虚拟示波器观测不同开环增益K 下的二阶系统输出响应曲

线,记录超调量σ%、峰值时间tp 和调节时间ts 。

四.实验结果

根据实验结果填写下表

表三开环极点对原始二阶系统的影响

20.极点与极线的性质

第15讲:极点与极线的性质 极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途. 定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 2 y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”. 特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点. [位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线 G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图: l l l P M P A D M P N C N B [配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P. 证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p ,y p ),Q(x Q ,y Q ),则点P 、Q 关于曲线G 的极线方程分别为 p:ax p x+b 2 y x x y p p ++cy p y+d 2 p x x ++e 2 p y y ++f=0,q:ax Q x+b 2 y x x y Q Q ++cy Q y+d 2 Q x x ++e 2 Q y y ++f=0,则点P 的极线通过点Q ?ax p x Q +b 2 Q p Q p y x x y ++cy p y Q +d 2 p Q x x ++e 2 p Q y y ++f=0?点P(x p ,y p )在直线q:ax Q x+b 2 y x x y Q Q ++cy Q y+d 2 Q x x ++e 2 Q y y + +f=0上?点Q 的极线也通过点P. 推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线; 证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二 点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线. 推论2(共点共线):共线点的极线必共点;共点线的极点必共线. 证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共 点;同理可证:共点线的极点必共线. 推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点. 证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 2 y y + +f=0,故可设AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 2 0y y ++λ=0,由点P(x 0,y 0)在直线AB 上?ax 02+bx 0y 0+cy 02 +2dx 0+2ey 0+λ=0?λ=-(ax 02 +bx 0y 0+cy 02 +2dx 0+2ey 0)?直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 2 0y y +=ax 02+bx 0y 0+cy 02 +2dx 0+2ey 0? ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 2 0y y ++f=ax 02+bx 0y 0+cy 02 +2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点. [比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b 2 00y x x y ++

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

圆内极点与极线性质简证

圆内极点与极线性质简证 原题 如图,过定点P 作定⊙O 两条动割线P AB 与PCD ,连结AD 与BC ,交于点Q .求证:动点Q 在一条定直线上. 问题1 如图,过点P 作⊙O 两条割线P AB 与PCD ,连结AD 与BC ,交于点Q ,直线PQ 交⊙O 于点E 、F ,点M 为弦EF 的中点.求证:PM PQ PF PE ?=?. 注:要证明的结论等价于 FQ PF EQ PE =,即“内分比=外分比”,也即点P ,E ,Q ,F 构成调和分割。 证法一:在射线PF 上取点M ,使PQ ·PM =P A ·PB =PC ·PD =PE ·PF , 则A ,Q ,M ,B 四点共圆,Q ,C ,D ,M 四点共圆. 因此 ∠BMF =∠BAD ,∠DMF =∠DCB , 因此 ∠BMF =∠FMD ,从而∠BOD =∠BMD , 因此O ,M ,B ,D 四点共圆. 因此 ∠OMD =∠OBD , 又 BOD FMD ∠= ∠2 1 ,OB =OD ,因此 ∠FMD +∠OMD =90° 即OM ⊥MF (另法:将∠OMF 视为圆周角,则其所对的弧由两部分组成一个半圆) 因此 点M 为弦EF 的中点. 证法二:在射线PF 上取点M ,使PQ ·PM =P A ·PB =PC ·PD ,延长DM 交⊙O 于点N .连结OM ,BM ,BN ,EN .

由于 C ,Q ,M ,D 四点共圆,Q ,A ,B ,M 四点共圆. 因此 ∠BQF =∠NDC =∠NBC 因此 NB ∥EF 因此 NE =BF ,∠NEF =∠BFE 又 ∠NME =∠BCD =∠BAD =∠BMF 因此 △NME ≌△BMF (AAS ) 因此 EM =FM ,下略. 证法三:这题可以用“面积正弦法”解决,你可以随便找三角形来构成正弦比. QA PA DE BE QA PA QAE PAE S S EQ PE QAE PAE ?=?∠∠==??sin sin QA PA DF BF QA PA QAF PAF S S FQ PF QAF PAF ?=?∠∠==??sin sin 因此只要证明 DF BF DE BE = ,这可以由下面的推导得到: DF BF AE CE CD AB AE CE QC QA AE CE DPE BPE DE PE PE BE DE BE =?=?=?∠∠=?=sin sin (由∠BAD =∠BCD 得∠P AQ =∠PCQ ) 从而得证. 证法四:设直线PQ 为x 轴,直线AB ,CD ,AD ,BC 方程为0),(1=y x f ,0),(2=y x f , 0),(3=y x f ,0),(4=y x f ;P (p ,0),Q (q ,0),E (e ,0),F (f ,0).

