文档库 最新最全的文档下载
当前位置:文档库 › 测量误差及其合成

测量误差及其合成

测量误差及其合成
测量误差及其合成

目录

一、测量误差及分类 (2)

1.1测量误差概述 (2)

1.2 测量误差分类 (2)

二、测量误差的合成 (5)

2.1 随机误差的合成 (5)

2.2 系统误差的合成 (7)

2.3 系统误差与随机误差的合成 (11)

测量误差及误差合成

一、测量误差及分类

1.1测量误差概述

测量工作中,尽管观测者按照规定的操作要求认真进行观测,但在同一量的各观测值之间,或在各观测值与其理论值之间仍存在差异。例如,对某一三角形的三个内角进行观测,其和不等于180°;又如所测闭合水准路线的高差闭合差不等于零等,这说明观测值中包含有观测误差。研究观测误差的来源及其规律,采取各种措施消除或减小其误差影响,是测量工作者的一项主要任务。

观测误差产生的原因主要有以下三个方面:

1.观测者

由于观测者感觉器官鉴别能力有一定的局限性,在仪器安置、照准、读数等方面都产生误差。同时观测者的技术水平、工作态度及状态都对测量成果的质量有直接影响。

2.测量仪器

每种仪器有一定限度的精密程度,因而观测值的精确度也必然受到一定的限度。同时仪器本身在设计、制造、安装、校正等方面也存在一定的误差,如钢尺的刻划误差、度盘的偏心等。

3.外界条件

观测时所处的外界条件,如温度、湿度、大气折光等因素都会对观测结果产生一定的影响。外界条件发生变化,观测成果将随之变化。

述三方面的因素是引起观测误差的主要来源,因此把这三方面因素综合起来称为观测条件。观测条件的好坏与观测成果的质量有着密切的联系。

1.2 测量误差分类

观测误差按其对观测成果的影响性质,可分为系统误差和随机误差两种。

(1)系统误差

在相同的观测条件下作一系列观测,若误差的大小及符号表现出系统性,或按一定的规律变化,那么这类误差称为系统误差。例如,用一把名义为30m长、而实际长度为30.02m的钢尺丈量距离,每量一尺段就要少量2cm,该2cm误差在数值上和符号上都是固定的,且随着尺段的倍数呈累积性。系统误差对测量成果影响较大,且一般具有累积性,应尽可能消除或限制到最小程度,其常用的处理方法有:

1.检校仪器,把系统误差降低到最小程度。

2.加改正数,在观测结果中加入系统误差改正数,如尺长改正等。

3.采用适当的观测方法,使系统误差相互抵消或减弱,如测水平角时采用盘左、盘右现在每个测回起始方向上改变度盘的配置等。

(2)随机误差

在相同的观测条件下作一系列观测,若误差的大小及符号都表现出偶然性,即从单个误差来看,该误差的大小及符号没有规律,但从大量误差的总体来看,具有一定的统计规律,这类误差称为偶然误差或随机误差。例如用经纬仪测角时,测角误差实际上是许多微小误差项的总和,而每项微小误差随着偶然因素影响不断变化,因而测角误差也表现出随机性。对同一角度的若干次观测,其值不尽相同,观测结果中不可避免地存在着随机误差的影响。

随机误差是由多种因素综合影响产生的,观测结果中不可避免地存在偶然误差,因而随机误差是误差理论主要研究的对象。就单个随机误差而言,其大小和符号都没有规律性,呈现出随机性,但就其总体而言却呈现出一定的统计规律性,

图1 频率直方图

并且是服从正态分布的随机变量。即在相同观测条件下,大量随机误差分布表现出一定的统计规律性。

图2正态分布曲线

1.在一定的观测条件下,随机误差的绝对值不会超过一定的限值;

2.绝对值较小的误差比绝对值大的误差出现的概率大;

3.绝对值相等的正、负误差出现的概率相同;

4.同一量的等精度观测,其偶然误差的算术平均值,随着观测次数的无限增加而趋近于零,即

[]l i m 0

x n →∞?= 除上述两类误差之外,还可能发生错误,也称粗差,如读错、记错等。这主要是由于粗心大意而引起。一般粗差值大大超过系统误差或偶然误差。粗差不属于误差范畴,不仅大大影内测量成果的可靠性,甚至造成返工。因此必须采取适当的方法和措施,杜绝错误发生。

二、测量误差的合成

检测系统往往由若干个环节组成,测量过程往往包含有若干个环节,各个环节都存在着误差因素。任何测量结果都包含有一定的测量误差,这是检测系统或测量过程各个环节一系列误差因素共同影响的综合结果。各个环节的误差因素称为单项误差。根据各单项误差来确定测量结果的总误差,这就是误差的合成。

2.1 随机误差的合成

随机误差用测量的标准差或极限误差来表征,随机误差的合成分为标准差的合成与极限误差的合成两种情况来讨论。

1.标准差的合成

根据对随机变量求标准差的方法,标准差的合成一般采用方和根法,同时要考虑误差传递系数以及各单项误差之间的相关性影响。设共有q 个单项随机误差,它们的标准差分别为σ1、σ2、…、σq ,其对应的传递系数分别为a 1、a 2、…、a q 。这些传递系数由测量的具体情况来确定,对间接测量可按公式求得,对直接测量则根据各个误差因素对测量结果的影响情况来确定。

按方和根法合成的总标准差为

σ= (2-1) 式中,ρij 为任意两单项随机误差之间的相关系数。

一般情况下,各个单项随机误差互不相关,相关系数ρij =0,则有

σ= (2-2)

