文档库 最新最全的文档下载
当前位置:文档库 › 基因工程载体和工具酶

基因工程载体和工具酶

基因工程载体和工具酶
基因工程载体和工具酶

基因工程的载体和工具酶

第一节 载体

引言 基因克隆的本质是使目的基因在特定的条件下得到扩增和表达, 制和表达、不易进入受体细胞、不能稳定维持,所以就必须借助于 来实现。

作为基因克隆的载体必须具备以下特性: ⑴载体必须是复制子。 ⑵具有合适的筛选标记,便于重组子的筛选。 ⑶具备多克隆位点(MCS ),便于外源基因插入。 ⑷自身分子量较小,拷贝数高。 ⑸在宿主细胞内稳定性高。

一、质粒载体

(一) 质粒的生物学特性

(1) 质粒是独立于染色体以外的能自主复制的裸露的双链环状 (少数为线形和 RNA ) DNA 分

子。

广泛从在于细菌细胞中, 比病毒更简单。 在霉菌、 蓝藻、 酵母和一些动植物细胞中也发现了 质粒, 目前对细菌的质粒研究得比较深入, 特别是大肠杆菌的质粒。 大肠杆菌的质粒主要有 F 质粒(F 因子)、R 质粒(抗药性因子)和 Col 质粒(大肠杆菌素因子)三种。

(2) 质粒的大小差异很大,最小的只有 1kb,只能编码中等大小的 2-3种蛋白质分子,最大 的达到 200kb 。

( 3 )质粒的生存在寄主细胞中 “友好 ”地“借居”,离开了寄主它本身无法复制;同时质粒往 往有宿主专一性,如大肠杆菌的复制起点不一定能在其它生物细胞中繁殖。

(4) 质粒的复制类型一种质粒在宿主细胞中存在的数目称为该质粒的拷贝数。据拷贝数将 质粒分为两种复制型: 严紧型"质粒(stigent plasmid ),拷贝数为1-3 ;松弛型"质粒(relaxed plasmid ) ,拷贝数为 10-60。不过即使是同一质粒, 其拷贝数在不同的寄主细胞间和不同的生 长环境也可能有很大的变化。 (5)

质粒的不亲和性 两种亲缘关系密切的不同质粒不能在同一宿主细胞中稳定共存。 载体

质粒与受体的质粒应是不同的不亲和群。 ⑹ 质粒的转移

转移性质粒,含有 tra 基因;能通过结合作用从一个细胞转移到另一个细胞。 非转移性质粒,不含 tra 基因;可以为转移性质粒所带动转移。

( 7)质粒的存在形式有超螺旋、开环双螺旋和线状双螺旋三种,

(二) 质粒 DNA 的制备 有多种分离质粒的方法,如碱裂解法、煮沸裂解法、层析柱过滤法等。

目前一般使用碱变性法制备质粒 DNA 。这个方法主要包括培养收集细菌菌体,裂解

细胞,将质粒 DNA 与染色体 DNA 分开及除去蛋白质和 RNA 。

1. 碱变性法质粒提取的原理: 根据共价闭合环状质粒 DNA 与线性染色体 DNA 片断之间,在拓扑学上的差异而发展 出来的。

在pH 值12.0?12.5范围内时,线性的 DNA 会被变性而共价闭合环状质粒 DNA 却不 会被变

性。

通过冷却或恢复中性 pH 值使之复性,线性染色体形成网状结构,而 cccDNA 可以准确 迅速复性, 通过离心去除线性染色体,获得含有 cccDNA 的上清液,最后用乙醇沉淀,获得 质粒 DNA 。 2. 碱变性法提取质粒的步骤:

而目的基因本身无法进行复

“载体 ”及其“寄主细

(1)取 1.5 毫升含质粒的大肠杆菌过夜培养物,加在微量离心管中,离心收集细胞沉淀;

