文档库 最新最全的文档下载
当前位置:文档库 › 组织荧光光谱

组织荧光光谱

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

荧光光谱法

荧光分析法测定维生素B2 一、实验目的 1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法; 2.熟悉荧光分光光度计的结构及使用方法; 3、学习掌握固体及液体试样的荧光测试方法。 二、实验原理 当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。当照射光停止照射时,荧光也随之很快地消失。利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。 实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。 图1.荧光分光光度计的结构原理图

荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。 荧光光谱包括激发光谱与发射光谱两种。激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。一般所说的荧光光谱实际上仅指荧光发射光谱。这一光谱为分析指出了最佳的发射波长。 荧光定性定量分析与紫外可见吸收光谱法相似。定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。 定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。对同一物质而言,荧光强度F 与该物质的浓度c 有以下的关系: F = 2、303Фf I0 a b c ⑴ Фf-荧光过程的量子效率; a-荧光分子的吸收系数; I0-入射光强度; b-试液的吸收光程。 在I0 与b 不变时,2、303Фf I0 a b为常数,则⑴式可以表示为 F=Kc ⑵ ⑵即可作为荧光定量检测的依据。 图2 VB2的结构式

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

岛津分子荧光光谱仪RF-5301PC氙灯安装及性能测试(整理的说明书)

岛津分子荧光光谱仪 RF-5301PC 氙灯安装和性能测试

岛津分子荧光光谱仪RF-5301PC 氙灯安装和性能测试 摘要:介绍了岛津分子荧光谱仪RF-5301PC的氙灯安装和仪器的灵敏度,S/N,波长准确度测试,及荧光谱仪的结构和一些主要构件。 面向的对象:主要是化验人员的仪器维护和初次接触荧光光谱仪的工程人员。另一个目的也是自己以后维护便于查看。这个仪器接触不多,也希望其他朋友帮助指正。 目录: 一些安全问题------------------------------------------------------1楼 仪器的一个不能和计算机通信的问题解决------------------------1楼 RF-5301的通信设置---------------------------------------------------2楼 灯的安装及位置的校准------------------------------------------------3楼 仪器灵敏度的调整(增益调整)------------------------------------4楼 仪器性能测试(S/N的测试)----------------------------------------5楼 校准波长准确度---------------------------------------------------------6楼 分子荧光光谱仪介绍---------------------------------------------------7楼 参考文献: 图片后面的【x】表示引用的文献。 仪器专场展示:分子荧光光谱圆二色光谱拉曼光谱

第四章原子吸收光谱法与-原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法 4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比. 解: Mg原子的电子跃迁由31S0→31P1 ,则 g i/g0=3 跃迁时共振吸收波长λ=285.21nm ΔEi=h×c/λ =(6.63×10-34)×(3×108)÷(285.31×10-9) =6.97×10-19J 激发态和基态原子数之比: Ni/N0=(g i/g0)×e-ΔEi/kT 其中: g i/g0=3 ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕 代入上式得: Ni/N0=5.0×10-9 4-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施? 答: 因为: S1 =W1/D = (251.61-251.43)/1.6 = 0.11mm S2 =W2/D =(251.92-251.61)/1.6 =0.19mm S1<S2 所以应采用0.11mm的狭缝. 4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。 答: 原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。 原子吸收光谱与原子发射光谱的不同在于: 原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。

分子荧光光谱实验报告doc

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。

激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm)

荧光光谱分析实验讲义

实验荧光光谱分析 一、实验目的与要求: 1. 了解荧光分光光度计的构造和各组成部分的作用; 2. 掌握荧光分光光度计的工作原理; 3. 掌握激发光谱、发射光谱及余辉衰减曲线的测试方法。 二、基本概念 1. 发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。 2. 激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效率。 3. 余辉衰减曲线 是指激发停止后发光强度随时间变化的曲线。横坐标为时间,纵坐标为发光强度(或相对发光强度)。 三、测试仪器 激发光谱、发射光谱及余辉衰减曲线的测试采用日本岛津RF-5301PC型荧光分光光度计。 从150W氙灯光源发出的紫外和可见光经过激发单色器分光后,再经分束器照到样品表面,样品受到该激发光照射后发出的荧光经发射单色器分光,再经荧光端光电倍增管倍增后由探测器接收。另有一个光电倍增管位于监测端,用以倍增激发单色器分出的经分束后的激发光。 光源发出的紫外-可见光或者红外光经过激发单色器分光后,照到荧光池中的被测样品上,样品受到该激发光照射后发出的荧光经发射单色器分光,由光电倍增管转换成相应电信号,再经放大器放大反馈进入A/D转换单元,将模拟电信号转换成相应数字信号,并通过显示器或打印机显示和记录被测样品谱图。 四、样品制备 液体试样