当各个单项随机误差传递系数均为1,且各个单项随机误差互不相关,相关系数ρij =0,则有

σ= (2-3)

用标准差合成有明显的优点,不仅简单方便,而且无论各单项随机误差的概率分布如何,只要给出各个标准差,均可按式(2-1)或式(2-2)、式(2-3)计算总标准差。

2.极限误差的合成

在实际测量中,各个单项随机误差和测量结果的总随机误差也常以极限误差的形式来表示。

用极限误差来表示随机误差,有明确的概率意义。一般情况下,各个单项随机误差服从的分布不同,各个单项极限误差的置信概率也不同,因而有不同的置信系数。设各单项极限误差为

1,2,,i i i t i q δσ=±= (2-4)

式中,σi 为各单项随机误差的标准差,t i 为各单项极限误差的置信系数。

总极限误差为

t δσ=± (2-5) 式中,σ为合成的总标准差,t 为总极限误差的置信系数。

综合式(2-4)、式(2-5)和式(2-1),可得合成的总极限误差为

δ=± (2-6) 式中,ρij 为任意两单项随机误差之间的相关系数。

根据已知的各单项极限误差和相应的置信系数,即可按式(2-6)进行极限误差的合成。但必须注意到,式(2-6)中的各个置信系数,不仅与置信概率有关,而且与随机误差服从的分布有关。对于服从相同分布的随机误差,选定相同的置信概率,其相应的各个置信系数相同;对于服从不同分布的随机误差,即使选定相同的置信概率,其相应的各个置信系数也不相同。由此可知,式(2-6)

中的各个单项极限误差的置信系数,一般来说并不相同。合成的总极限误差的置信系数t,一般来说与各个单项极限误差的置信系数也不相同。当单项随机误差的数目q较多时,合成的总极限误差接近于正态分布,因此合成的总极限误差的置信系数t可按正态分布来确定。

当各个单项随机误差均服从正态分布时,各个单项极限误差与总极限误差选定相同的置信概率,其相应的各个置信系数相同,即t1=t2=…=t q=t,式(2-6)可简化为

δ=(2-7)

一般情况下,各个单项随机误差互不相关,相关系数ρij=0,式(2-7)可简化为

δ=(2-8)当各个单项随机误差传递系数均为1,且各个单项随机误差互不相关,相关系数ρij=0,则有

δ=(2-9)式(2-8)和式(2-9)均具有十分简单的形式,由于在实际测量中各个单项随机误差大多服从正态分布或近似服从正态分布,而且它们之间常是互不相关或近似不相关,因此式(2-8)和式(2-9)均是较为广泛应用的极限误差合成公式。在实际应用时,应注意式(2-8)和式(2-9)的使用条件。

2.2 系统误差的合成

系统误差具有确定的变化规律,不论其变化规律如何,根据对系统误差的掌握程度,可分为已定系统误差和未定系统误差。由于这两种系统误差的特征不同,其合成方法也不相同。

1.已定系统误差的合成

已定系统误差是指误差大小和方向均已确切掌握了的系统误差。对于已定系统误差,在处理测量结果时可根据各单项系统误差和其传递系数,按代数和法合

成。

在测量过程中,若有r 个单项已定系统误差,其误差值分别为△1,△2,…,△r ,相应的误差传递系数为a 1,a 2,…,a r ,则按代数和法进行合成,求得总的已定系统误差为

1r

i i i a =?=?∑ (2-10)

在实际测量中,有不少已定系统误差在测量过程中均已消除,由于某些原因末予消除的已定误差也只是有限的少数几项,它们按代数和法合成后,还可以从测量结果中修正,因此,最后的测量结果中一般不再包含有已定系统误差。

2.未定系统误差的合成

(1)未定系统误差的特征及其评定

未定系统误差是指误差大小和方向未能确切掌握,或不必花费过多精力去掌握,而只需估计出其不致超过某一极限范围±e i 的系统误差。也就是说,在一定条件下客观存在的某一系统误差,一定是落在所估计的误差区间(-e i ,e i )内的一个取值。当测量条件改变时,该系统误差又是误差区间(-e i ,e i )内的另一个取值。而当测量条件在某一范围内多次改变时,未定系统误差也随之改变,其相应的取值在误差区间(-e i ,e i )内服从某一概率分布。对于某一单项未定系统误差,其概率分布取决于该误差源变化时所引起的系统误差的变化规律。理论上此概率分布是可知的,但实际上常常较难求得。目前对未定系统误差的概率分布,均是根据测量实际情况的分析与判断来确定的,并采用两种假设:一种是按正态分布处理;另一种是按均匀分布处理。但这两种假设,在理论上与实践上往往缺乏根据,因此对未定系统误差的概率分布尚属有待于作进一步研究的问题。未定系统误差的极限范围±e i 称为未定系统误差的误差限。对于某一单项未定系统误差的误差限,是根据该误差源具体情况的分析与判断而做出估计的,其估计结果是否符合实际,往往取决于对误差源具体情况的掌握程度以及测量人员的经验和判断能力。

未定系统误差在测量条件不变时有一恒定值,多次重复测量时其值固定不变,因而不具有抵偿性,利用多次重复测量取算术平均值的办法不能减小它对测量结果的影响,这是它与随机误差的重要差别。但当测量条件改变时,由于未定

系统误差的取值在某一极限范围内具有随机性,并且服从一定的概率分布,这些特征均与随机误差相同,因而评定它对测量结果的影响也应与随机误差相同,即采用标准差或极限误差来表征未定系统误差取值的分散程度。