(2)加入100 微升冰冷的溶液I,(50mM 葡萄糖,25mM Tris-HCl PH=8.0, 10mM EDTA ) 涡旋震荡悬浮菌液。

(3)加入200微升新配制的溶液II , (0.2M NaOH , 1.0%SDS)缓缓混匀置室温5分钟。

(4)加入150毫升冰冷的溶液III ,(醋酸钾29.4克,冰乙酸11.5毫升,加蒸馏水至100毫升)颠倒离心管10次后,冰浴5分钟。

(5)离心的上清液用苯酚抽提数次,用乙醇沉淀收集质粒DNA 。

(三)质粒载体的改造

⑴去掉不必要的DNA 区段。

⑵减少限制酶的识别位点,一种酶只保留一个。(单一的限制性酶切位点)。

⑶加入易于捡出的选择性标记基因。

⑷对质粒进行安全性改造,要求质粒不能随便转移。

⑸改造或增加基因表达的调控序列。

1 、质粒pBR322

结构:

( 1 )氨苄青霉素抗性基因( ampr 或Apr)

内部有 3 种限制酶单一识别位点。

( 2)四环素抗性基因( tetr 或Tcr)

内部有7 种,启动区内有 2 种限制酶单一识别位点。

( 3) DNA 复制起点( ori) pBR322 质粒的优点:

( 1 )具有较小的分子量。

4363bp , 2.6X 106Da,

(2)具有两种抗菌素抗性基因可供作转化子的选择记号。

(3)具较高的拷贝数,而且经过氯霉素扩增之后

,每个细胞中可累积1000?3000个拷贝。(4)对多种常见的限制性内切核酸酶只含有一个能切割的位点。

2、pUC 质粒载体

1987 年,J.Messing 和J.Vieria 采用MCS 技术在pBR322 基础上构建的。结构:

( 1 )来自于pBR322 的Ori

(2)氨苄青霉素的抗性基因(ampr)。但核苷酸序列发生了变化

(3)LacZ '基因

编码B —半乳糖酶的a —肽链即氨基末端。

( 4) MCS 区段

是一段用于插入外源DNA 片段的特定区域,由一系列的紧密相连的限制性内切酶位点组成,而且每个限制性内切酶位点在整个载体中是唯一的。

与pBR322 相比,pUC 质粒载体优点:

(1)具有更小的分子量和更高的拷贝数

女口pUC8为2 750bp, pUCI8为2 686bp,控制质粒复制rop基因的缺失,平均每个细

胞即可达500?700个拷贝

(2)适用于组织化学法检测重组体

通过-互补作用,利用菌落颜色筛选重组子。

(3)具有多克隆位点区段(MCS )可以定向克隆防止载体自我连接。

二、噬菌体载体

(一)噬菌体载体

1. 噬菌体的生物学特性烈性噬菌体:只具有溶菌生长周期

温和噬菌体:具有溶源生长周期和溶菌生长周期溶菌周期指噬菌体将DNA 注入寄主细胞后很快环化,然后进行自我复制、蛋白衣壳合成和新噬菌体颗粒的组装,最后使寄主细胞破裂而释放出大量的子代噬菌体。

溶源周期中,注入寄主细胞的噬菌体DNA 是整合到寄主细胞染色体上并可以随着寄主细胞的分裂而进行复制。

整合了一套完整的噬菌体基因组的细菌被称为溶源性细菌。在溶源性细菌内存在的整合或非整合的噬菌体DNA 被称为原噬菌体。

2. 噬菌体的生物学特性

⑴组成:蛋白质外壳和线状双链DNA分子组成。

DNA长度为48502bp,在分子两端各有12个碱基的单链互补粘性末端。当其注入到寄主细胞中后,可以迅速通过这两个粘性末端的互补作用形成双链的环形DNA 分子。上述通过

粘性末端互补形成的双链区被称为cos 位点(cohesive end site).

⑵是一个温和噬菌体一般以溶源生长进行增殖,胁迫条件下也会进入溶菌生长周期。

⑶复制

溶源周期随溶源细菌染色体一起复制

溶菌周期的早期是"复制,晚期进行滚环复制

⑷基因组成

DNA 至少包括61 个基因,大多基因按功能相似性成簇排列,其中一部分为噬菌体生命活动的必须基因,另一部分约1/3 为非必须区段。

3. 噬菌体载体的类型

插入型(Insertion vectors )

这种载体仅仅有一个可供外源DNA 插入的克隆位点。

如:入gt10、入gt11

克隆能力小,不到10kb

置换型(Replacement vectors)

