文档库 最新最全的文档下载
当前位置:文档库 › 标准太阳能电池测试条件

标准太阳能电池测试条件

IVT SOLAR

为太阳能及光伏行业提供完整的测试方案

https://www.wendangku.net/doc/4f15579451.html,

本次讲座希望和大家分享:1. Procedure to measure cell Efficiency, ?

测量电池片转换效率的流程

为什么要做光谱失配因子的修正?

如何做修正?

在什么条件下可以不要做?

2. Facts affect cell’s efficiency measurement

影响测量精度的因素

设备与设备之间;生产厂和模组厂(客户)之间;

不同工艺的标准电池片和电池片之间;

温度对测量精度的影响;

探针的排列对测量精度的影响;

3. 能否自己制作二级参考电池片

从德国标准电池片复制内部使用电池片

4. Standard Test Condition / 标准测试条件

5. Class AAA Solar simulator/ 3A 级太阳能模拟器

Standard Test Condition (STC) / 标准测试条件

标准测试条件由以下三个条件组成标准测试条件由以下三个条件组成::?Solar spectral irradiance distribution:

太阳光谱分布:AM1.5G (Air Mass 1.5 Global )?Irradiance level / 光强

1,000 W/m2

?Cell Temperature: / 电池片P-N 结的温度:25°C.

Direct+circumsolar W*m-2*nm-1

150017502000225025002750 Wavelength nm

;所以在考虑光谱匹配时,只需要考虑

Solar Simulator / 太阳能模拟器

1.模拟器是在6个不同的光谱段范围内,以功率的分布比例的多少,计算拟合度;

2.以此模拟器为例,它的光谱分布在400nm至600nm是偏高,600nm 至800nm 是偏低。900nm至

1100nm也是偏低;

3.如果,你的高效太阳能电池片的效率改进是在光谱600 nm 至800nm 之间,那么实际测量出来

的电池片效率就会偏低( 如果没有光谱匹配修正)。

4.反至,如果,你的高效太阳能电池片的效率改进是在光谱400 nm 至600nm 之间,那么实际测

量出来的电池片效率就会偏高。

0.200.300.400.500.600.70Eff=16.8%Eff=18.1%

51015202530400 -- 500500 -- 600600 -- 700700 -- 800800--900900-1000

1000--

1100

Up Limit Mid low Limit Actual Meas Data

Solar Simulator / 太阳能模拟器

510

152025

30400 -- 500500 -- 600600 -- 700700 -- 800800--900900-1000

1000-1100

Up Limit AM 1.5G low Limit Simulato r

Spectral mismatch :+17% 至-16%

Spectral mismatch :+14% 至-17%

Q1: 那一个class A 的模拟器更好?

模拟器的光谱如何影响测量的准确度一般是如何标定太阳能模拟器:

从Franhofer的标片证书中,

找出Isc的数值

调节模拟器的光强,使得

实际测量得出的Isc等于

Isc(ed2-2008) 标定证书上

的电流

一般的理解:标定完成!

Q1: 模拟器的光谱似乎不重要?

Q2: 标定证书上的电池片的光

谱响应特性有什么用?

模拟器的光谱如何影响测量的准确度

事实是:

在模拟器的光谱和光强条件下,产生了于AM1.5G 条件下同等电子/电流;但是:

产生光电子的比例是不等同AM1.5G 的光能量分布的。

也就是说:

用单色的红光,绿光也能产生同等数量的电子/电流。只要光强足够。

Isc(ed2-2008)=∫E am1.5G(λ)*SR(λ)*dλIsc=K ∫Es(λ)*SR(λ)*dλ

E am1.5G(λ):AM1.5G 的理想光谱

Es(λ): 太阳能模拟器的光谱;K :

模拟器光强调节系数;

正确的方法是:

应该考虑光谱失配因子:M

10001100 Wa v e l e ngt h

600000

Wa v e l e ngt h (nm)

2.5

11

800900 ngt h

太阳能模拟器的标定程序

标定证书上的Isc(ed2-2008)设定模拟器的光强:

Isc= Isc(ed2-2008)/M 在此条件下,测量IV 曲线

参考数值参考数值::