现以质量的标准器具──砝码为例来说明未定系统误差的特征及其评定。在质量计量中,砝码的质量误差将直接带入测量结果。为了减小这项误差的影响,应对砝码质量进行检定,以便给出其修正值。由于不可避免地存在砝码质量的检定误差,经修正后的砝码质量误差虽已大为减小,但仍有一定误差,因而影响质量的计量结果。对某一个砝码,一经检定完成,其修正值即已确定不变,由检定方法引入的误差也就被确定下来了,其值为检定方法极限误差范围内的一个随机取值。使用这一个砝码进行多次重复测量时,由检定方法引入的误差则为恒定值而不具有抵偿性。但这一误差的具体数值又未掌握,而只知其极限范围,因此属于未定系统误差。对于同一质量的多个不同的砝码,相应的各个修正值的误差为某一极限范围内的随机取值,其分布规律直接反映了检定方法误差的分布。反之,检定方法误差的分布也就反映了各个砝码修正值的误差分布规律。若检定方法误差服从正态分布,则砝码修正值的误差也应服从正态分布,而且两者具有同样的标准差s i。若用极限误差来评定砝码修正值的误差,则有e i=±t i s i。

从上述实例分析可以看出,这种未定系统误差是较为普遍的。一般来说,对一批量具、仪器和设备等在加工、装调或检定中,随机因素带来的误差具有随机性。但对某一具体的量具、仪器和设备,随机因素带来的误差却具有确定性,实际误差为一恒定值。若尚未掌握这种误差的具体数值,则这种误差属于未定系统误差。

由于未定系统误差的取值具有随机性,并且服从一定的概率分布,因而若干项未定系统误差综合作用时,它们之间就具有一定的抵偿作用。这种抵偿作用与随机误差的抵偿作用相似,因而未定系统误差的合成完全可以采用随机误差的合成公式,这就给测量结果的处理带来很大方便。对于某一项误差,当难以严格区分为随机误差或未定系统误差时,因不论作为哪一种误差来处理,最后总误差的合成结果均相同,故可将该项误差任作一种误差来处理。

未定系统误差的总误差可以用标准差来表示,也可以用极限误差来表示。

(2)未定系统误差标准差的合成

在测量过程中,若有p 个单项未定系统误差,其标准差分别为s 1,s 2,…,s p ,相应的误差传递系数为a 1,a 2,…,a p ,则按方和根法进行合成,求得总的未定系统误差为

s = (2-11) 一般情况下,各个单项未定系统误差互不相关,相关系数ρij =0,式(2-11)可简化为

s = (2-12)

当各个单项未定系统误差传递系数均为1,且各个单项未定系统误差互不相关,相关系数ρij =0,则有

s = (2-13)

(3)未定系统误差极限误差的合成

各个单项未定系统误差的极限误差为

1,2,,i i i e t s i p =±= (2-14)

式中,s i 为各单项未定系统误差的标准差,t i 为各单项极限误差的置信系数。

总的未定系统误差的极限误差为

e t s =± (2-15) 式中,s 为合成的总标准差,t 为总的未定系统误差的极限误差的置信系数。

综合式(2-14)、式(2-15)和式(2-11),可得总的未定系统误差的极限误差为

e =± (2-16) 式中,ρij 为任意两单项未定系统误差之间的相关系数。

当单项未定系统误差的数目p 较多时,合成的总极限误差接近于正态分布,因此合成的总极限误差的置信系数t 可按正态分布来确定。

当各个单项未定系统误差均服从正态分布时,各个单项极限误差与总极限误差选定相同的置信概率,其相应的各个置信系数相同,即t 1=t 2=…=t p =t ,式

(2-16)可简化为

e=(2-17)

一般情况下,各个单项未定系统误差互不相关,相关系数ρij=0,式(2-17)可简化为

e=(2-18)当各个单项未定系统误差传递系数均为1,且各个单项未定系统误差互不相关,相关系数ρij=0,则有

e=(2-19)

2.3 系统误差与随机误差的合成

以上分别讨论了随机误差、已定系统误差和未定系统误差的误差合成问题,当测量过程中存在着多项随机误差、已定系统误差和未定系统误差时,应将它们进行综合,以求得最后测量结果的总误差。测量结果的总误差常用极限误差来表示,也可用标准差来表示。

1.按标准差合成

若用标准差来表示测量结果的总误差,由于在一般情况下已定系统误差可以从测量结果中修正,因此只需考虑未定系统误差与随机误差的合成问题。

若在测量过程中有p个单项未定系统误差,它们的标准差分别为s1,s2,…,s p;有q个单项随机误差,它们的标准差分别为σ1,σ2,…,σq。为计算方便,设各个单项误差传递系数均为1,则测量结果的总标准差为

σ=(2-20)

式中,R为各个误差间协方差之和。

当各个误差间互不相关时,各个误差间协方差为零,则式(2-20)可简化为

σ=(2-21)

差。对多次重复测量,由于随机误差具有抵偿性,而系统误差则固定不变,因此总标准差合成公式中的随机误差项应除以重复测量次数n ,即测量结果平均值的总标准差为

σ= (2-22) 比较式(2-21)和式(2-22)可知,对于单次测量的总标准差合成中,不需严格区分各个单项误差是未定系统误差还是随机误差;而对于多次重复测量的总标准差合成中,则必须严格区分各个单项误差是未定系统误差还是随机误差。

2.按极限误差合成

若在测量过程中有r 个单项已定系统误差,它们的误差值分别为△1,△2,…,△r ;有p 个单项未定系统误差,它们的极限误差分别为e 1,e 2,…,e p ;有q 个单项随机误差,它们的极限误差分别为δ1,δ2,…,δq 。为计算方便,设各个单项误差传递系数均为1,则测量结果的总极限误差为