这种载体具有两个对应的酶切克隆位点,在两个位点之间的入DNA区段是入噬菌体的非必

需序列,可以被外源插入的DNA 取代。

如Charon 4 载体

克隆能力大,20?25kb

(二)M13 噬菌体

1、丝状噬菌体M13 噬菌体的生物学特性

⑴是单链闭合环状噬菌体

只能感染雄性细菌,外形成丝状,基因组DNA长约6.4kb,可分为10个区和507 bp基因间

隔区(IS区),该区可以接受外源DNA的插入而不会影响到噬菌体的活力。这是该噬菌体

能用于单链DNA载体的重要前提。

⑵复制与增殖(图)

2. M13噬菌体载体的构建

⑴ 在IS区内插入LacZ基因⑵在标记基因区内组装MCS区段

所以能通过互补在X-Gal/ IPTG平板上识别重组体。这类载体包括了M13mp8、9和

M13mp18、19 等

这类载体的突出优点在于其既可以提供单链DNA,也可以提供双链的DNA。其最大的不足

在于插入大的DNA片段后表现不稳定,在噬菌体增殖过程中容易发生缺失。所以一般克隆的片段在1kb之内,克隆300-400bp的片段十分稳定。

(三)柯斯质粒载体

1?柯斯质粒载体的特点

柯斯质粒是一类人工构建的含有DNA的cos序列和质粒复制子的特殊类型的质粒载体,

cosmid 是cos site carrying plasmid 的缩写。

柯斯质粒的大小为4-6kb,

由3部分组成:

A. 多克隆位点区

B. 含有cos位点的DNA区

C. 复制起始位点和抗性标记区

2?柯斯质粒载体的特性

1、具有噬菌体的特性柯斯质粒连接上适宜长度的外源DNA后可以在体外包装成噬菌体

颗粒,并能高效转导寄主细胞。进入寄主细胞的DNA也能环化和复制,但是不会形成新的

噬菌体颗粒,也不能发生溶菌现象。

2、具有质粒载体的特性能象质粒一样在寄主细胞内复制,且带有抗性选择标记基因,有些还带有插入失活型的多克隆位点,为重组体的筛选提供了方便。

3、高容量的克隆能力cos质粒本身很小,只有复制起点、选择标记和cos位点等构成,所

以其克隆上限可达45kb左右。不过由于包装的限制,其克隆片段至少要达到30kb。

第二节基因操作的工具酶

一、限制性核酸内切酶及其应用

(一)限制性核酸内切酶的发现

当入(k)噬菌体侵染E.coliB时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而 E.coliB 的DNA 中虽然也存在这种特异序列,但可在EcoB 甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM )将甲基转移给限制酶识别序列的特定碱基,使之甲基化。EcoB

核酸酶不能识别已甲基化的序列。

最早分离出的限制内切酶是在1968年,Meselson和Yuan,大肠杆菌B和K菌株,EcoB 和EcoK,是I 型的,没有实用价值。

首个II 型限制内切酶是在1970年,由H.O.Smith 等从Heamophilus influenzae 的Rd 菌株中Hind II 。使得DNA 分子的体外精确切割成为可能。

从此, 相关研究展开。如NEB 公司的提取和克隆。目前已纯化出3000 种限制性内切酶中,其中有30%是在NEB 发现的。

限制性核酸内切酶(restriction endonuclease ):是一类能够识别双链DNA 分子中的某种特定核苷酸序列, 并由此切割DNA 双链结构的核酸内切酶。切开的是3, 5-磷酸二酯键。

(二)限制性核酸内切酶的分类

分为I 型、II 型和III 型。

(三)限制性核酸内切酶的命名

1、寄主菌属名的第一个字母和种名的头两个字母组成 3 个斜体

字母的略语表示酶来源的菌种名称,如大肠杆菌Escherichia coli 表示为Eco , 流感嗜血菌Haemophilus influenzae 表示为Hin ;

2、用一个正体字母表示菌株的类型,比如EcoR、Hind;

3、如果一种特殊的寄主菌株具有几个不同的限制修饰体系, 则用罗马数字标出, 比如Eco R I、Hind III。

(四)II 型限制性核酸内切酶的基本特性

1、识别位点的特异性

每种酶都有其特定的DNA识别位点,通常是由4?8个核苷酸组成的特定序列(靶序列)。2、识别序列的对称性

靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构。

3、切割位点的规范性

交错切或对称切(可形成粘性末端或平末端的DNA 分子)。

与II 型核酸内切酶有关的几个概念粘性末端:cohesive ends 是指DNA 分子在限制酶的作用之下形成的具有互补碱基的单链延伸末端结构,它们能够通过互补碱基间的配对而重新环化起来。