0.00

0.100.200.300.400.500.600.70

300

500

700

900

1100

Eff=16.8%Eff=18.1%

在新加坡太阳能研究院,超级太阳能模拟器上标定:(它的光谱失配:+/-10%)单晶,效率18.1%,M= 0.998

多晶,效率16.8%,M= 0.994

在何种条件下不需要考虑光谱失配因子

1.在S T(λ) = S R(λ):

被测试电池片的光谱响应和标准电池片的光谱响应一样的条件下;2. 在E s(λ)= E R(λ):

太阳能模拟器的光谱和AM1.5G 的标准光谱一样的条件下;

这也就是:

为什么我们希望太阳能模拟器的光谱失配度越小越好。目前能做到的比较好的光谱失配度:

+/-10%

= 1

自行制作/复制二级电池标准电池片

1.挑选具有和德国标定的电池片相同光

谱响应特性的电池片( M=1 )

2. 用德国标定的电池片标定I-V测试机台:

Isc标定光强;

Voc:标定温度;

(确保Eff& FF和证书的数据一致);

3. 在此条件下,测量Isc和I-V 特性曲线

Voc 参数来标定电池片温度

用Isc/M 参数来标定模拟器光强

确认:

填充因子:FF 和

转换效率:EFF

自行制作/复制二级电池标准电池片

影响影响电池电池电池片测片测量精度的因素之一: 没有修正光没有修正光谱失配因子谱失配因子

不同测试设备采用的模拟器不同,因而有不同的模拟太阳光谱;

---造成设备和设备之间的测量误差造成设备和设备之间的测量误差;;

---厂商和客户设备厂商和客户设备之间的测量误之间的测量误之间的测量误差差;---主要表现在Isc 的不同的不同。。

模拟器采用的氙灯,发出的光谱随着灯的寿命而变化:光谱的能量随着使用时间向红外漂移,红外的能量分布增加,紫外减少。

---造成相同设备在灯管新旧状况下的测量误差造成相同设备在灯管新旧状况下的测量误差;;

Standard Test Condition (STC) / 标准测试条件

标准测试条件由以下三个条件组成标准测试条件由以下三个条件组成::?Solar spectral irradiance distribution:

太阳光谱分布:AM1.5G (Air Mass 1.5 Global )?Cell Temperature: / 电池片P-N 结的温度25°C.?Irradiance level / 光强

1,000 W/m2

?1.

当电池片吸附在温控台后,电池片的背面和正面之间有一定的温差;电池片正面的温度受环境温度,室温的影响;

如何标定电池片的温度

调节测试台的温度,实际测量的Voc= Voc(标定证书)

影响影响电池电池电池片测片测量精度的因素

之二: 没有标定温度

通常生产线不带温控测试台,它采用固定的温度系数,用软件来修正;

---温差越大温差越大,,修正的的误差也越大修正的的误差也越大;;---是否所有的电池片否所有的电池片,,不同工艺不同工艺,,不同材料的电池片有相同的温度系数系数??

---主要表现在Voc 的不同的不同。。

如果模组厂的IV 测试台不带温控测试台,它也采用固定的温度系数,用软件来修正,Voc 的数值不同会影响Eff, FF 的数值。

Standard Test Condition (STC) / 标准测试条件标准测试条件由以下三个条件组成标准测试条件由以下三个条件组成::?Solar spectral irradiance distribution:

太阳光谱分布:AM1.5G (Air Mass 1.5 Global )?Cell Temperature: / 电池片P-N 结的温度:25°C.?Irradiance level / 光强

1,000 W/m2

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

光伏电站验收标准

太阳能光伏发电系统验收考核办法 第一章总则 为确保太阳能光伏发电系统在现场安装调试完成后,综合检验太阳能光伏发电系统的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 第二章验收标准 第一条编制依据 (一)太阳能光伏发电系统验收规范CGC/GF003.1-2009 (二)建筑工程施工质量验收统一标准GB50300 (三)建筑结果荷载规范GB50009-2001 (四)电气设备交接试验标准GB50150 (五)电气装置安装工程接地装置施工及验收规范GB50169 (六)电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 (七)电气装置安装工程低压电器施工及验收规范GB50254 (八)电器安装工程高压电器施工及验收规范GBJ147 (九)建筑电气工程施工质量验收规范GB50303 (十)光伏组件(PV)安全鉴定第一部分:结构要求GB/T20047.1-2006