1r i i δ==?±∑ (2-23)

式中,R 为各个误差间协方差之和;t 为总极限误差的置信系数。当单项误差的数目较多时,合成的总极限误差接近于正态分布,因此总极限误差的置信系数t 可按正态分布来确定。

在一般情况下,已定系统误差可以从测量结果中修正,修正后,测量结果的总极限误差为

δ=± (2-24)

当各个单项误差均服从正态分布时,各个单项极限误差与总极限误差选定相同的置信概率,其相应的各个置信系数相同,式(2-24)可简化为

δ= (2-25)

当各个单项误差间互不相关时,各个单项误差间协方差为零,则有

δ= (2-26)

的总极限误差。对多次重复测量,由于随机误差具有抵偿性,而系统误差则固定不变,因此总极限误差合成公式中的随机误差项应除以重复测量次数n,即测量结果平均值的总极限误差为

δ=(2-27)比较式(2-26)和式(2-27)可知,对于单次测量的总极限误差合成中,不需严格区分各个单项误差是未定系统误差还是随机误差;而对于多次重复测量的总极限误差合成中,则必须严格区分各个单项误差是未定系统误差还是随机误差。

测量误差的分类1

测量误差的分类,表示方法及检测仪表的品质指标 测量误差: 定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。 (2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。 (3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。 表示方法: 式中△ —— 绝对误差 X ——被校表的读数值 X 0——标准表的读数值 Λ——仪表在X 0相对误差 检测仪表的品质指标: 常见的指标简介如下: (1)检测仪表的准确度(精确度) б={△max/(标尺上限值-标尺下限值)}×100% б——相对百分误差 △max ——绝对误差 允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即 б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100% б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。 (2)检测仪表的恒定度 恒定度常用变差(回差)来表示 变差={最大绝对差值/(标尺上限值-标尺下限值) }×100% (3)灵敏度与灵敏限 S=Δα/Δx 式中S——仪表灵敏度 Δα——指针的线位移或角位移 Δx——引起Δα所需的被测参数变化量 (4)反应时间 仪表反应时间的长短,实际上反映了仪表动态特征的好坏。 (5)线性度 线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。 线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即 б?=(△?max /仪表量程)×100% 式中б?——线性度(非线性误差) Δ?max——标定曲线对理论拟合直线的最大偏差 (6)重复性 重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。 бz =(Δz max/仪表量程)×100% 式中бz——重复性误差 Δz max—同方向多次测量时仪表表示值得最大偏差值