EI操作手册稳态瞬态荧光光谱仪(FLS 920)操作说明书

Edinburgh Instrument FLS920 User Manual

目录 一、开机步骤 (2) 二、实验操作 (4) 1、实验前准备 (4) 2、稳态实验 (6) A、发射光谱实验 (6) B、激发光谱实验 (9) C、同步谱 (10) D、Map (11) E、偏振光谱 (12) 3、低温实验 (17) A、液氮冷却系统(Oxford) (17) B、ARS冷却系统 (19) 4、样品衰减操作 (22) A、纳秒、皮秒级衰减 (22) 纳秒灯为光源 (22) 激光器为光源 (27) B、微妙、毫秒级衰减 (29) 三、数据处理 (32) 1、数据一般处理 (32) 2、稳态光谱 (33) 3、瞬态光谱 (33) 四、附录 (36) 1、氢灯清洗方法 (36)

一、开机步骤 1、打开总电源(开之前保证所有仪器开关关闭) 2、开启PH1 3、开启PMT制冷电源CO1 4、开启光谱仪控制电源CD920(控制盒)或样品室下方的控制板电源 此为控制盒 此为控制板 5、根据需要的光源开启氙灯或是其它灯源电源 此为氙灯电源 此为氢灯电源

6、开启电脑,同时将谱仪样品室上方盖子移开。待进入操作系统后进入F900软件。

二、实验操作 1、实验前准备 在做实验前有几点需要注意: A 、 对于红敏PMT (R928),其制冷必须达到一定温度,一般为室温-40℃左右。待C O 1 显示在-17℃左右的时候,在软件的S i g n a l R a t e 窗口里观察E m 1的C P S 读数显示。 若其读数维持在50C P S 以下,则表明读数正常,P M T 制冷达到工作状态,可以用该探测器进行实验。 Fig.2.1 B 、 对于近红PMT (5509),其必须准备以液氮杜瓦罐(约15升左右),将制冷部件的 管子插入罐中,开启制冷电源 Fig.2.2 制冷电源 杜瓦罐 通气管道

原子荧光复习题

原子荧光法复习题 一、填空: 1.原子荧光分析中,荧光类型有、、、热助线荧光和敏化原子荧光等。 答案:共振荧光、直跃线荧光、阶跃线荧光 2.原子荧光光谱仪中,目前有和两类仪器。 答案:色散系统、非色散系统 3.七十年代末,由于、及各种高效原子化器的使用,AFS技术得到了较大发展。 答案:高强度空心阴极灯、激光器 4.荧光猝灭的程度与及有关。 答案:被测元素、猝灭剂的种类 5.在原子荧光分析中,原子浓度较高时容易发生,它可使荧光信号变化和荧光谱线,从而峰值强度。 答案:自吸、变宽、减少 6.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围。答案:越宽 7.原子荧光光谱仪的检测部分主要包括、以及放大系统和输出装置。 答案:分光系统、光电转换装置 8.在原子荧光分析中,石英原子化器炉温过高会使降低、增高,但较高的炉温又有利于消除干扰,所以应根据实际情况确定原子化温度。 答案:灵敏度、噪声、气相 9.在原子荧光分析中,测定灵敏度随观测高度增加而,观测高度太低时,会增加,观测高度太高时,会使和下降。 答案:降低、噪声、灵敏度、精度 10.原子荧光光谱仪中,以供电的空心阴极灯,可以使增强几十至几百倍。 答案:脉冲、谱线 11.在原子荧光分析的实际工作中,会出现空白大于样品强度的情况,这是因为空白溶液中不存在的原因。 答案:荧光、干扰 12.在原子荧光分析中,样品分析时,标准溶液的应和样品完全一致,同时必须做。 答案:介质、空白 13.在原子荧光分析中,当光电倍增管的负高压增加时,和水平同时增加,当灵敏度可以满足要求时,应尽量采用的负高压。 答案:信号、噪声、较低 14. 原子荧光光谱仪一般由四部分组成:、、和。 答案:光源(激发光源)、原子化器、光学系统(单色仪)、检测器 15.石英原子化器的外屏蔽气是用以防止周围的进入,产生,以保证较高及稳定的。

原子荧光光谱

第4章原子荧光光谱分析 4.1 原子荧光光谱的产生和特性 4.2 原子荧光光谱分析的定量关系 4.3 原子荧光光谱仪器 4.4 蒸气发生样品导入技术 4.5 蒸气发生-原子荧光光谱分析技术4.6 蒸气发生-原子荧光光谱分析的干扰4.7 蒸气发生-原子荧光测量要点 4.8 非蒸气发生原子荧光光谱分析技术