(十一)光伏系统性能监测测量、数据交换和分析导则GB/T20513-2006 (十二)(所有部分)交流1000V和直流1500V以下低压配电系统电气安全-防护措施的试验测量或监控设备GB/T18216 (十三)光伏系统并网技术要求GB/T19939 (十四)光伏(PV)系统电网接口特性GB/20046 (十五)地面用晶体硅光伏组件设计鉴定和定型IEC:61215 2005 (十六)并网光伏发电系统文件、试运行测试和检查的基本要求ICE:62446:2009 (十七)保护装置剩余电流动作的一般要求ICE/TR60755:2008 (十八)400V以下低压并网光伏发电专用逆变器技术要求和试验方法CNCA/CTS0004-2009 (十九)太阳能光伏发电运行规程 (二十)电力建设施工及验收技术规程DL/T5007 (二十一)太阳能光伏发电系统技术说明书、使用手册和安装手册 (二十二)太阳能光伏发电系统订货合同中的有关技术性能指标要求 (二十三)太阳能光伏发电系统基础设计图纸与有关标准 第二条验收组织机构 太阳能光伏发电工程调试完成后,建设单位组建验收领导小

太阳能电池技术方案设计设计

技术方案 太阳能电池的分类 (一)单晶硅太阳能电池 单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (二)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电效率约12%左右(2004年7月1日日本夏普上市效率为14.8%世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 (三)非晶硅太阳能电池 非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。

(四)多元化合物太阳电池 多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:a)硫化镉太阳能电池b)砷化镓太阳能电池c)铜铟硒太阳能电池(新型多元带隙梯度Cu(In,Ga)Se2薄膜太阳能电池)Cu(In,Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光硅薄膜太阳能电池明显提高的薄膜太阳能电池。可以达到的光电转化效率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。 工艺技术方案 根据产品方案,本项目主要生产工艺的流程采用国内较为成熟的工艺路线,基本上是从硅片的开箱检测与装盒开始,然后在加工车间去除油污及制裁、扩散制作表面PN结然后检测、等离子体刻蚀周边PN结及抽测效果、二次清洗,然后在表面处理车间完成制备薄膜减反射层、印刷背面电极、背电场、正面电极,然后经过高温烧结,最后经检测车间检测合格后入库。太阳能电池硅片生产工艺流程图如下:

(整理)太阳能电池IV特性测试仪.

太阳能电池IV特性测试仪 技术规范书 1 太阳能电池IV特性测试仪总则 1.1本规范书适用于光伏发电站并网验收、风电场接入并网验收、光伏逆变器型式试验、风力 发电机组的低电压穿越检测平台,包括主要设备及其辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2要求该检测平台能够同时满足现场安装在风电场的单台风电机组低电压穿越能力检测,满 足光伏发电站并网接入验收的低电压穿越能力检测,满足光伏逆变器与风电发电机组的型式试验的低电压穿越试验检测。 1.3本规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有 关标准和规范的条文。供方应保证提供符合本规范书和工业标准的优质产品。 2 太阳能电池IV特性测试仪使用条件 2.1环境条件 a) 户外环境温度要求:-40℃~ 50℃; b) 户外环境湿度要求:0~90% ; c) 海拔高度:0~2000米(如果超过2000米,需要提前说明)。 2.2安装方式:标准海运集装箱内固定式安装。 2.3储存条件 a)环境温度-50℃~50℃; b)相对湿度0~95% 。 2.4工作条件 a) 环境温度-40 oC~40oC; b) 相对湿度10%~90%,无凝露。 2.5电力系统条件 a) 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可以同时满足