平末端:Blunt end 在识别序列对称处同时切开DNA 分子两条链, 产生的平齐末端结构。则不易于重新环化。

同裂酶:isoschizomers 能识别和切割同样的核苷酸靶序列的不同来源的内切酶。不同同裂酶对位点的甲基化敏感性有差别。

同尾酶:isocaudamers 识别的靶序列不同,但能产生相同粘性末端的一类限制性核酸内切酶。女口BamH I、BclI、BglII和Xho I是一组同尾酶。

注意:由同尾酶产生的粘性末端序列很容易重新连接,

但是两种同尾酶消化产生的粘性

末端重新连接形成的新片段将不能被该两种酶的任一种所识别。

(五)限制性核酸内切酶的消化反应

一个限制酶单位(U )指:在理想的反应条件(适宜的缓冲液和反应温度,通常为37C)下,1h 内中完全降解 1 g DNA 所需要的酶量。

影响酶活性的因素很多,最重要的有:

⑴ DNA 的纯度

⑵ DNA 的甲基化程度

⑶ 酶切反应的温度(通常为37 C )

⑷ DNA 的分子结构

⑸ 核酸内切限制酶的缓冲液

在“非最适的”反应条件下,有些核酸内切限制酶识别序列的特异性便会发生“松动”,从

其“正确”识别序列以外的其它位点切割DNA 分子,这种现象叫星号活性。用*表示。

二、DNA 连接酶及其应用

(一)DNA 连接酶的发现

环形DNA 分子的发现使科学家相信一定有一种能连接这种切口的酶存在。

首个DNA 连接酶(ligase)——大肠杆菌DNA 连接酶,是1967 年发现的,是大肠杆菌基因编码。

1970 年,发现了T4DNA 连接酶,由大肠杆菌T4 噬菌体基因编码的。

(二)DNA 连接酶作用特点

1. 连接的两条链必须分别具有自由3 - OH和5'—P,而且这两个基团彼此相邻;

2. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程。

E.coli DNA 连接酶—连接具互补碱基黏性末端(最初研究表明),现在研究可连接平末端;需NAD+ 辅助因子,活性低,不常用。

T 4DNA连接酶—连接具互补碱基黏性末端和平末端,需ATP辅助因子,活性高,常用。

(三)DNA 连接酶的反应条件

影响连接效率的因素有:

1. 温度(通常在4-15 C )

2. ATP 的浓度(10 卩M/ L - 1 M / L )

3. 连接酶浓度(一般平末端大约需1?2U,黏性末端仅需0.1U)

4. 反应时间(通常连接过夜)

5. 插入片段和载体片段的摩尔比( 1 : 1?5 : 1)

(四)T4 DNA连接酶对目的DNA片段和载体连接的一般方案

1.连接反应一般在灭菌的0.5ml 离心管中进行。

2. 10卩I体积反应体系中:取载体50-100ng,加入一定比例的外源DNA分子(一般线性载体DNA 分子与外源DNA分子摩尔数为1 : 1?5 :1),补足ddH20至8卩I。

3. 轻轻混匀,稍加离心,56C水浴5min后,迅速转入冰浴。

4. 加入含ATP的10X Buffer 1卩l, T4 DNA连接酶合适单位,用ddH2O补至10卩l,稍加离心,在适当温度(一般14-16C)连接8-14hr。

三、D NA 聚合酶及其应用

(一)大肠杆菌DNA 聚合酶I

是Kornberg A. 1956年首先从大肠杆菌E。Coli细胞中分离出来的。它是一种多功能性的酶,包括 3 种不同的酶活力:

A. 5'f 3'聚合酶活性(模板,带3'—OH游离基团的引物、4dNTPs、Mg2+ )。

B. 双链特异性的5'T 3'核酸外切酶活性。

C. 3― 5'核酸外切酶活性。

从游离的双链或单链DNA的3'端降解。不过对于双链的降解可被5' -3'的多聚活性所抑制。主要是校正作用。

大肠杆菌DNA聚合酶I的三种用途

1?利用缺口转移法制备高比活度的DNA探针

禾U用其5 ' --3 '的外切酶活性及其聚合酶活性。

2?用于DNA连接前的大缺口填充

利用5' --3 '的聚合酶活性。

3?用于DNA的序列分析

利用5' --3 '的聚合酶活性。

(二)Klenow片段酶

Klenow片段是大肠杆菌聚合酶I全酶经枯草杆菌蛋白酶处理后产生的大片段酶分子,

分子量为76KD 。

酶催活性:⑴5' T3'的聚合酶活性

⑵3' T5'的核酸外切酶活性

Klenow片段的主要用途(利用5' T3'的聚合酶活性):⑴修补限制性酶消化DNA形成的3 '隐蔽末端

⑵标记DNA片段的末端

底物用[a—32P]—dNTPs

⑶cDNA克隆中第二链cDNA的合成

⑷DNA序列的测定

(三)T4 DNA聚合酶

T4DNA聚合酶是从T4噬菌体感染了的大肠杆菌中分离出来的,1?酶催活性:

⑴5' T 3'的聚合酶活性

⑵3 ' T 5 '的核酸外切酶活性。其外切酶活性要比大肠杆菌聚合酶I的活性高200倍。

比Klenow 片段酶强100?1,000倍。

因此,可以综合利用这两种活性进行取代合成反应:

如果反应体系中仅存在一种dNTP或没有底物时,这时T4DNA聚合酶就会表现出3 ' T 5 '外切酶活力,从双链DNA的3'开始降解,直到露出底物dNTP相同的碱基。然后就在此位置发生合成和取代反应。

2.T4DNA聚合酶的用途

(1)利用取代合成反应制备探针

(2)标记具有平末端的或具有3'-隐蔽末端的DNA片段

利用较强的3 'T 5 '外切酶活性和5'T 3'聚合活性

(3)用于DNA序列分析

(四)逆转录酶(反转录酶)

逆转录酶是一种依赖RNA的DNA聚合酶。

此酶首先是1970年从鼠白血病毒和劳氏肉瘤病毒中发现的。这两个课题组的论文都发在了同一期的《Nature》杂志上。

最普遍使用的是从鸟类骨髓母细胞瘤病毒(AMV )分离出来的。

活性:一种可以有效地将mRNA 反转录成DNA 的酶,其产物称为cDNA(complementary DNA).

主要用途是将mRNA 转录成cDNA 以制备基因片段。

四、修饰性工具酶

(一)末端转移酶( terminal transferase ) 末端转移酶是一类不依赖于DNA 模板的DNA

聚合酶。特性:该类酶可以在没有模板链存在的情况下,将核苷酸连接到dsDNA 或ssDNA 的在3'-OH 。特别是对于平末端的双链DNA 末端加尾十分有用。

最常见的用途:给外源DNA 片段及载体分子加上互补的同聚物尾巴,以创造黏性末端,便

于重组。

基因工程中常用的三种工具酶

一、限制性核酸内切酶(restriction endonuclease) 1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。 2.类型:来自原核生物,有三种类型。 Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。 Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。 Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。 三种限制酶的区别如下表所示: Ⅰ型Ⅱ型Ⅲ型 DNA底物dsDNA dsDNA dsDNA 辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP 识别序列特异特异特异 切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处) 与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用 3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。另外用罗马数字代表同一菌株中不同限制酶的编号,现在常用来表示发现的先后次序。如HindⅢ是来自Haemophilus influenzae D(嗜血流感杆菌D 株第三种限制酶)。 4.切割位点和结果:限制酶位点在DNA链上是随机分布的,若识别位点为4bp,则44(256)个核苷酸可遇一个切点。若为6bp,则平均46(4096)个核苷酸才遇到一个切点。限制酶沿回文结构的对称轴切开,则产生平头末端(flush or blunt ends)如BalⅠ。多数限制酶错位