建筑施工中的工程测量及误差控制分析 高峰

建筑施工中的工程测量及误差控制分析高峰 发表时间:2019-03-21T11:41:10.077Z 来源:《防护工程》2018年第34期作者:高峰 [导读] 在科学技术日新月异的当下,多种数字化、自动化技术被运用到建筑工程测量之中。 泗阳县方圆测绘有限公司江苏宿迁 223800 摘要:在科学技术日新月异的当下,多种数字化、自动化技术被运用到建筑工程测量之中。施工企业要顺应时代发展形势,合理运用各种现代化仪器设备,提升测量人员的综合能力,掌握科学高效的建筑测量技术,以彰显工程测量在建筑工程施工的价值,有效控制测量误差。 关键词:建筑施工;工程测量;误差原因;控制措施 引言 对于影响工程测量精准度的原因及控制对策研究,首先分析影响工程测量精准度的主要原因,从大的角度出发以影响测量精准度的因素作为控制方向,提出相应的控制对策,切实加强对工程测量的建设。在管理当中立足于现状,用科学的控制对策减少测量误差的出现,同时加强对测量设备的维护和检修,保障工程测量工作稳定开展,提高工程测量的实际精准度。 1工程测量的含义 工程测量的工作内容非常丰富,一般主要包括线路测量,定位以及检测三大部分,每一部分的工作都需要认真做好。完整的工程测量定义指的是建筑工程前期勘测、中期施工以及后期检测的全过程。通过将整个工程的施工工作,分成前、中、后三个阶段,对工程进行精细化分工,以此保证各个施工环节工作的精确性。工程测量工作贯穿于工程的各个环节,包括勘测环节测量、施工环节测量以及检测运营环节测量,建筑工程中的测量工作是为其他工作所服务的,对于其他工作具有指示性作用,可以保证建筑工程施工工作的顺利进行。这对于工程测量的工作人员提出了更高的要求,建筑测量人员要不断提高自身的专业知识和实际的工作技能,具有足够的实际工程测量工作经验,具有应对突发状况的能力,可以在实际工作中将理论知识应用到实际工作中。 2建筑施工中产生测量误差的主要原因 2.1自然原因 工程测量工作在建设工程前期的作用最为明显,建设工程的前期需要对工程施工地点进行实时勘察,而施工地点特殊的环境、不同的气候、复杂的地貌以及交通环境会对工程测量的准确性造成严重的影响。以地形为例,人为因素对地形的改变是微小的,实际的建筑工程往往受特殊地形的影响较大。特殊的地势地貌在自然环境下,降雨降雪、昼夜温差等都会影响工程测量结果的准确性。 2.2人为因素 人为因素对工程测量精准度的影响是工程测量当中的重要部分,其中,工程测量本就是需要以人力作为工作的核心开展的测量工作,其参与者本身的综合素质将直接影响工程测量的整体精准度。例如,在建筑工程的工程测量工作当中,部分测量人员对测量的新型设备和新型技术认识不全面,导致实际测量工作当中不能够发挥新技术、新设备的优势,相应的工程测量的精准度也没有较大的提高,导致工程测量整体质量不高,不能够为建筑工程提供准确的测量数据。此外,一些工作人员对于地形较特殊的地区的工作认真度不够,也是造成建筑工程测量数据准确度较差的主要原因之一。工作人员对于一些施工较复杂的实地测量工作还是按照对一般建筑测量的手段开展测量工作,没有考虑到地形高度、长度、面积等因素的差异,导致建筑测量收集的数据和实地的数据相差较大,导致建筑规划设计工作的设计缺乏正确的数据支持,决策不科学,严重导致建筑质量低下甚至出现返工的情况。 2.3设备因素 (1)设备本身的误差。设备因素对工程测量精准度的影响在于设备本身的精准度和操作方面。实际的工程测量工作当中,其测量设备避免不了存在机械自身的误差,进而会对工程测量的精准度造成一定影响。而伴随着测量设备的长久使用,恶劣的施工环境对设备造成一定影响,导致设备老化、磨损严重,加剧设备本身磨损的出现,更加剧设备误差的出现。(2)设备检修和保养。工程测量的设备缺乏定期的检修也是影响测量精准度的重要因素,在恶劣施工环境的影响下测量设备需要定期进行规范化的检修和保养,一些超出使用年限的设备存在较大的测量误差隐患,没有规范化的检修制度将会造成工程测量工作的随意性,不能保障建筑工程实地数据的准确性。(3)设备操作的因素。设备操作上的不规范也会对最终的工程测量数据精确度造成严重的影响。其中,由于测量工程的特殊性,一些工程需要快速完成测量工作,测量工作人员在运送和使用测量设备时,不注重对设备的保护导致设备在运送和使用当中出现暴力使用的现象,设备本身的使用寿命受到一定影响,测量的精准度也有所下降。例如,GPS的测量方法其本身就存在一定的误差,如表1所示,GPS作为平面控制测量但那个中的一种,其等级不同相对的误差也就不同。 3建筑施工中工程测量及误差控制的有效对策 3.1关于控制网测量误差的有效控制措施 在建筑工程测量环节,相关工作人员在开展平面控制网测定时,要将以下工作落实到位。第一,在实地勘察施工现场周围环境之后,选择最为适宜的地理位置作为控制点,所选择位置点的高程须符合现场观测的实际要求。第二,在开展控制网测量之前,相关工作人员要严格遵守相关规章制度,预先检查仪器设备,确保仪器设备造成的误差在法定范围内,方能将相关仪器设备运用到测量工作中。反之,若仪器设备的误差值超出相应范围,不仅会耗费大量人力物力财力,还会影响测量结果的准确性,给后续施工造成负面影响。第三,在开展工程测量的进程中,相关工作人员要在相应仪器设备的辅助下开展测量工作,遵循仪器、观测员、观测线路三固定的原则,在此基础上落实测量工作,以保障测量数据的精准性。第四,在开展控制网测定工作时,要依据测量要求,选择温差变化偏小的侧测量地点,以推进测量工作的有序进行。 3.2关于放样工作的质量控制 影响建筑工程施工质量的因素有很多,而放样施工便是其中极为关键的因素。若放样施工的误差值过大,则会加大建筑工程出现施工

测绘学基础知识要点与习题答案

《测绘学基础》知识要点与习题答案 Crriculum architecture & answers to exercise of Fundamentals of Geomatics 总学时数:测绘64;地信、规划48实验学时:12,计4次学分:6/4 课程性质:专业基础课先修课程:高等数学,专业概论,概率统计学 教学语言:双语教学考核方式:考试实习:3周计3学分 平时成绩: 20%(实验报告、提问、测验、课堂讨论及作业) 1.课程内容 测绘学基础是测绘科学与技术学科的平台基础课。该分支学科领域研究的主要内容是小区域控制测量、地形图测绘与基本测绘环节的工程与技术,即:应用各类测绘仪器进行各种空间地理数据的采集包括点位坐标与直线方位测定与测设、地形图数字化测绘等外业工作和运用测量误差与平差理论进行数据处理计算、计算机地图成图等内业工作。授课内容主要包括地球椭球与坐标系、地图分幅、空间点位平面坐标与高程及直线方位测定与测设、误差理论与直接平差、大比例尺地形图数字成图等基本理论与方法。 2.课程特色 测绘学基础为测绘学科主干课程,为学生进一步学习以“3S”为代表的大地测量学、摄影测量学、工程测量学等专业理论与技术奠定基础。同时,该课程本身也是测绘学的一门分支学科──地形测量学(Topographical Surveying)。该门课程具有理论、工程和技术并重、实践性强等特点,其教学水平和教学质量是衡量测绘学科教育水准的关键要素,实施多样化课堂教学,注重培养学生动手能力和创新能力,以达到国家级精品课的要求为建设目标。 3.课程体系 第一章绪论Chapter 1 Introductory 内容:⑴了解测绘学科的起源、发展沿革与分支学科的研究领域;⑵测绘学的任务与作用。 重点:大地测量学与地形测量学的研究领域和工作内容。 难点:无。 §1-1测绘学的定义DEFINITION OF GEOMATICS 研究测定和推算地面点的几何位置、地球形状及地球重力场,据此测量地球表面自然形态和人工设施的几何分布,并结合某些社会信息和自然信息的地球分布,编制全球和局部地区各种比例尺的地图和专题地图