10kV\20kV电网电压的试验检测。 b) 电网频率允许范围:48~52Hz; c) 电网三相电压不平衡度:<= 4%; d) 电网电压总谐波畸变率:<= 5%。 2.6负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。 2.7接地电阻:<=5Ω。 3 太阳能电池IV特性测试仪的技术要求 3.1 结构及原理要求 根据模拟实际电网短路故障的要求,测试系统须采用阻抗分压方式,原理如下图1所示(以实际为准)。测试系统串联接入风电机组出口变压器高压侧(35kV、20 kV、10 kV侧)。 图1 测试系统原理图 3.2 测试系统功能要求 (1)整体要求

非晶硅太阳能电池测试

薄膜太阳能电池测试: 1外观检测10.1 观察台,显微镜,相机等 2 最大功率确定10.2 符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,一个支架,|I-V 测试装置 3 绝缘试验10.3 耐压绝缘测试仪及一个可限流的直流电源 4温度系数的测试10.4符合IEC60904-9BBB等级太阳光模拟器,一个根据IEC60904-2校准的标准太阳能电池,温度测试仪,I-V 测试装置。烤箱(加温设备),支架。 5 电池标称工作温度的测量10.5 辐射计,温度测试仪(环境温度和电池温度),风速风向仪,支架 6 标准测试条件下和标称工作温度下的性能 10.6符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 7 低辐照度下的性能10.7符合IEC60904-9BBB等级太阳光模拟器,符合IEC60904-10辐照度计,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 8 室外曝露试验10.8符合IEC60904-9太阳能模拟器,辐射计,实验架等 9 热斑耐久试验10.9符合IEC60904-9CCB太阳光模拟器,I-V 测试装置,不透明挡板,组件电源供应器,红外热像仪。 10 紫外预处理试验10.10 UV 试验箱,UV辐射计及温度传感器 11 热循环试验10.11 环境实验箱-40°C--85°C,安装和支撑装置,温度测试仪。 12 湿-冻试验10.12 环境试验箱-40°C--85°C,安装和支撑装置,温度测试仪,检测内部 电连续的装置。 13 湿-热试验(双85)10.13 环境试验箱温度85°C 湿度85% 14 引线端强度试验10.14 拉力试验机 15 湿露电流试验10.15 试验水槽,温控水槽,加温系统,喷淋装置,控制柜,表面张力测定仪,电导率仪,程控绝缘耐压测试仪 16 机械负荷试验10.16 机械压力试验机及检测组件短路或漏电装置 17冰雹试验10.17 冷冻箱,冰球存储箱,发射装置,支架 电子天平,速度传感器。 18旁路二极管热性能试验10.18 电源,温度测试仪,烤箱(加温设备) 及测量接线盒旁路二极管电压仪器,监控电流装置。 19光老炼实验10.19 符合IEC60904-9CCB太阳光模拟器,带积分器的标准设备,支架,温度测试仪,电阻负载。

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能电池光伏组件技术协议

太阳能电池组件技术协议书 项目名称:内蒙古鑫盛太阳能科技有限公司 项目地点:内蒙古呼和浩特市、乌兰察布市 需方:内蒙古电力勘测设计院有限责任公司供方:内蒙古太格新能源有限公司 签订日期:2015年7月3日

需方:内蒙古电力勘测设计院有限责任公司 住所地:呼和浩特市锡林南路21号 法定代表人:王治国 供方:内蒙古太格新能源有限公司住,住所地:呼和浩特市赛罕区新桥靠 法定代表人:高兴 根据《中华人民共和国合同法》等相关法律法规,供方和需方(以下简称“双方”)本着诚实信用、平等互利的原则,经友好协商,于二零一五年六月日在呼和浩特市就多晶太阳能组件(以下简称“货物”)的购销事宜,签订本技术协议,内容如下: 一.供货范围 1.1.包各电站组件配置表(光伏组件要求:255Wp/每片) 二、基本性能要求 2.1.总则