第二章 基因工程工具酶

第二章基因工程工具酶 第—节限制性核酸内切酶 第二节DNA连接酶 第三节DNA聚合酶 第四节末端脱氧核苷酸转移酶 第五节核酸酶 第六节核酸外切酶 第七节碱性磷酸酶 第八节T4噬菌体多核苷酸激酶 第—节限制性核酸内切酶 1、宿主的限制和修饰现象 2、限制性核酸内切酶的类型 3、限制性核酸内切酶的命名 4、Ⅱ型限制性核酸内切酶的基本特性 4.1识别位点的长度识别靶序列长度4、5、6 bp居多,也有识别7、 8bp的 4.2 识别序列结构:回文对称 4.3 切割位置:(1)内部(大多数);(2)两端(3)同裂酶与同尾酶 4.4 Ⅱ型限制性核酸内切酶不具有甲基化功能 4.5 Ⅱ型内切酶可以对单链DNA的切割 4.6 星号活性(star activity) (1)星活性产生的原因 (2)抑制星星活性的条件(措施) 5、Ⅱ型限制性核酸内切酶的酶切反应 5.1 标准酶解体系的建立 5.2 酶切反应的基本步骤 5.3 终止反应常用方法:

(1)加EDTA:(2)加SDS(3)加热:(4)其它 5.4 多酶联合酶解策略: (1)对盐浓度要求相同的酶,原则上可以同时酶切 (2)对盐浓度要求不同的酶,可采取下列方法 5.5 DNA分子酶切常用缓冲液 5.6 内切酶对DNA分子的不完全酶解 5.7 内切酶酶解反应中的注意事项 6、影响限制性核酸内切酶活性的因素 6.1. DNA的纯度 6.2 DNA的甲基化程度 6.3 酶切消化反应温度 6.4 缓冲液(Buffer) 6.5 DNA分子的构型 6.6 反应时间 6.7 酶量使用 第二节DNA连接酶 1、DNA连接酶的发现 2、概念及其特点 3、DNA连接酶的种类 ?大肠杆菌连接酶:只能连接粘性末端。 ?T4噬菌体的连接酶:不但能连接粘性末端,还能连接平末端。 ?T4噬菌体RNA连接酶:催化单链DNA或RNA的5’磷酸与相邻的3’羟基共价连接。 4、DNA连接酶的反应体系

基因工程的工具——酶与载体

1.2基因工程的基本操作程序 一、教材分析 《基因工程的基本操作程序》是人教版选修3专题1基因工程中第2节内容,本节是《基因工程》专题的核心,上承《DNA重组技术的基本工具》一节,下接《基因工程的应用》。 对于基因工程,学生接触得很少,文字描述中会感到抽象,为此,教材中采用形象化得呈现方式简述了基因工程基本操作程序的四个步骤。例如,基因文库中把基因组文库比作国家图书馆,而把cDNA文库比作某市图书馆,这样便于学生理解和掌握。此外,在教材处理中还呈现主干,割舍枝杈,将非主干内容以《生物技术资料卡》、《拓展视野》等方式呈现,做到有主有次。 二、学情分析 学生经过上一节的学习已经掌握DNA重组技术所需三种基本工具的作用及基因工程载体所需条件等知识,具备学习基因工程的基本操作程序一节的基础;而且经过一年必修教材的学习,学生的生物基础知识较扎实,思维的目的性、连续性和逻辑性已初步建立。但基因工程一节对学生来说难点较多,如果处理不好,会变成简单的死记硬背。因此在教学过程中,应在教师引导下适时加强学生解决问题和运用概念图等生物学语言归纳结论等方面的能力。 三、教学目标 3.1 知识目标 ⑴简述基础理论研究和技术进步催化了基因工程 ⑵简述基因工程的原理和基本步骤 3.2 能力目标 ⑴学会运用概念图总结基因工程的基本步骤及方法 ⑵尝试运用基因工程原理,提出解决某一实际问题的方案 3.3 情感态度与价值观 ⑴关注基因工程的发展 ⑵认同基因工程的应用促进生产力的提高 四、教学重点与难点 4.1 教学重点基因工程基本操作程序的四个步骤 4.2 教学难点 ⑴从基因文库中获取目的基因 ⑵利用PCR技术扩增目的基因 五、教学整体思路 采用从“整体-部分-整体”的教学思路,首先引用基因工程案例使学生从整体上了解基因工程的四个步骤,其次采用分步探究的形式帮助学生理解各个步骤的原理、方法和过程,最后教师引导学生用概念图将所学的知识从整体上再次整合。