激光测量系统误差分析

激光测量系统误差分析 1. 激光测量系统误差源的分析 激光测量系统会受到多种误差的影响,有系统误差和偶然误差,系统误差会给激光测量点云坐标带来系统偏差。激光测量系统的误差按照其产生的来源可分为四类: (1) 定位误差:GPS 定位误差; (2) 姿态误差:GPS/INS 姿态误差; (3) 测距误差:激光扫描仪测距误差; (4) 集成误差:系统集成误差; (1) 定位误差 GPS 动态定位误差主要包括卫星轨道误差、卫星钟钟差、接收机钟钟差、多路径效应、 相位中心不稳定,还有卫星星座、观测噪声等。[1]GPS 定位误差不容易消除或者模型化,通 常为了削弱GPS 定位误差的影响,采用的方法是在测区内建立多个分布均匀的基准站,保证GPS 动态定位解算时离基准站不会太远。 (2) 姿态误差 姿态误差是影响定位精度的最主要原因。主要包括设备的安置误差、加速度计误差、陀螺仪漂移、测量噪声等,对于INS 姿态测量误差,可以适当降低飞行高度,以削弱其对定位的影响。 (3) 测距误差 激光扫描仪的每一个工作过程都会带来一定的误差,但起主要作用的是电子光学电路对经过地面散射和空间传播后的不规则激光回波信号进行处理来确定时间延迟带来的误差,分别为时延估计误差和时间测量误差两类。此外还有反光镜的旋转、震动误差、脉冲零点误差等。 激光脉冲信号照射地面物体时,由于地表物理特征的不同而产生不同的反射,当信号发生漫反射时,出现大量反射信号被接收,会形成较大的接收噪声;当信号照射到光滑物体表面,便形成镜面反射,可能会造成激光测距信号丢失。另外,有的信号可能经过计策反射后反射回去,这样测定的时间延迟不能代表真正的时间延迟。激光测距的精度还与地面粗糙程度、地面坡度、地面物体的干扰等有关。另外,被水域覆盖的地方,红外激光大部分被吸收,只有少量被反射,如果碰到静止的水面,就形成镜面反射,信号反射不回去;地表不连续以及移动物体,如行人、车辆、动物等都会影响激光测距精度。 (4) 系统集成误差 系统集成误差主要包括激光扫描仪脉冲感应参考中心与GPS 天线相位中心偏心向量的测定误差、系统安置误差、位置内插误差(线性内插)、时间同步误差、地面参考站间位置误差、坐标系间的转换误差、GPS/INS 组合滤波模型误差等。 由于GPS 数据采样频率一般为1~20Hz ,INS 数据采样频率一般为20~几百Hz ,而激光测距的频率为几十~几千Hz (现有70Hz ),采样率不同,最后要根据采样率低的GPS/INS 数据内插出每个激光点的姿态和位置,内插过程中会产生内插误差。 2.激光测量系统误差的定性定量分析 (1)测距误差 测距误差同多种因素有关,包括系统和随机的两部分。这里只考虑系统误差部分ρ?,其大小取决于不同的系统、反射介质及地形条件等外界条件。相应测得的距离就是ρρ+?。即(0,0,)T r r ρρ+?=+?。其中r ?为测距误差引起的激光扫描点在瞬时激光束坐标系中

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

4、测量误差基本知识

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。 图4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差mγ。 15

16 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差s m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m = m = m = m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差s m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a -b ,求h m 。 (2)已知a m =m =±6",β=a -c ,求βm 。 (3)已知a m =b m =m ,S=100(a -b) ,求s m 。 (4)已知D=( ) h S -,s m =±5mm ,h m =±5mm ,求D m 。 (5)如图4-2,已知x a m =±40 mm ,y a m =±30 mm ; S=30.00m ,β=30? 15'10",s m =±5.0mm ,βm =±6"。求P 点坐标的中误差x p m 、y p m 、M (M=m m + )。

咨询工程师继续教育测量基础知识试题及答案

一、单选题【本题型共15道题】 ? 1.某工程施工放样误差限差为±20mm,则该工程放样中误差为(?)mm。 A.±5 B.±10 C.±15 D.±20 用户答案:[B] ??得分:2.00 2.地下通道的施工测量中,地下导线为(?)。 A.闭合导线 B.附和导线 C.支导线 D.任意导线都可 用户答案:[D] ??得分:0.00 3.下列测量方法中,最适合测绘建筑物立面图的是(?)。 A.三角高程测量 B.地面激光扫描 C.精密水准测量 D.GPS—RTK测量

用户答案:[B] ??得分:2.00 4.水准测量时,应使前后视距尽可能相等,其目的是减弱(? )的误差影响。 A.圆水准器轴不平行于仪器数轴 B.十字丝横丝不垂直于仪器竖轴 C.标尺分划误差 D.仪器视准轴不平行于水准管轴 用户答案:[D] ??得分:2.00 5.GPS的大地高H、正常高h和高程异常ζ三者之间正确的关系是(? ?)。 A.ζ=H-h B.ζ C.ζ=h-H D.ζ 用户答案:[A] ??得分:2.00 6.同精度水准测量观测,各路线观测高差的权与测站数成(?)。 A.正比 B.无关系 C.不确定

D.反比 用户答案:[D] ??得分:2.00 7.布测C、D、E级GPS网时,可视测区范围的大小实行分区观测,分区观测时,相邻分区的公共点至少应有(? )个。 A.2 B.3 C.4 D.5 用户答案:[C] ??得分:2.00 8.在进行高差闭合差调整时,某一测段按测站数计算每站高差改正数的公式为(? )。 A.Vi=fh/N(N为测站数) B.Vi=fh/S(S为测段距离) C.Vi=-fh/N(N为测站数) D.Vi=fh/S(S为测段距离) 用户答案:[C] ??得分:2.00 9.我国城市坐标系是采用(?)。 A.高斯正形投影平面直角坐标系 B.大地坐标系