2.1.1.本技术规范书适用光伏电站项目之晶体硅太阳能光伏组件采购供货项目。 2.1.2.本技术规范书提出的为最低限度的要求,并未对一切细节做出规定,也未充分引述有关标准和规范的条文。供货方应保证提供符合本技术规范书和有关最新工业标准的优质产品。 2.1. 3.本技术规范书所使用的标准如与供货方所执行的标准发生矛盾时,按较高标准执行。 2.1.4.本技术规范书经双方签字认可后作为订货合同的附件,与合同正文具有同等效力。2.1.5.在签定技术协议之后,需方保留对本规范书提出补充要求和修改的权利,供方应允诺予以配合。如提出修改,具体项目和条件由供、需双方商定。 2.1.6.产品必须通过金太阳认证。 2.2.标准和规范 供货设备应符合本技术条款的要求,本技术规范未作规定的要求按照下述标准执行。除本规范对标准和规范另有规定,供货项下所使用和提供的所有设备、器件、材料和所有设计计算及试验应根据以下最新版本的标准和规程、或经批准的其他标准或同等的适用于制造国的其他相关标准。如提供的设备或材料不符合如下标准,其建议标准和以下标准之间的所有详细区别应予以说明,供方应就其可能影响设备设计或性能内容的标准用中文文本提供给供货人,供其批准。 (1)国际电工委员会标准: IEC 61215-2005 《地面用晶体硅光伏组件设计鉴定和定型》 IEC 61345-1998 《太阳电池组件的紫外试验》 IEEE 1262-1995 《太阳电池组件的测试认证规范》 (2)国家标准: GB2297-1989 《太阳光伏能源系统术语》 GB6497-1986 《地面用太阳电池标定的一般规定》 GB 6495.1-1996 《光伏器件第1部分:光伏电流-电压特性的测量》 GB 6495.2-1996 《光伏器件第2部分:标准太阳电池的要求》 GB 6495.3-1996 《光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据》GB 6495.4-1996 《晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法》 GB 6495.5-1997 《光伏器件第5部分:用开路电压法确定光伏(PV)器件的等效电池温度(ECT)》 GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的光谱失配误差的计算》

光伏发电工程验收规范GBT50796-2012

光伏发电工程验收规范(GB/T 50796-2012) 1总则 1.0.1为确保光伏发电工程质量,指导和规范光伏发电工程的验收,制定本规范。 1.0.2本规范适用于通过380V及以上电压等级接人电网的地面和屋顶光伏发电新建、改建和扩建工程的验收,不适用于建筑与光伏一体化和户用光伏发电工程。 1.0.3光伏发电工程应通过单位工程、工程启动、工程试运和移交生产、工程竣工四个阶段的全面检查验收。 1.0.4各阶段验收应按要求组建相应的验收组织,并确定验收主持单位。 1.0.5光伏发电工程的验收,除按本规范执行外,尚应符合国家现行有关标准的规定。

2术语 2.0.1光伏发电工程photovoltaic power project 指利用光伏组件将太阳能转换为电能、并与公共电网有电气连接的工程实体,由光伏组件、逆变器、线路等电气设备、监控系统和建(构)筑物组成。 2.0.2光伏电站photovoltaic power station 指利用光伏组件将太阳能转换为电能、并按电网调度部门指令向公共电网送电的电站,由光伏组件、逆变器、线路、开关、变压器、无功补偿设备等一次设备和继电保护、站内监控、调度自动化、通信等二次设备组成。 2.0.3光伏发电单元photovoltaic power unit 光伏电站中,以一定数量的光伏组件串,通过直流汇流箱多串汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。这种一定数量光伏组件串的集合称为光伏发电单元。 2.0.4观感质量quality of appearance 通过观察和必要的量测所反映的工程外在质量。 2.0.5绿化工程plant engineering 由树木、花卉、草坪、地被植物等构成的植物种植工程。 2.0.6安全防范工程security and protection engineering 以保证光伏电站安全和防范重大事故为目的,综合运用安全防范技术和其他科学技术,为建立具有防入侵、防盗窃、防抢劫、防破坏、防爆安全检查等功能(或其组合)的系统而实施的工程。

单晶硅太阳能电池制作工艺

单晶硅太阳能电池/DSSC/PERC技术 2015-10-20 单晶硅太阳能电池 2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH 的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。本文介绍的是晶硅太阳能电池片生产的一般工艺与设备。 一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术