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

圆内极点与极线性质简证

圆内极点与极线性质简证 原题 如图,过定点P 作定⊙O 两条动割线PAB 与PCD ,连结AD 与BC ,交于点Q .求证:动点Q 在一条定直线上. 问题1 如图,过点P 作⊙O 两条割线PAB 与PCD ,连结AD 与BC ,交于点Q ,直线PQ 交⊙O 于点E 、F ,点M 为弦EF 的中点.求证:PM PQ PF PE ?=?. 注:要证明的结论等价于FQ PF EQ PE = ,即“内分比=外分比”,也即点P ,E ,Q ,F 构成调和分 割。 证法一:在射线PF 上取点M ,使PQ ·PM =P A ·PB =PC ·PD =PE ·PF , 则A ,Q ,M ,B 四点共圆,Q ,C ,D ,M 四点共圆. 因此 ∠BMF =∠BAD ,∠DMF =∠DCB , 因此 ∠BMF =∠FMD ,从而∠BOD =∠BMD , 因此O ,M ,B ,D 四点共圆. 因此 ∠OMD =∠OBD , 又 BOD FMD ∠= ∠2 1,OB =OD ,因此 ∠FMD +∠OMD =90° 即OM ⊥MF (另法:将∠OMF 视为圆周角,则其所对的弧由两部分组成一个半圆) 因此 点M 为弦EF 的中点. 证法二:在射线PF 上取点M ,使PQ ·PM =PA ·PB =PC ·PD ,延长DM 交⊙O 于点N .连结OM ,BM ,BN ,EN .

由于 C ,Q ,M ,D 四点共圆,Q ,A ,B ,M 四点共圆. 因此 ∠BQF =∠NDC =∠NBC 因此 NB ∥EF 因此 NE =BF ,∠NEF =∠BFE 又 ∠NME =∠BCD =∠BAD =∠BMF 因此 △NME ≌△BMF (AAS ) 因此 EM =FM ,下略. 证法三:这题可以用“面积正弦法”解决,你可以随便找三角形来构成正弦比. QA PA DE BE QA PA QAE PAE S S EQ PE QAE PAE ? = ? ∠∠= = ??sin sin QA PA DF BF QA PA QAF PAF S S FQ PF QAF PAF ?=?∠∠==??sin sin 因此只要证明 DF BF DE BE =,这可以由下面的推导得到: DF BF AE CE CD AB AE CE QC QA AE CE DPE BPE DE PE PE BE DE BE =?=?=?∠∠= ?=sin sin (由∠BAD =∠BCD 得∠P AQ =∠PCQ ) 从而得证. 证法四:设直线PQ 为x 轴,直线AB ,CD ,AD ,BC 方程为0),(1=y x f ,0),(2=y x f , 0),(3=y x f ,0),(4=y x f ;P (p ,0),Q (q ,0),E (e ,0),F (f ,0).

极点及系统稳定性

极点对系统性能影响 一.控制系统与极点 自动控制系统根据控制作用可分为:连续控制系统和采样控制系统,采样系统又叫离散控制系统。通常把系统中的离散信号是脉冲序列形成的离散系统,称为采样控制系统。连续控制系统即指控制量为连续的模拟量如时变系统。 系统的数学模型一般由系统传递函数表达。传递函数为零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z 变换)与激励(即输入)量的拉普拉斯变换之比。记作Φ(s )=Xo (s )/Xi (s ),其中Xo (s )、Xi (s )分别为输出量和输入量的拉普拉斯变换。 特征方程的根称为极点。如试Φ﹙S ﹚= C [∏(S-Pi )/∏(S-Qi) ]中Q1 Q2 Q3 …… Qi ……即为系统的极点。 二.极点对系统的影响 极点--确定了系统的运动模态;决定了系统的稳定性。下面对连续系统与离散系统分别进行分析: ⑴连续系统 理论分析:连续系统的零极点分布有如下几种形式 设系统函数为: 将H(S)进行部分分式展开: 1n a s -+++