第二章_基因工程中常用的工具酶

第二章基因工程中常用的工具酶 限制性内切酶—主要用于DNA分子的特异切割 DNA甲基化酶—用于DNA分子的甲基化 核酸连接酶—用于DNA和RNA的连接 核酸聚合酶—用于DNA和RNA的合成 核酸酶—用于DNA和RNA的非特异性切割 核酸末端修饰酶—用于DNA和RNA的末端修饰 其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。 §2-1 核酸内切限制酶 定义:核酸内切限制酶是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。 到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。核酸内切限制酶的发现及其生物功能(图) 一、限制修饰系统的种类(图) 二、限制性内切酶的定义、命名 1. 定义:广义指上述三个系统中的限制酶;狭义指II型限制酶。 2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。 例如:Hin dⅢ前三个字母来自于菌种名称H. influenzae,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。 Eco RI—Escherichia coli RI Hin dⅢ—Haemophilus influensae d Ⅲ Sac I (II)—Streptomyces achromagenes I (Ⅱ) 三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点 a.Ⅰ型核酸内切限制酶虽然能够识别DNA分子中的特定序列,但它们的切割作用却是 随机的,在距特异性位点至少1000bp的地方可以随机地切割DNA分子,因此这类酶在基因克隆中显然是没有用处的。——远距离随机切割 b. Ⅲ型核酸内切限制酶大约从距离识别序列25bp处切割DNA分子。——远距离定点 切割 c.Ⅰ型核酸内切限制酶和Ⅲ型核酸内切限制酶,在切割反应过程中,都会沿着DNA分 子移动,因此是一种需要能量的过程。——需要能量的反应 d.Ⅰ型和Ⅲ型核酸内切限制酶,一般都是大型的多亚基的复合物,既具有内切酶活性, 又具有甲基化酶活性。——内切酶活性和甲基化酶活性 四、Ⅱ型核酸内切限制酶的特点 (1)基本特点: ①在双链DNA分子上有一个特殊的靶子序列,即所谓的识别序列,并由此切割DNA 分子形成链的断裂;——识别序列 ②2个单链断裂部位在DNA分子上的分布,通常不是彼此直接相对的;——单链切割

基因工程基因操作过程中的工具酶

基因工程基因操作过程中的工具酶 09生物工程(2)班0902012010 摘要:基因工程涉及众多的工具酶可粗略的分为限制酶,连接酶,聚合酶和修饰酶四大类。其中,以限制性核酸内切酶和DNA连接酶在分子克隆中的作用最为突出。 关键词:基因工程工具酶聚合酶连接酶内切酶 正文:一、基因工程工具酶 基因工程的操作,是在分子水平上的操作,是依赖一些酶(如限制性核酸内切酶,连接酶,DNA聚合酶等)作为工具对基因进行人工切割,拼接和扩增等操作。 所以把这些酶称之为“工具酶”。工具酶是对野生菌株(或真核生物如酵母)进行改造、优化、而产生的生物工程产品。 自然界的许多微生物体内存在着一些具有特异功能的酶类。这些酶类参与微生物的核酸代谢,在核酸复制和修复等反应中具有重要作用,有的酶还作为微生物区别自己和非己的DNA进而降解非己DNA的防御工具。 在研究掌握了利用这些酶类对基因切割、拼接操作方法后,人类获得了最好的基因工程工具。 二、限制性核酸内切酶及其应用 (一)限制性核酸内切酶的发现 当λ(k)噬菌体侵染E.coli B时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而E.coli B的DNA中虽然也存在这种特异序列,但可在EcoB 甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM)将甲基转移给限制酶识别序列的特定碱基,使之甲基化。Eco B核酸酶不能识别已甲基化的序列。 最早分离出的限制内切酶是在1968年,Meselson和Yuan,大肠杆菌B和K 菌株,Eco B和Eco K,是I型的,没有实用价值。 首个II型限制内切酶是在1970年,由H.O.Smith等从Heamophilus influenzae 的Rd菌株中Hin d II 。使得DNA分子的体外精确切割成为可能。 从此,相关研究展开。如NEB公司的提取和克隆。目前已纯化出3000种限制性内切酶中,其中有30%是在NEB发现的。 限制性核酸内切酶(restriction endonuclease ):是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。切开的是3,5-磷酸二酯键。 (二)限制性核酸内切酶的分类 分为I型、II型和III型。