2020年 太阳能组件玻璃检验标准 A-0-工艺部-三级文件-安全作业管理

文件制修/ 订记录表

1 目的 明确玻璃检验标准. 2 范围 本规范适用于各种规格型号太阳能组件专用玻璃的进厂质量检验。 3 定义 无 4 相关文件 《太阳能电池组件玻璃检验作业检验指导书》 GB/T9963-1998钢化玻璃国家检验标准 5 职责 5.1 质量部:依照标准制定相应检验指导书。 5.2 采购部:将标准传递至供应商,并与供应商签订技术协议。 6 管理内容 6.1 外观检验

6.2 几何尺寸检验 6.2.1 长度,宽度符合订货协议要求,允许偏差为±1.0mm。 6.2.2 厚度尺寸公差为±0.2mm。 6.2.3 对角线L﹤1000mm,偏差为≤1.5mm;1000mm≤L≤2000mm,偏差为≤3mm 3.2.4 倒角 2.0mm~5.0mm 6.3 性能检验 6.3 性能检验 6.4 检测仪器,仪表及工卡量具 钢板尺或钢卷尺、游标卡尺或千分尺、钢球。 6.5 检验方法 6.5.1 外观检验 在较好的自然光或自然散射光下,距玻璃表面600mm用肉眼进行观察,必要时使用 放大镜进行检查。 6.5.2 尺寸检验 依据订货协议技术要求用钢板尺或钢卷尺进行多点长宽尺寸测量,取其平均值;用 精度为0.01mm的千分尺测量玻璃各边中心的厚度,取其平均值。 6.5.3 弯曲度检验 以平面钢化玻璃制品为试样。试样垂直立放,水平放置直尺贴紧试样表面进行测量。 弓形时以弧的高度与弦的长度之比的百分率表示。波形时,用波谷到波峰的高与波

峰到波峰或波谷到波谷的距离之比的百分率表示。 6.5.4 机械强度检验 6.5.4.1 将试样放置在高50mm宽15mm与试样外形尺寸大小一致的木框上。 6.5.4.2 将重1040g的钢球自1.0m高度自由落下,冲击点应距试样中心25mm范围 内。每块试样中心只限一次。(备注:试样玻璃单独放置,不可流入生产线使用) 6.5.4.3 试样完好无损。 6.5.5 其它各项性能检验以采购部从厂家索取的性能检验报告为准,性能检验报告完全符 合3.3标准条款时方可认为性能合格,否则认为性能指标不合格。(针对不同厂家、 不同项目定期进行委托检验). 7 安全 无 8 职工健康 无 9 记录 无 10 附件 无

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

太阳能电池板测试方案

如何在迅速变化的测试环境中降低测试成本和提高测试灵活性 目录 引言/1 太阳能电池及电池板的电测试/2用两象限电源测试太阳能电池/3 用电子负载测试太阳能电池及 电池板/5 Agilent的太阳能电池和电池板开关和测量解决方案/7 用高速多路输出电源系统进行 暗I-V特性测试/9 结论/11引言 爆炸性增长的太阳能产业对太阳能电池及电池板测试和测量解决方案有极为紧迫的需要。今天的太阳能电池及电池板测试和测量解决方案有两种主要形式: 全套承包解决方案,以及利用现有的测试设备、通过系统集成和软件开发构建的自动测试系统。如果您选择全套承包解决方案,就可快速启用和运行测试系统。伴随这一好处的代价是不菲的成本,并会面临因技术迅速发展带来产品很快过时的现实风险。 通过系统集成能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试需要更高的精度或更宽的电流范围,需要更换的就只是系统中的模块,而不是整个系统。此外,如果您已很好处理了标准化和重复利用,就能跨各种测试系统平台重复使用各种测试系统的仪器和模块。 Agilent有众多的电源、测量和开关产品,您可将它们作为功能模块,用以表征太阳能电池和电池板的电气特性。这篇应用指南着重评述能适应迅速变化的测试环境,降低成本,不牺牲性能,并提高测试灵活性的测量仪器。本文将帮助您选择应对太阳能电池和电池板测试挑战的最佳解决方案。