系统冲激响应H(S)的时域特性h(t)随时间衰减的信号分量完全由系统函数H(S)的极点位置决定。每一个极点将决定h(t)的一项时间函数。 稳定性:由上述得知Y(S)= C [∏(S-Pi )/(S-Qi) ]可分解为Y(S)=C1/(S-τ1)+ C2/(S-τ2)+ C3/(S-τ3)+……+ Ci/(S-τi)+…… 则时间响应为 …… 由于特征方程的根不止一个,这时,应把系统的运动看成是多个运动分量的合成。只要有一个运动分量是发散的,则系统是不稳定的。因此,特征方程所有根的实部都必须是负数,亦即所有的根都在复平面的左半平面。 通过复变函数幅角定理将S 由G 平面映射到GH 平面。 如果封闭曲线 F 内有Z 个F(s)的零点,有P 个F(s)的极点,则s 沿 F 顺时针转一圈时,在F(s)平面上,F(s)曲线绕原点顺时针转的圈数R 为z 和p 之差,即R =z -p 。 若R 为负,表示F(s)曲线绕原点逆时针转过的圈数。 F(s)的分母是G0(s)的分母,其极点是G0(s)的极点;其分子是?(s)的分母,即?(s)的特征多项式,其零点是?(s)的极点。 取D 形曲线(D 围线)如图所示,是整个右半复平面。 且设D 曲线不经过F(s)的任一极点或零点。 s 沿D 曲线顺时针变化一周,F(s)顺时针包围原点的周数为: n=z-p=F(s)在右半复平面的零点数(闭环传函在右半复平面极点数) -F(s)在右半复平面的极点数(开环传函在右半复平面极点数) 所以闭环系统稳定的充分必要条件是: n=- p =-开环传函在右半复平面的极点数 1212()n s t s t s t n y t C e C e C e =+++0()0()0()0()t s y t y t Ce y t y t t ααααα=<→?? ===??>→∞? →∞(1)只有一个实根:时,时,恒量时,()()121()0cos()00j t j t t s j y t C e C e C e t t αωαωααωαω?αα+-=±=+? →∞(2)有一对复根:时,收敛时,等幅振荡时,发散

绘制离散系统零极点图.

绘制离散系统零极点图:zplane() 滤波器 绘制离散系统零极点图:zplane() zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜 色来表示。 zplane(B, A) 输入的是传递函数模型,则函数将首先调用root 函数以求出它们的零极点。 [H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。如果有重零极点,它还包括显示在其右上方 的文本句柄。 例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是 wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减 为60dB 程序设计如下: wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=100 00Hz; rp=0.5; rs=60; wp=[wp1,wp2]; ws=[ws1,ws2]; [n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs); [num,den]=ellip(n, rp, rs, wn, 'stop'); [H, W]=freqz(num, den); figure; plot(W*Fs/(2*pi), abs(H)); grid; xlabel('频率/Hz'); ylabel('幅值'); figure; impz(num, den); figure; grpdelay(num, den); figure; zplane(num, den); FREQZ 是计算数字滤波器的频率响应的函数

判断系统稳定性

摘要 现今数字信号处理理论与应用已成为一门很重要的高新科学技术学科,通过功能强大的MATLAB软件与数字信号处理理论知识相互融合在一起,既使我们对数字信号处理的理论知识能够有更加深厚的解也提高了动手能力,实践并初步掌握了MATLAB 的使用。 根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图,由图像的特征从而进一步的对系统进行形象的分析。 本课题中给出了系统函数,对其稳定性进行分析我们可以通过MATLAB画零极图观察极点的分布,另外还可以通过MATLAB分析系统的单位阶跃响应、单位脉冲响应、幅频相频特性的图形更加具体的对系统进行分析。 关键字:离散系统函数、MATLAB、零极点分布、系统稳定性。

