文档库 最新最全的文档下载
当前位置:文档库 › 卡尔曼滤波器介绍外文翻译

卡尔曼滤波器介绍外文翻译

卡尔曼滤波器介绍外文翻译
卡尔曼滤波器介绍外文翻译

毕业设计(论文)外文资料翻译

系 : 电气工程学院

专 业: 电子信息科学与技术 姓 名: 周景龙 学 号: 0601030115 外文出处: Department of Computer Science University of North Carolina at Chapel Hill

Chapel Hill,NC27599-3175 附 件:1.外文资料翻译译文;2.外文原文。

(用外文写)

卡尔曼滤波器介绍

摘要

在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法。从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。

卡尔曼滤波器是一系列方程式,提供了有效的计算(递归)方法去估计过程的状态,是一种以平方误差的均值达到最小的方式。滤波器在很多方面都很强大:它支持过去,现在,甚至将来状态的估计,而且当系统的确切性质未知时也可以做。

这篇论文的目的是对离散卡尔曼滤波器提供一个实际介绍。这次介绍包括对基本离散卡尔曼滤波器推导的描述和一些讨论,扩展卡尔曼滤波器的描述和一些讨论和一个相对简单的(切实的)实际例子。

离散卡尔曼滤波器

在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法[Kalman60]。从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。第一章讲述了对卡尔曼滤波器非常“友好的”介绍[Maybeck79],而一个完整的介绍可以在[Sorenson70]找到,也包含了一些有趣的历史叙事。更加广泛的参考包括Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;Jacobs93].

被估计的过程

卡尔曼滤波器卡用于估计离散时间控制过程的状态变量

n x ∈?。这个离散

时间过程由以下离散随机差分方程描述: 111k k k k x Ax bu w ---=++ (1.1)

测量值m z ∈?,k k k z Hx v =+ (1.2) 随机变量k w 和k v 分别表示过程和测量噪声。他们之间假设是独立的,正态分布的高斯白噪: ()~(0)p w N Q

, (1.3) ()~(0)p v N R , (1.4)

在实际系统中,过程噪声协方差矩阵Q 和观测噪声协方差矩阵R 可能会随每次迭代计算而变化。但在这儿我们假设它们是常数。

当控制函数1k u - 或过程噪声1k w -为零时,差分方程1.1中的n n ? 阶增益矩阵A 将过去k-1 时刻状态和现在的k 时刻状态联系起来。实际中A 可能随时间变化,但

在这儿假设为常数。n l ? 阶矩阵B 代表可选的控制输入l

u ∈? 的增益。测量方程1.2中的m n ? 阶矩阵H 表示状态变量k x 对测量变量k z 的增益。实际中H 可能随

时间变化,但在这儿假设为常数。 滤波器的计算原型

我们定义_n k x ∧∈?( -代表先验,^代表估计)为在已知第k 步以前的状态情况

下,第k 步的先验状态估计。定义n k x ∧

∈?为已知测量变量k z 时第k 步的后验状态

估计。由此定义先验估计误差和后验估计误差: _k k k e x x ∧-

≡-

k k k e x x ∧

≡-

先验估计误差的协方差为:[]T k k k P E e e ---= (1.5) 后验估计误差的协方差为:[]T k k k P E e e = (1.6) 式1.7构造了卡尔曼滤波器的表达式:先验估计_

k x ∧ 和加权的测量变量k z 及其预

测_k H x ∧之差的线性组合构成了后验状态估计k x ∧。式1.7的理论解释请参看“滤波器的概率原型”一节。

__()k k k k x x K z H x ∧∧∧=+- (1.7)

式1.7中测量变量及其预测之差_()k k z H x ∧-被称为测量过程的革新或残余。残余反映了预测值和实际值之间的不一致程度。残余为零则表明二者完全吻合。

式1.7中 n m ?阶矩阵K 叫做残余的增益或混合因数,作用是使1.6式中的后验估计误差协方差最小。可以通过以下步骤计算K :首先将1.7式代入k e 的定义式,

再将k e 代入1.6式中,求得期望后,将1.6式中的k P 对K 求导。并使一阶导数为零从而解得K 值。详细推导清参照[Maybeck79, Brown92, Jacobs93] 。K 的一种表示形式为:

1()/T T T T k k k k k k K P H HP H R P P H HP H R ------=+=+() (1.8) 由1.8式可知,观测噪声协方差R 越小,残余的增益越大K 越大。特别地, R 趋向于零时,有:10

lim k k R K H -→= 。

传感器技术论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 附件1:外文资料翻译译文 传感器新技术的发展 传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,主要有以下几个方面: 利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。它的制造工艺远比超导量子干涉器件简单。可用于磁成像技术,有广泛推广价值。 利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。美国加州大学巳研制出这类传感器。 传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。

图像处理中值滤波器中英文对照外文翻译文献

中英文资料对照外文翻译 一、英文原文 A NEW CONTENT BASED MEDIAN FILTER ABSTRACT In this paper the hardware implementation of a contentbased median filter suitabl e for real-time impulse noise suppression is presented. The function of the proposed ci rcuitry is adaptive; it detects the existence of impulse noise in an image neighborhood and applies the median filter operator only when necessary. In this way, the blurring o f the imagein process is avoided and the integrity of edge and detail information is pre served. The proposed digital hardware structure is capable of processing gray-scale im ages of 8-bit resolution and is fully pipelined, whereas parallel processing is used to m inimize computational time. The architecturepresented was implemented in FPGA an d it can be used in industrial imaging applications, where fast processing is of the utm ost importance. The typical system clock frequency is 55 MHz. 1. INTRODUCTION Two applications of great importance in the area of image processing are noise filtering and image enhancement [1].These tasks are an essential part of any image pro cessor,whether the final image is utilized for visual interpretation or for automatic an alysis. The aim of noise filtering is to eliminate noise and its effects on the original im age, while corrupting the image as little as possible. To this end, nonlinear techniques (like the median and, in general, order statistics filters) have been found to provide mo re satisfactory results in comparison to linear methods. Impulse noise exists in many p ractical applications and can be generated by various sources, including a number of man made phenomena, such as unprotected switches, industrial machines and car ign ition systems. Images are often corrupted by impulse noise due to a noisy sensor or ch annel transmission errors. The most common method used for impulse noise suppressi on n forgray-scale and color images is the median filter (MF) [2].The basic drawback o f the application of the MF is the blurringof the image in process. In the general case,t he filter is applied uniformly across an image, modifying pixels that arenot contamina ted by noise. In this way, the effective elimination of impulse noise is often at the exp ense of an overalldegradation of the image and blurred or distorted features[3].In this paper an intelligent hardware structure of a content based median filter (CBMF) suita ble for impulse noise suppression is presented. The function of the proposed circuit is to detect the existence of noise in the image window and apply the corresponding MF

IIR数字滤波器的设计外文文献以与翻译

IIR Digita Filter Design An important step in the development of a digital filter is the determination of a realizable transfer function G(z) approximating the given frequency response specifications. If an IIR filter is desired,it is also necessary to ensure that G(z) is stable. The process of deriving the transfer function G(z) is called digital filter design. After G(z) has been obtained, the next step is to realize it in the form of a suitable filter structure. In chapter 8,we outlined a variety of basic structures for the realization of FIR and IIR transfer functions. In this chapter,we consider the IIR digital filter design problem. The design of FIR digital filters is treated in chapter 10. First we review some of the issues associated with the filter design problem. A widely used approach to IIR filter design based on the conversion of a prototype analog transfer function to a digital transfer function is discussed next. Typical design examples are included to illustrate this approach. We then consider the transformation of one type of IIR filter transfer function into another type, which is achieved by replacing the complex variable z by a function of z. Four commonly used transformations are summarized. Finally we consider the computer-aided design of IIR digital filter. To this end, we restrict our discussion to the use of matlab in determining the transfer functions. 9.1 preliminary considerations There are two major issues that need to be answered before one can develop the digital transfer function G(z). The first and foremost issue is the development of a reasonable filter frequency response specification from the requirements of the overall system in which the digital filter is to be employed. The second issue is to determine whether an FIR or IIR digital filter is to be designed. In the section ,we examine these two issues first .

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

压力传感器外文翻译

压力传感器 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有 3 类: 1.基本的或未加补偿标定; 2.有标定并进行温度补偿; 3.有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少 10 倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压 力,测得的压力将产生如图 1 所示的误差。 这种未经标定的初始误差由以下几个部分组成: a.偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b.灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图 1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。