水准测量误差来源及控制方法

水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。关键词:水准测量水准仪高程误差 1. 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示:

表1.1经过成果整理,读数差Δh=Σ后视-Σ前视,Δh小于2mm满足规范要求。但是施工过程中,施工单位提出问题,经过表1.2复核补充测量成果证实,外业测量的结果不正确,因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2. 0水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3. 0水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准

最新工程测量学基础知识总结

1 (1)工程建设的三个阶段1规划设计阶段2建筑施工阶段3运营管理阶2 段 3 (2)工程测量学就是研究各项工程在规划设计、施工建设和运营管理阶4 段虽进行的各种测量工作的学科。主要任务就是解决工程建设中规划设计所需5 各种比例尺地形图这个问题。 6 (3)数字地面模型(DTM)是表示地面起伏形态和地表景观的一系列离散7 点或规则点的坐标值集合的总称。 8 (4)在测绘领域,用一系列地面点的x,y坐标及其相联系的高程表示区9 域地面形状的模型,称为数字高程模型(DEM)。 10 (5)铁路、公路、输电线路以及输油(汽)管道等均属于线性工程,它11 们的中线通称线路。 12 (6)铁路勘测设计的过程:1方案研究2初测3初步设计4定测5施工13 设计 14 (7)初测是初步设计阶段的勘测工作,其主要任务是提供沿线大比例尺15 带状地形图以及地质和水文方面的资料(纸上定线)。 16 (8)定测的主要任务是把初步设计中选定的线路中线测设到实地上。17 (9)勘测设计阶段的测量工作有草测、初测和定测工作。 18 (10)公路的结构组成:路基,路面,桥涵,隧道,路线交叉和沿线设施19 等。 20 (11)根据线路工程的作业内容,线路测量具有全线性,阶段性和渐近性21 的特点。

22 (12)导线点的布设要求:1导线点宜选在地势较高的地方,且前后相互23 通视。2导线点应选在开阔的地方,以便作为图根控制,进行地形测量。3导线24 点间的距离要适中。4导线点应尽可能接近将来的线路的位置,以便为定测时所25 利用。5桥梁及隧道两端附近,严重地质不良地段以及越岭垭口处应设置导线点。 26 (13)基平测量是沿线路布设水准点。2中平测量是测定导线点及中桩高27 程。 28 (14)将纸上线路测设到实地上的工作称为中线测量。 29 (15)线路纵断面的测绘: 30 (16)水下地形测绘技术说明书的内容为:1任务的来源、性质、技术要31 求,测区的自然地理特点,技术设计的依据及原有测量成果的采用情况。2各施32 测控制点的等级,标石及造埋数量,水深测量图幅,测深面积及障碍物的大致33 分布情况。3作业所需的各种主要仪器、器材、船只类型和数量。4根据测区地34 理气象及技术装备条件,确立的不同测区的作业率,计算的各种测量作业的工35 作量和工作天数及时间安排。5根据测区特点和作业技术水平,重点提出的适当36 的作业方法和注意事项,以及一些具体技术指示。 37 (17)检查线的方向应尽量与主测线垂直,分布均匀,并要求布设在较平38 坦处,能普遍检查主测深线。检查线一般应占主测线总长的5%~10%。 39 (18)编绘竣工图的目的:1在施工过程中可能由于设计时没有考虑到的40 问题而使设计有所变更,这种临时变更设计的情况必须通过测量反映到竣工图41 上,以竣工图作为检验设计的正确性,阐明工程竣工最终成果的技术资料。2为42 改建扩建提供原有各项建筑物,构筑物,地上和地下各种管线及交通线路的坐43 标,高程等资料,作为改建扩建设计的依据。3便于工程交付使用后进行生产管44 理和各种设施的维护检修工作,特别是地下管线等隐蔽工程的检查和维修工作。

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

工程测量学基础知识总结讲课稿

工程测量学基础知识 总结

(1)工程建设的三个阶段1规划设计阶段2建筑施工阶段3运营管理阶段(2)工程测量学就是研究各项工程在规划设计、施工建设和运营管理阶段虽进行的各种测量工作的学科。主要任务就是解决工程建设中规划设计所需各种比例尺地形图这个问题。 (3)数字地面模型(DTM)是表示地面起伏形态和地表景观的一系列离散点或规则点的坐标值集合的总称。 (4)在测绘领域,用一系列地面点的x,y坐标及其相联系的高程表示区域地面形状的模型,称为数字高程模型(DEM)。 (5)铁路、公路、输电线路以及输油(汽)管道等均属于线性工程,它们的中线通称线路。 (6)铁路勘测设计的过程:1方案研究2初测3初步设计4定测5施工设计(7)初测是初步设计阶段的勘测工作,其主要任务是提供沿线大比例尺带状地形图以及地质和水文方面的资料(纸上定线)。 (8)定测的主要任务是把初步设计中选定的线路中线测设到实地上。 (9)勘测设计阶段的测量工作有草测、初测和定测工作。 (10)公路的结构组成:路基,路面,桥涵,隧道,路线交叉和沿线设施等。 (11)根据线路工程的作业内容,线路测量具有全线性,阶段性和渐近性的特点。 (12)导线点的布设要求:1导线点宜选在地势较高的地方,且前后相互通视。2导线点应选在开阔的地方,以便作为图根控制,进行地形测量。3导线点间的距离要适中。4导线点应尽可能接近将来的线路的位置,以便为定测