一、设计原理 1.设计要求 (1):根据系统函数求出系统的零极点分布图并且判断系统的稳定性。 (2):求解系统的单位阶跃响应,并判断系统的稳定性。 (3):求系统的单位脉冲响应,并判断系统的稳定性 (4):求出各系统频率响应,画出幅频特性和相频特性图(zp2tf,zplane,impz等) 2、系统稳定性、特性分析 进行系统分析时我主要利用MATLAB软件绘制出系统零极点的分布图、单位脉冲响应图、单位阶跃响应图等。采用MATLAB 软件进行设计时我调用了软件本身的一些函数来对课题进行绘图和分析。诸如zplane、impz、stepz、freqz等。 对系统函数的零极图而言:极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。 当极点处于单位圆内,系统的冲激响应曲线随着频率的增大而收敛;当极点处于单位圆上,系统的冲激响应曲线为等幅振荡;当极点处于单位圆外,系统的冲激响应曲线随着频率的增大而发散。 系统的单位阶跃响应若为有界的则系统为稳定系统。由以上的判据配合图形对系统的稳定性进行分析,达到我们的课程要求。 系统函数H(z)的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: (1)系统单位样值响应h(n)的时域特性; (2)离散系统的稳定性; (3)离散系统的频率特性;

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

二阶系统性能改善与稳定性

例1 系统结构图如图所示。求开环增益K分别为10,0.5,0.09时系统的动态性能指标。 计算过程及结果列表 K 计算 10 0.5 0.09 开环 传递 函数 )1 ( 10 ) ( 1+ = s s s G )1 ( 5.0 ) ( 2+ = s s s G )1 ( 09 .0 ) ( 3+ = s s s G 闭环 传递 函数10 10 ) ( 2 1+ + = Φ s s s 5.0 5.0 ) ( 2 2+ + = Φ s s s 09 .0 09 .0 ) ( 2 3+ + = Φ s s s 特征 参数 ? ? ? ?? ? ? ? = = = ? = = = 81 arccos 158 .0 16 .3 2 1 16 .3 10 ξ β ξ ω n ? ? ? ?? ? ? ? = = = ? = = = 45 arccos 707 .0 707 .0 2 1 707 .0 5.0 ξ β ξ ω n ?? ? ? ? = ? = = = 67 .1 3.0 2 1 3.0 09 .0 ξ ω n 特征 根 12 .3 5.0 2,1 j ± - = λ5.0 5.0 2,1 j ± - = λ ? ? ? - = - = 9.0 1.0 2 1 λ λ ? ? ? = = 11 .1 10 2 1 T T 动态 性能 指标 2 2 1 00 00 1.01 1 60.4 3.5 3.5 7 0.5 p n s n t e t ξπξ π ξω σ ξω -- ? == ? - ? ? == ? ? ?=== ? ? ? ? ? ? ? ? ? ? ? = = = = = - = - - 7 5.3 5 238 .6 1 1 2 2 n s n p t e t ξω σ ω ξ π ξ ξπ() 1221 11 9 31 ,0 s s p T T t t T T t λλ σ ?== ? =?= ? ?=∞= ?

信号与系统_——零极点及稳定性响应

实验七、系统极零点及其稳定性 三、已知下列传递函数H(s)或H(z),求其极零点,并画出极零图。 1. b=[3 -9 6]; a=[1 3 2]; zplane(b,a) 2. b=[1]; a=[1 0]; zplane(b,a)

3. b=[1 0 1]; a=[1 2 5]; zplane(b,a)

4. b=[1.8 1.2 1.2 3]; a=[1 3 2 1]; zplane(b,a) 五、求出系统的极零点,判断系统的稳定性。 5、先求出分子分母多项式系数 >> syms s >> zs=100*s*(s+2)^2*(s^2+3*s+2)^2; >> expand(zs) ans = 100*s^7+1000*s^6+4100*s^5+8800*s^4+10400*s^3+6400*s^2+1600*s >> syms s >> ps=(s+1)*(s-1)*(s^3+3*s^2+5*s+2)*((s^2+1)^2+3)^2; >> expand(ps) ans = -32-80*s-48*s^2+8*s^4-16*s^3+28*s^6+20*s^5+44*s^7+30*s^8+s^13+8*s^11+23*s^9+3*s^12 +11*s^10 再求出极零点 b=[100 1000 4100 8800 10400 6400 1600 0]; a=[1 3 8 11 23 30 44 28 20 8 -16 -48 -80 -32];