太阳能电池阵列测试一览 表1: 太阳能电池和电池板测试解决方案太阳能电池和电池板 电气测试基础 太阳能电池 级的测试为研究、质量保证和生产所需。对于不同的行业,如用于太空或者在地面,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必须测量的重要参数:●开路电压 (V oc )没有电流时的电池电压●短路电流 (I sc )负载电阻为零时从电池流出的电流●电池最大功率输出 (P max )电池产生最大功率时的电压和电流点通常把I-V 曲线上的Pmax 点作为最大功率点 (MPP)●Pmax 的电压 (Vmax)电池在Pmax 的电压电平●Pmax 的电流 (Imax)电池在Pmax 的电流电平●器件的转换效率 (η)太阳能电池接到电路时转换 (从吸收光的电能) 和收集功率的百分比。计算方法是用标准条件 (STC) 和太阳能电池表面积 (A c ,单位是m 2) 下的最大功率点Pmax 除以输入光辐照度 (E ,单位是W/m 2)●填充因子 (FF)最大功率点Pmax 与开路电压 (V oc ) 及短路电流 (I sc ) 之比●电池的二极管特性●电池的串联电阻●电池的旁路电阻太阳能电池开路电压 (V oc ) 一般在3 V 至0.6 V 范围,短路电流 (I sc ) 通常低于8A 。太阳能电池板通常定义为封装和连接在一起的一个以上电池。太阳能电池板有不同的电压和电流范围,但功率产生能力一般为50 W 至300 W 。太阳能电池和电池板有许多相同的需要测试参数,如V oc , I sc , P max 和I-V 曲线。 图1: 太阳能电池I-V 曲线

第三章 太阳电池测试

第三章太阳电池测试 3.1太阳模拟器 3.1.1概述 太阳电池是将太阳能转变成电能的半导体器件,从应用和研究的角度来考虑,其光电转换效率、输出伏安特性曲线及参数是必须测量的,而这种测量必须在规定的标准太阳光下进行才有参考意义。如果测试光源的特性和太阳光相差很远,则测得的数据不能代表它在太阳光下使用时的真实情况,甚至也无法换算到真实的情况,考虑到太阳光本身随时间、地点而变化,因此必须规定一种标准阳光条件,才能使测量结果既能彼此进行相对比较,又能根据标准阳光下的测试数据估算出实际应用时太阳电池的性能参数。 3.1.2太阳辐射的基本特性 3.1.2.1几个描述光的物理概念: (1)发光强度。按照1979年第16届国防计量会议(CGPN)确定,以坎德拉(cd)为发光强度的计量单位。坎德拉是一光源在给定的方向上的光强度,该光源发出频率为5401012Hz的光学辐射,且在此方向上的辐射强度为1/683WSr-1 (2)光通量。光通量的单位是流明(lm),它用来计量所发出的总光量,发光强度为1cd的点光源,向周围空间均匀发出4流明的光能量。 (3)光强度。指照射于一表面的光强度,它用勒克斯(lx)作为单位,当1lm光通量的光强射到1m2面积上时,该面积所受的光照度(简称照度)就是1lx。 (4)辐射度,通常称为光强,即入射到单位面积上的光功率,单位是W/m2或mw/cm2。 3.1.2.2辐照度及其均匀性