4.1 原子荧光光谱的产生和特性 原子荧光光谱分析法是上世纪60年代中期发展起来的一种新的痕量分析方法。 原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。

气态自由原子处于基态,当吸收激发光源发出的一定频率的辐射能量后,原子由基态跃迁至高能态,即处于激发状态。处于激发态的原子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。若以辐射的形式释放能量,则所发射的特征光即为原子荧光。 原子荧光是光致发光,所以当激发光源停止照射之后,再发射过程立即停止。

4.1.2.1 共振荧光 共振荧光是指激发波长与发射波长相同的荧光。 由于原子的激发态和基态之间共振跃迁的概率一般比其他跃迁的概率大得多,所以共振跃迁产生的谱线是最有用的分析谱线。 当原子处于由热激发产生的较低的亚稳能级,则共振荧光也可从亚稳能级上产生:称为热助共振荧光。

4.1.2.2 非共振荧光 非共振荧光是指激发波长与发射波长不同的荧光。 (1)斯托克斯荧光 当发射荧光波长比激发光波长长时,即为斯托克斯荧光。 ①直跃线荧光 直跃线荧光是指激发谱线和荧光谱线的高能级相同的荧光。原子受到光辐射激发,从基态跃迁到较高的激发态,然后直接跃迁到能量高于基态的亚稳态能级,发射出波长比激发光波长要长的原子荧光。 类似的,当原子处于由热激发产生的较低亚稳能级,再通过吸收非共振线而激发的直跃线荧光称为热助直跃线荧光。 ②阶跃线荧光 阶跃线荧光是指当激发谱线和发射谱线的高能级不同时所产生的荧光,也分为正常阶跃线荧光和热助阶跃线荧光两类。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

光谱仪荧光寿命模块升级

光谱仪荧光寿命模块升级 一、设备用途 在现有稳态荧光光谱仪上选择一套升级瞬态功能,用于荧光寿命和磷光寿命的测量。 二、技术指标 1,现有两套稳态荧光光谱仪型号:(1)爱丁堡 FLS920;(2)Horiba JY FluoroMax-4。 2,荧光寿命: 2.1工作原理:时间相关单光子计数(TCSPC) 2.2测量寿命范围:100ps-50μs 2.3激发光源:单波长皮秒脉冲LED,或者单波长皮秒脉冲激光器 *2.4实现时间分辨激发光谱、时间分辨发射光谱测量,可以同时测量得出多组分样品中各个组分的荧光寿命 2.5数据采集模块通过USB与计算机连接,通过软件自动切换 3,磷光寿命: *3.1测量寿命范围:1μs-10s 3.2最小时间分辨率≤10ns 3.3激发光源:微秒闪光灯,波长范围200-800nm 3.4完成时间分辨激发光谱、时间分辨发射光谱测量 4,配置清单: 4.1 寿命测试模块一套 4.2 微妙闪光灯一个,波长范围:200-800nm 4.3 405nm,485nm 或波长相近激光器各一个 5, 升级增值项目:可实现低温荧光寿命测量。 三、技术服务 1,设备安装调试 仪器到达用户所在地后, 在接到用户通知后1周内执行安装调试直至达到验收指标。

2,技术培训 在用户所在地对用户进行1~2人、为期至少1天的免费培训。培训内容包括仪器的技术原理、操作、数据处理、基本维护等。 3,保修期:提供1年全面免费保修,保修期自技术验收签字之日起计算。保修期满前1个月内卖方应负责一次免费全面检查,并写出正式报告,如发现潜在问题,应负责排除。 4 维修响应时间:卖方应在24小时内对用户的服务要求作出响应,一般问题应在48小时内解决,重大问题或其它无法迅速解决的问题应在一周内解决或提出明确解决方案,否则卖方应赔偿相应损失。