[z,p]=tf2zp(b,a) 求解结果: z = -2.0005 + 0.0005i -2.0005 - 0.0005i -1.9995 + 0.0005i -1.9995 - 0.0005i -1.0000 + 0.0000i -1.0000 - 0.0000i p = 1.0000 0.7071 + 1.2247i 0.7071 - 1.2247i 0.7071 + 1.2247i 0.7071 - 1.2247i -1.2267 + 1.4677i -1.2267 - 1.4677i -0.7071 + 1.2247i -0.7071 - 1.2247i -0.7071 + 1.2247i -0.7071 - 1.2247i -1.0000 -0.5466 极点不是都在左半平面,因此系统不稳定。 6、clear all; clc; num=conv([1 -1.414 1],[1 1]); den=conv([1 0.9 0.81],[1 -0.3]); [z,p]=tf2zp(num,den) zplane(z,p); z = -1.0000 0.7070 + 0.7072i 0.7070 - 0.7072i

解析几何中极点与极线知识的现状与应用研究

解析几何中极点与极线知识的现状与应用研究 王文彬 极点与极线是圆锥曲线内在的几何特征,在解析几何中必然有所反映,有所体现.现将具体研究结果报告如下: §1.极点与极线的定义 1.1 几何定义 如图,P 是不在圆锥曲线上的点,过P 点引 两条割线依次交圆锥曲线于四点,,,E F G H ,连接,EH FG 交于N ,连接,EG FH 交于M ,则直线MN 为点P 对应的极线. 若P 为圆锥曲线上的点,则过P 点的切线即为极线. 由图1可知,同理PM 为点N 对应的极线,PN 为点 M 所对应的极线.MNP 称为自极三点形.若连接MN 交圆锥曲线于 点,A B ,则,PA PB 恰为圆锥曲线的两条切线. 事实上,图1也给出了两切线交点P 对应的极线的一种作法. 1.2 代数定义 已知圆锥曲线22 :220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线 0000:()()0l A x x C y y D x x E y y F ++++ ++=是圆锥曲线Γ的一对极点和极线. 事实上,在圆锥曲线方程中,以0x x 替换2 x ,以02 x x +替换x (另一变量y 也是如此) 即可得到点00(,)P x y 极线方程. 特别地: (1)对于椭圆22 221x y a b +=,与点00(,)P x y 对应的极线方程为00221x x y y a b +=; (2)对于双曲线22 221x y a b -=,与点00(,)P x y 对应的极线方程为00221x x y y a b -=; (3)对于抛物线2 2y px =,与点00(,)P x y 对应的极线方程为00()y y p x x =+. §2.极点与极线的基本结论 定理1 (1)当P 在圆锥曲线Γ上时,则极线l 是曲线Γ在P 点处的切线; (2)当P 在Γ外时,则极线l 是曲线Γ从点P 所引两条切线的切点所确定的直线(即切点 弦所在直线); (3) 当P 在Γ内时,则极线l 是曲线Γ过点P 的割线两端点处的切线交点的轨迹. 证明:假设同以上代数定义,对22:220Ax Cy Dx Ey F Γ++++=的方程,两边求 导得22220Ax Cyy D Ey ''+++=,解得Ax D y Cy E +'=-+,于是曲线Γ在P 点处的切线斜率 为00Ax D k Cy E +=-+,故切线l 的方程为0000()Ax D y y x x Cy E +-=--+,化简得 220000000Ax x Cy y Ax Cy Dx Ey Dx Ey +--++--=,又点P 在曲线Γ上,故有220000220Ax Cy Dx Ey F ++++=,从中解出2200Ax Cy +,然后代和可得曲线Γ在P 点 图1

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析 主要内容: 自动控制系统稳定性和稳态性能分析上机实验 目的与要求: 熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析 一 实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二 实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 (2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。 只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。 2、稳态误差分析 (1)已知如图所示的控制系统。其中2(5)()(10) s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。 从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示: (2)若将系统变为I 型系统,5()(10) G s s s =+,在阶跃输入、斜坡输入和加速度信

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应 和频率响应会造成很大影响。以下对于零极点的分布研究均是对于开环传递函 数。 零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。 在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。 在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90o。非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。 在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。 在s右半平面增加极点会导致系统不稳定。 最小相位系统 从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节. 对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点. 最小相位系统具有如下性质: 1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然. 2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然. 3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.