对空间应用,规定的标准辐照度为1367w/m2(另一种较早的标准规定为1353 w/m2),对地面应用,规定的标准辐照度为1000 w/m2。实际上地面阳光和很多复杂因素有关,这一数值仅在特定的时间及理想的气候和地理条件下才能获得。地面上比较常见的辐射照度是在600~900 w/m2范围内,除了辐照度数值范围以外,太阳辐射的特点之一是其均匀性,这种均匀性保证了同一太阳电池方阵上各点的辐照度相同。 3.1.2.3光谱分布 太阳电池对不同波长的光具有不同的响应,就是说辐照度相同而光谱成分不同的光照射到同一太阳电池上,其效果是不同的,太阳光是各种波长的复合光,它所含的光谱成分组成光谱分布曲线,而且其光谱分布也随地点、时间及其它条件的差异而不同,在大气层外情况很单纯,太阳光谱几乎相当于6000K的黑体辐射光谱,称为AMO光谱。在地面上,由于太阳光透过大气层后被吸收掉一部分,这种吸收和大气层的厚度及组成有关,因此是选择性吸收,结果导致非常复杂的光谱分布。而且随着太阳天顶角的变化,阳光透射的途径不同吸收情况也不同。所以地面阳光的光谱随时都在变化。因此从测试的角度来考虑,需要规定一个标准的地面太阳光谱分布。目前国内外的标准都规定,在晴朗的气候条件下,当太阳透过大气层到达地面所经过的路程为大气层厚度的1.5倍时,其光谱为标准地面太阳光谱,简称AM1.5标准太阳光谱。此时太阳的天顶角为48.19,原因是这种情况在地面上比较有代表性。 3.1.2.4总辐射和间接辐射 在大气层外,太阳光在真空中辐射,没有任何漫射现象,全部太阳辐射都直接从太阳照射过来。地面上的情况则不同,一部分太阳光直接从太阳照射下来,而另一部分则来自大气层或周围环境的散射,前者称为直接辐射,后者称为天空辐射。二部分合起来称为总辐射,在正常的大气条件下,直接辐射占总辐射的75%以上,否则就是大气条件不正常所致,例如由于云层反射或严重的大气污染所致。 3.1.2.5辐照稳定性 天气晴朗时,阳光辐照是非常稳定的,仅随高度角而缓慢的变化,当天空有浮云或严重的气流影响时才会产生不稳定现象,这种气候条件

单晶硅太阳电池性能测试实验

实验一、单晶硅太阳电池特性测试 一、 实验目的 1.了解单晶硅太阳电池的工作原理和结构。 2.了解单晶硅太阳电池的外特性。 3.了解单晶硅太阳电池外特性的影响因素。 二、 实验仪器 1.单晶硅太阳电池板 一块 2.单晶硅太阳电池阵列 一块 3.光源(氙灯) 一套 4.调压器 一台 5.数字万用表 两块 6.定值变阻 若干 7.光辐射计 一块 三、 实验任务 1. 模拟太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 测量记录日期、时间和地点,绘制电池的外形结构图并记录电池几何参数(用于计算电池面积),并记录太阳光当时辐射强度,按照图1所示实验原理图接线。 (1) 在室内太阳光模拟器下,分别测试光强为1 sun (1000 W/m 2)、0.5 sun (500 W/m 2)下的电池短路电流(I sc )和空载电压(U oc ),以及输出外 特性曲线。 (2) 具体测量方法:分别在上述一定光强下,逐步改变电阻箱(负载)的阻值R L ,分别测量电池两端的I 和U 。根据测量结果绘制上述不同条件下的电池外特性曲线。 图1 单晶硅电池阵列外特性测试

2.自然太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 (1)选择户外有太阳光的地方,记录天气状况,测试时间,并测试太阳 光辐射强度; (2)改变单晶硅电池板与地平线的夹角,分别测量在0o、30o和45o夹 角下,电池的短路电流(I sc)和空载电压(U oc)。 (3)分别在上述夹角下,逐步改变电阻箱的阻值(即负载电阻)R L,测 量不同电阻值下的电池两端的I和U,以绘制上述不同条件下的电 池外特性曲线。 3.单晶硅太阳电池电池阵列板的的输出外特性 测量记录日期、时间和地点;记录太阳电池阵列的结构与几何尺寸,应于估算电池面积;记录天气状况、太阳光当时辐射强度,按照图1所示实验原理图接线。 (1)在太阳光照下,水平放置电池阵列板,先测试出在当前光照下的短路电 流(I sc)和空载电压(U oc),在逐步改变负载,测量电池阵列的输出外 特性。 (2)用黑色遮光板遮住一半面积的阵列板,记录电池的短路电流(I sc)和空 载电压(U oc),进一步测量该条件下的外特性曲线。 四、实验结果 1.绘制单电池与阵列板串并联方式简图,标明单电池与电池阵列的有效面积。 单电池有效面积:10.84cm2 电池阵列有效面积:36*10.84cm2 2.整理实验数据,分别绘出单晶硅电池单电池、电池阵列板在不同测试条件下的外特性。 (1)自然光条件下: 0度

相关文档
相关文档 最新文档