时所利用。5桥梁及隧道两端附近,严重地质不良地段以及越岭垭口处应设置导线点。 (13)基平测量是沿线路布设水准点。2中平测量是测定导线点及中桩高程。 (14)将纸上线路测设到实地上的工作称为中线测量。 (15)线路纵断面的测绘: (16)水下地形测绘技术说明书的内容为:1任务的来源、性质、技术要求,测区的自然地理特点,技术设计的依据及原有测量成果的采用情况。2各施测控制点的等级,标石及造埋数量,水深测量图幅,测深面积及障碍物的大致分布情况。3作业所需的各种主要仪器、器材、船只类型和数量。4根据测区地理气象及技术装备条件,确立的不同测区的作业率,计算的各种测量作业的工作量和工作天数及时间安排。5根据测区特点和作业技术水平,重点提出的适当的作业方法和注意事项,以及一些具体技术指示。 (17)检查线的方向应尽量与主测线垂直,分布均匀,并要求布设在较平坦处,能普遍检查主测深线。检查线一般应占主测线总长的5%~10%。(18)编绘竣工图的目的:1在施工过程中可能由于设计时没有考虑到的问题而使设计有所变更,这种临时变更设计的情况必须通过测量反映到竣工图上,以竣工图作为检验设计的正确性,阐明工程竣工最终成果的技术资料。2为改建扩建提供原有各项建筑物,构筑物,地上和地下各种管线及交通线路的坐标,高程等资料,作为改建扩建设计的依据。3便于工程交付使用后进行生产管理和各种设施的维护检修工作,特别是地下管线等隐蔽工程的检查和维修工作。

机械工程及自动化专业毕业设计论文基于MSA方法的测量系统误差分析研究

1绪论 1.1 测量系统分析介绍 测量系统分析,简称MSA(全称为Measurement System Analysis),使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。 测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。偏倚指测量数据相对于标准值的位置,包括测量系统的偏倚、线性和稳定性;而方差指测量数据的分散程度,也称为测量系统的R&R,包括测量系统的重复性和再现性。 1.1.1 MSA的术语 (1)测量系统(Measurement System) 测量系统是对测量单位进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 测量系统可分为两类分别为“计量型”测量系统分析和“计数型”测量系统分析。前者测量后能够给出具体的测量数值;后者只能定性地给出测量结果。 “计量型”测量系统分析通常包括五类的分析和评价,它们分别为:“偏倚”、“稳定性”、“线性”、“重复性”和“再现性”。在测量系统分析的实际运作过程中,可以分别进行,也可以同时进行,根据具体使用情况而定。 (2)偏倚(Bias) 偏倚是指对相同零件上同一特性的观测平均值与真值(参考值)的差异,是测量系统的系统误差所构成。 (3)稳定性(Stability) 稳定性(或漂移)是指经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差。也就是说,稳定性是整个时间的偏倚变化。 (4)线性(Linearity) 线性是在测量设备预期的工作(测量)量程内,偏倚值的差异。线性可被视为偏倚对于量程大小不同所发生的变化。 (5)重复性(Repeatability) 传统上将重复性称为“评价人内部”的变异。重复性是用一个评价人使用相同的测量仪器对同一零件上的同一特性,进行多次测量所得到的测量变差;它是设备本身的固有的变差或能力。 (6)再现性(Reproducibility)

工程测量中三角高程测量误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法 戚忠 中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007 一引言 一直以来,为保证精度,高等级高程测量都采用几何水准的方法。而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 二三角高程测量误差分析 常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。对向观测法三角高程测量的高差公式为: (1) 式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量; 令。 对式(1)微分,则由误差传播定律可得高差中误差:

(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。 三减弱大气折光差的方法和措施 大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。下面具体分析。 3.1提高观测视线高度。由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。 3.2尽量选择短边传递高程。由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。但控制网的边长是由多种因素控制的,不能随意增加和减少。 3.3选择有利观测时间。中午前后(10~15时)垂直折光小,观测垂直角最有利。日出

工程测量中三角高程测量的误差分析及解决方法.doc

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 工程测量中三角高程测量的误差分析及解决方 法.doc 工程测量中三角高程测量的误差分析及解决方法摘要:通过对三角高程测量公式的分析,发现影响三角高程测量精度的因子,引进当下较为先进的设备与方法,从而提高三角高程测量的精度,使其可以替代几何水准测量。 该方法的实现可以弥补几何水准受地形条件等因素限制使工作效率慢,测绘成本高,人身、设备安全无法保障等缺点。 关键词: 三角高程测量;几何水准;误差分析;大气折光系数 1 引言一直以来,为保证精度,高等级高程测量都采用几何水准的方法。 而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。 随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。 三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 2 三角高程测量误差分析常见的三角高程测量有单向 1 / 6

观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。 对向观测法三角高程测量的高差公式为: 式中: D 为两点问的距离;a 为垂直角;(k2-k1)为往返测大气垂直折光系数差;i 为仪器高;v 为目标高;R 为地球曲率半径(6370km);为垂线偏差非线性变化量;令。 对式(1)微分,则由误差传播定律可得高差中误差: (2)由式(2)可知影响三角高程测量精度主要有: 1.竖直角(或天顶距)、 2.距离、 3.仪器高、 4.目标高、 5.球气差。 第 1、2 项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡 TCA2003 及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第 3、4 项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座 3 个方向量取,使 3 个方向量取的校差小于 0.2mm,并在测前、测后进行 2 次量测;第 5 项球气差也就是大气折光差,也是本课题的研究重点。 3 减弱大气折光差的方法和措施大气折光差: 是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。 大气折光对距离的影响,表现在电磁波测距中影响的量值相对较

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

相关文档