滤波器稳定性与极点

在数字信号处理中,系统的稳定性是一个很重要的问题,比如说在滤波器的设计中,都要求系统必须稳定,否则是无法使用的。那么,如何判断系统是否稳定呢? 从定义上说,如果输入有界,则输出必定有界的系统是稳定的。从数学上可以推导出,因果系统冲击响应Z变换的收敛域包含单位圆的系统是稳定的。从零点极点的角度,则是系统函数的所有极点都在单位圆内的系统是稳定的。如何来理解呢? 我们先以一个简单的单极点系统为例来理解系统的稳定性。比如有一个单极点系统: H(z)=1/(1-2z-1) 表示的是如下的如下的信号处理过程:系统当前输出是当前的输入加上2倍的系统上一时刻输出之和。这个系统是不稳定的,因为当前输出需要放大上一个时刻的输出,这也就是说,系统存在的自激的过程,直观上我们就可以很好地理解,自激系统是不稳定的。从分析极点的角度看,这个系统的极点为2,在单位圆外,与数学上的分析是一致的。极点在单位圆内的要求,对一阶极点而言,实际上也就是直观上要求系统不能自激。 对于高阶极点的情况,由代数学可知,高阶极点可进行分式的分解,也即是高阶极点可以分解成多个一阶极点并联而成的系统,在并联系统中,只要有一个系统不稳定,整个系统就是不稳定的。这与数学上要求的所有极点都在单位圆内是对应的。对于更一般的既包含零点又包含极点的系统,可以看成一个全零点系统和全极点系统串接而成,零点与系统的稳定性无关,分析和结论与高阶全极点系统完全一致。 在滤波器的设计中,可以很方便地通过调整极点改变滤波器的特性。而在许多设计精巧的滤波器中,极点往往在单位圆上或单位圆附近,在实际中还要考虑量化及数的精度等问题,确保系统的稳定性。

圆内极点与极线性质简证

圆内极点与极线性质简证 原题 如图,过定点P 作定⊙O 两条动割线P AB 与PCD ,连结AD 与BC ,交于点Q .求证:动点Q 在一条定直线上. 问题1 如图,过点P 作⊙O 两条割线P AB 与PCD ,连结AD 与BC ,交于点Q ,直线PQ 交⊙O 于点E 、F ,点M 为弦EF 得中点.求证:PM PQ PF PE ?=?. 注:要证明得结论等价于 FQ PF EQ PE =,即“内分比=外分比”,也即点P ,E ,Q ,F 构成调与分割。 证法一:在射线PF 上取点M ,使PQ ·PM =P A ·PB =PC ·PD =PE ·PF , 则A ,Q ,M ,B 四点共圆,Q ,C ,D ,M 四点共圆. 因此 ∠BMF =∠BAD ,∠DMF =∠DCB , 因此 ∠BMF =∠FMD ,从而∠BOD =∠BMD , 因此O ,M ,B ,D 四点共圆. 因此 ∠OMD =∠OBD , 又 BOD FMD ∠= ∠2 1 ,OB =OD ,因此 ∠FMD +∠OMD =90° 即OM ⊥MF (另法:将∠OMF 视为圆周角,则其所对得弧由两部分组成一个半圆) 因此 点M 为弦EF 得中点. 证法二:在射线PF 上取点M ,使PQ ·PM =P A ·PB =PC ·PD ,延长DM 交⊙O 于点N .连结OM ,BM ,BN ,EN .

由于 C ,Q ,M ,D 四点共圆,Q ,A ,B ,M 四点共圆. 因此 ∠BQF =∠NDC =∠NBC 因此 NB ∥EF 因此 NE =BF ,∠NEF =∠BFE 又 ∠NME =∠BCD =∠BAD =∠BMF 因此 △NME ≌△BMF (AAS ) 因此 EM =FM ,下略. 证法三:这题可以用“面积正弦法”解决,您可以随便找三角形来构成正弦比 . QA PA DE BE QA PA QAE PAE S S EQ PE QAE PAE ?=?∠∠==??sin sin QA PA DF BF QA PA QAF PAF S S FQ PF QAF PAF ?=?∠∠==??sin sin 因此只要证明 DF BF DE BE = ,这可以由下面得推导得到: DF BF AE CE CD AB AE CE QC QA AE CE DPE BPE DE PE PE BE DE BE =?=?=?∠∠=?=sin sin (由∠BAD =∠BCD 得∠P AQ =∠PCQ ) 从而得证. 证法四:设直线PQ 为 x 轴,直线AB ,CD ,AD ,BC 方程为 0),(1=y x f ,0),(2=y x f ,0),(3=y x f ,0),(4=y x f ;P (p ,0),Q (q ,0),E (e ,0),F (f ,0)、

相关文档
相关文档 最新文档