数字滤波器的外文翻译

FIR 数字滤波器的有限字长系数优化的比较研究 拜彻尔,泰勒,罗兰 威尔士大学纽波特学院运算工程学校 摘要:实时数字滤波器频率响应的精度受实现时系数约束条件即有限字长(FWL)的影响。该文仅考虑FIR 数字滤波器有关的FWL 问题。准确和近似响应之间的最大误差限的约束条件所对应的理论问题和统计误差值都进行了详细的研究。利用实数值遗传算法作为优化工具,并由若干设计案例的FWL 效应获得其最大误差限和误差值。由此,完成了简单凑整逼近、遗传算法优化、整数规划法,以及简单希尔登山者方法之间的比较。 关键词:实时数字滤波器; 有限字长;遗传算法;整数规划 1. 前言 FIR 数字滤波器广泛用于图像处理、移动通信、医疗电子,以及很多其他的信号处理应用。为降低能耗和提高运算量,截断系数到最短长度是有优势的。然而,该截断会引起滤波嚣设计参数的变化,在某些情况下这是不可接收的。此即优化问题,即尽可能地选择近似系数值的微小变化量,以便最好的服从设计规范标准。针对有限脉冲响应(FIR)滤波器形式结构的线性相位已被证明是鲁棒的,因而FWL 系数的自我实现的研究是极具有吸引力的[1]。FWL FIR 对称数字滤波器的研究涉及到一组系数的选择,从而这个新频率响应可以作为无限准确系数截断的一个结果,可以最大的接近所给定的规范频率响应。 已知的为解决该问题所使用的算法均基于两种方法:局部搜索法[2]和整数规划分支界限法[3,4]。局部搜索法需要选择一组可行的FWL 系数(称为四舍五入值),用以给出一个频率响应并用以检验H 的领域。同时要选定滤波器的传递函数,以便得到更好的滤波器H',即具有低误差函数的滤波器。如果找到了这样的一个滤波器H',那么便可用H'来代替H ,而算法即可进入下一步或者终止。分支界限算法涉及对一组可能解所构成的树的系统性修正,这些解依赖于由枚举总数所确定的下界值。这两种算法本质上计算密集,且不能保证全局优化。其问题即是在于进一步复合,使其更加灵敏以便增加滤波器长度。 2. FWL 系数及误差目标函数 用以导出FWL 系数的最常用定点算法是直接量化法。使用标准滤波器设计技术导出的高精度系数在该方法中首次被利用,以得出FWL 的量化系数。如下量化系数的起始解给出。 h ri =round[h ei 2B-1] i=0,1,2,...,N-1 (1) 这里,h ri 为四舍五入系数,hei 为高精度系数,B 为用以描述系数的位数,N 为滤波器长度。 优化过程的主要目的在于极小化目标函数,其明确目标为获得一个与期望的响应尽可能接近的滤波器频率响应。目标函数被用于500个等距频率的格点。 目标函数通过以下式来评价: }H max ,H 110max{max }H H 1{ObjV s p s s p p i i L s i 2 i P i 2 i -++-=∑∑== (2) H ip =遗传算法优化滤波器在通带中对应频率的幅值响应 H is =遗传算法优化滤波器在阻带中对应频率的幅值响应 L=频率格点的数目(500)

传感器外文翻译

Basic knowledge of transducers A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

数字信号处理英文文献及翻译

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

传感器技术外文文献及中文翻译

Sensor technology A sensor is a device which produces a signal in response to its detecting or measuring a property ,such as position , force , torque , pressure , temperature , humidity , speed , acceleration , or vibration .Traditionally ,sensors (such as actuators and switches )have been used to set limits on the performance of machines .Common examples are (a) stops on machine tools to restrict work table movements ,(b) pressure and temperature gages with automatics shut-off features , and (c) governors on engines to prevent excessive speed of operation . Sensor technology has become an important aspect of manufacturing processes and systems .It is essential for proper data acquisition and for the monitoring , communication , and computer control of machines and systems . Because they convert one quantity to another , sensors often are referred to as transducers .Analog sensors produce a signal , such as voltage ,which is proportional to the measured quantity .Digital sensors have numeric or digital outputs that can be transferred to computers directly .Analog-to-coverter(ADC) is available for interfacing analog sensors with computers . Classifications of Sensors Sensors that are of interest in manufacturing may be classified generally as follows: Machanical sensors measure such as quantities as positions ,shape ,velocity ,force ,torque , pressure , vibration , strain , and mass . Electrical sensors measure voltage , current , charge , and conductivity . Magnetic sensors measure magnetic field ,flux , and permeablity . Thermal sensors measure temperature , flux ,conductivity , and special heat . Other types are acoustic , ultrasonic , chemical , optical , radiation , laser ,and fiber-optic . Depending on its application , a sensor may consist of metallic , nonmetallic , organic , or inorganic materials , as well as fluids ,gases ,plasmas , or semiconductors .Using the special characteristics of these materials , sensors covert the quantity or property measured to analog or digital output. The operation of an ordinary mercury thermometer , for example , is based on the difference between the thermal expansion of mercury and that of glass. Similarly , a machine part , a physical obstruction , or barrier in a space can be detected by breaking the beam of light when sensed by a photoelectric cell . A proximity sensor ( which senses and measures the distance between it and an object or a moving member of a machine ) can be based on acoustics , magnetism , capacitance , or optics . Other actuators contact the object and take appropriate action ( usually by electromechanical means ) . Sensors are essential to the conduct of intelligent robots , and are being developed with capabilities that resemble those of humans ( smart sensors , see the following ). This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the