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

原子荧光形态分析仪技术参数

原子荧光形态分析仪技术参数 1、用途与要求 根据元素形态分析的特殊要求设计的一体化机,可实现对包括色谱泵、消解系统、蒸气发生和检测系统的统一协同自动控制。同时具备砷(As)、汞(Hg)、硒(Se)、锑(Sb)等元素形态分析功能和砷(As)、锑(Sb)、铋(Bi)、汞(Hg)、硒(Se)、碲(Te)锗(Ge)、锡(Sn)、铅(Pb)、锌(Zn)、镉(Cd)等元素的总量分析功能。 2、技术性能指标要求 2.1 内置式管内在线消解装置:全封闭一体化结构,管内在线消解,无需氧化剂,大大缩短管路,避免柱后峰形展宽,提高仪器分析性能。 2.2 气液分离装置:降低进入原子荧光检测器的水汽含量,提高分析灵敏度,降低噪声,降低检测限。 2.3 专用的液相色谱和氢化物发生原子荧光光谱仪接口:可以把柱后流出液和氢化物发生液体混合。 2.4 配接专用的液相色谱-原子荧光检测软件,可以实现连续的检测,实时采集数据,实现软件的统一协同自动控制。 2.5 数据处理也可以直接配接色谱工作站,具有谱图处理功能,操作简单方便。 2.6 可检测的砷形态 可定性定量检测: 砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙生Roxarsone) 可定性半定量检测: 一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物 可定性检测: 砷糖(AsS) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.7 可检测的硒形态

可定性定量检测: 亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)、硒代蛋氨酸(SeMet) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.8 可检测的汞形态 可定性定量检测: 无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg) 以上均须有使用该型号仪器实际分析样品图谱举例。 2.9可检测的锑形态 可定性定量检测: 锑酸盐[Sb(V)]、三价锑[Sb(III)] 以上均须有使用该型号仪器实际分析样品图谱举例。 2.10 技术指标 2.10.1、检出限: As(Ⅲ)<0.04ng、DMA<0.08 ng、MMA<0.08 ng、As(Ⅴ)<0.2 ng SeCys<0.3 ng、SeMeCys<1 ng、Se(IV) <0.1 ng、SeMet<2 ng Hg(II) <0.05 ng、MeHg<0.05 ng、EtHg<0.05 ng、PhHg<0.1 ng Sb(III) <0.1ng Sb(V) <0.5ng 2.10.2、精密度<5% 2.10.3、线性范围三个数量级 2.10.4、相关系数:>0.999 3. 液相泵技术参数 3.1输送模式: 具有主动和辅助活塞的双柱塞输送泵,具有突出的流速稳定性; 3.2柱塞反冲: 虹吸自动冲洗; 3.3可更换泵头式设计,10ml与50ml泵头两种可选; 3.4.溶剂接触材料:宝石、PEEK和不锈钢; 3.5.流速范围: 10 ml 泵头0.001 –9.999 ml/min; 3.6.流量精度: <0.1%(1ml/min,12 MPa);

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank 和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

PTI荧光稳态测量系统操作说明书 20101013

荧光稳态测量系统(PTI QuantaMaster TM 4CW)操作说明书 一.仪器介绍 1.荧光稳态测量系统(PTI QuantaMaster TM 4CW)功能 PTI推出的QuantaMaster/TimeMaster系列荧光稳态/瞬态测量系统具有测量可靠、灵敏度高、使用方便、配制灵活等优点,做稳态时:系统信噪比一般为6000:1,最高可达12000:1,数据采集速度可达1000 点/秒,波长范围从紫外到近红外,样品所处的环境温度可调。在稳态光谱测量中,通过使用光子计数技术,提供最高的微弱信号检出能力,可对荧光物质进行定性检测和定量分析。除常规的荧光稳态测量外,还可进行各向异性(偏振)、双发射、化学和生物发光等方面的测量。做瞬态(荧光寿命)测量时,系统采用了先进的频闪分时测量技术和非线性时标据采集技术,具有测量速度快、精度高、灵敏度高、使用方便、配制灵活等优点,是目前测量速度最快、最先进的荧光寿命测量系统。该系统能够探测7pM荧光素的寿命,最短测量寿命可达100ps。激发光源可采用激光、弧光脉冲及LED灯以满足不同的应用。通过扩展和升级,可实现电致发光、磷光、荧光比率和比率成像等的测量。 主要应用:1、光物理与光化学、光合作用机理;2、分子反应动力学;3、突变筛选;4、缩氨酸结合动力学;5、FRET动力学;6、发射光谱和荧光淬灭; 7、荧光量子产率、荧光偏振及导向性;8、蛋白质结构与折叠的研究;9、DNA 测序研究、ds-DNA中的染料探针;10、膜的渗透性及结构研究、膜的流动性和脂相转移;11、药物与生物体系相互作用的检测;12、溶剂-溶质相互作用; 13、麻醉过程研究;14、蛋白结构和折叠;15、核酸动态特性与结构;16、光合作用机理;17、激发态特性;18、层面研究;19、膜的渗透性与离子转移;20、膜的动态特性和结构;21、分子距离和旋转动态特性;22、溶剂与溶质的相互作用;23、微胞结构与反应动力学;24、污染物质的探测与辨别;25、聚合物结构和动态特性;26、药与生物系统的相互作用;27、混合荧光物质的探测与辨别。

相关文档