DSP滤波器中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)

译文: GA算法优化IIR滤波器的设计 摘要本文提出了运用遗传算法(GA)来优化无限脉冲响应数字滤波器(IIR)的设计。 IIR滤波器本质上是一个递归响应的数字滤波器。由于IIR 数字滤波器的表面误差通常是非线性的和多峰的,而全局优化技术需要避免局部最小值。本文提出了启发式方式来设计IIR滤波器。GA是组合优化问题中一种功能强大的全局优化算法,该论文发现IIR数字滤波器的最佳系数可以通过GA 优化。该设计提出低通和高通IIR数字滤波器的设计,以提供过渡频带的估计值。结果发现,所计算出的值比可用于过滤器的在MATLAB设计FDA工具更优化。举个例子,采用的仿真结果表明在过渡带和均方误差(MSE)的改善。零极点的位置也被提出来用来描述系统的的稳定性,以便将结果与模拟退火(SA)的方法相比较。 关键词:数字滤波器;无限冲激响应(IIR);遗传算法(GA);优化1.说明 在过去的几十年中的数字信号处理(DSP)领域已经成长太重要的理论和技术。在DSP中,有两个重要的类型系统。第一类型的系统是执行信号滤波的时域,因此它被称为数字滤

波器。第二类型的系统提供的信号表示频域,被称为频谱分析仪。数字滤波是DSP的最有力的工具之一。数字滤波器能够性能规格,最好的同时也是极其困难的,而且不可能的是,先用模拟滤波器实现。另外,数字滤波器的特性,可以很容易地在软件控制下发生变化。数字滤波器被分类为有限持续时间脉冲响应(FIR)滤波器或无限持续时间脉冲响应(IIR)滤波器,这取决于该系统的脉冲响应的形式。在FIR系统中,脉冲响应序列是有限的持续时间,即,它具有非零项的数量有限。数字无限脉冲响应(IIR)滤波器通常可以提供比其等效有限脉冲响应(FIR)滤波器更好的性能和更少的计算成本,并已成为越来越感兴趣的目标。 但是,由于IIR滤波器的误差表面通常是非线性的,多式联运,传统的基于梯度的设计方法可以很容易地陷入错误的表面。因此当地极小,一些研究者已经试图开发基于设计方法现代启发式优化算法,如遗传算法(GA),模拟退火(SA),禁忌搜索(TS).简单的迭代方法通常导致次优的设计。因此,有必要的优化方法(启发式型),可以是用来设计数字滤波器,将满足规定的规格。古德伯格呈现遗传算法的详细的数学模型。本韦努托切在书中描述在设计数字滤波器具有线性相位数字滤波器的上下文中使用模拟退火(SA)算法的显着特征。该算法然后被应用到FIR滤波器的设计。其结果是并不令人印象深刻。此外,它在计算上的花费是非常昂贵的。

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

传感器外文文献

Photoelectric sensor Key word:photoeletric effect photoelectric element photoeletric sensor classification sensor application characteristics. Abstract:in the development of science and technology in the modern society,mankind has into rapidly changing information era,people in daily life,the production process,rely mainly on the detection of information technology by acquiring,screening and transmission,to achieve the brake control,automation adjustment,at present our country has put detection techniques listed in one of the priority to the development of science and technology.Because ofmicroelectronics technology,photoelectric semiconductor technology,optical fiber technology and grating technical development makes the application of the photoelectric sensor is growing .The sensor has simple structure, non-contact,high reliability,high precision,measurable parameters and quick response and more simple structure,form etc,and flexible in automatic detection technology,it has been widely applied in photoelectric effect as the theoretical basis,the device by photoelectric material composition. T ext: First,theoretical foundation-photoelectric effect Photoelectric effect generally have the photoelectric effect,

相关文档
相关文档 最新文档