基因工程载体和工具酶

基因工程的载体和工具酶 第一节 载体 引言 基因克隆的本质是使目的基因在特定的条件下得到扩增和表达, 制和表达、不易进入受体细胞、不能稳定维持,所以就必须借助于 来实现。 作为基因克隆的载体必须具备以下特性: ⑴载体必须是复制子。 ⑵具有合适的筛选标记,便于重组子的筛选。 ⑶具备多克隆位点(MCS ),便于外源基因插入。 ⑷自身分子量较小,拷贝数高。 ⑸在宿主细胞内稳定性高。 一、质粒载体 (一) 质粒的生物学特性 (1) 质粒是独立于染色体以外的能自主复制的裸露的双链环状 (少数为线形和 RNA ) DNA 分 子。 广泛从在于细菌细胞中, 比病毒更简单。 在霉菌、 蓝藻、 酵母和一些动植物细胞中也发现了 质粒, 目前对细菌的质粒研究得比较深入, 特别是大肠杆菌的质粒。 大肠杆菌的质粒主要有 F 质粒(F 因子)、R 质粒(抗药性因子)和 Col 质粒(大肠杆菌素因子)三种。 (2) 质粒的大小差异很大,最小的只有 1kb,只能编码中等大小的 2-3种蛋白质分子,最大 的达到 200kb 。 ( 3 )质粒的生存在寄主细胞中 “友好 ”地“借居”,离开了寄主它本身无法复制;同时质粒往 往有宿主专一性,如大肠杆菌的复制起点不一定能在其它生物细胞中繁殖。 (4) 质粒的复制类型一种质粒在宿主细胞中存在的数目称为该质粒的拷贝数。据拷贝数将 质粒分为两种复制型: 严紧型"质粒(stigent plasmid ),拷贝数为1-3 ;松弛型"质粒(relaxed plasmid ) ,拷贝数为 10-60。不过即使是同一质粒, 其拷贝数在不同的寄主细胞间和不同的生 长环境也可能有很大的变化。 (5) 质粒的不亲和性 两种亲缘关系密切的不同质粒不能在同一宿主细胞中稳定共存。 载体 质粒与受体的质粒应是不同的不亲和群。 ⑹ 质粒的转移 转移性质粒,含有 tra 基因;能通过结合作用从一个细胞转移到另一个细胞。 非转移性质粒,不含 tra 基因;可以为转移性质粒所带动转移。 ( 7)质粒的存在形式有超螺旋、开环双螺旋和线状双螺旋三种, (二) 质粒 DNA 的制备 有多种分离质粒的方法,如碱裂解法、煮沸裂解法、层析柱过滤法等。 目前一般使用碱变性法制备质粒 DNA 。这个方法主要包括培养收集细菌菌体,裂解 细胞,将质粒 DNA 与染色体 DNA 分开及除去蛋白质和 RNA 。 1. 碱变性法质粒提取的原理: 根据共价闭合环状质粒 DNA 与线性染色体 DNA 片断之间,在拓扑学上的差异而发展 出来的。 在pH 值12.0?12.5范围内时,线性的 DNA 会被变性而共价闭合环状质粒 DNA 却不 会被变 性。 通过冷却或恢复中性 pH 值使之复性,线性染色体形成网状结构,而 cccDNA 可以准确 迅速复性, 通过离心去除线性染色体,获得含有 cccDNA 的上清液,最后用乙醇沉淀,获得 质粒 DNA 。 2. 碱变性法提取质粒的步骤: 而目的基因本身无法进行复 “载体 ”及其“寄主细 胞

基因工程的工具酶

基因工程的工具酶 限制性核酸内切酶 DNA连接酶 DNA聚合酶 碱性磷酸酶 末端脱氧核苷酸转移酶 限制性核酸内切酶 是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。 是体外剪切基因片段的重要工具 限制性核酸内切酶不仅是DNA重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定 防御机制: 任何物种都有排除异物、保护自身的防御机制 人:免疫系统 细菌:限制与修饰系统 寄主控制的限制与修饰现象 限制与修饰系统是细胞的一种防卫手段, 各种细菌都能合成一种或几种能够切割DNA 双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。这种现象被称为寄主控制的限制与修饰现象。 限制酶(restriction enzyme) 修饰酶(modifying enzyme) 核酸酶切位点: 既可以在3ˊ,5ˊ-磷酸二酯键的3ˊ酯键处(A), 也可以在5ˊ酯键处(B)切断磷酸二酯键

1)核酸限制性内切酶的类型 2)核酸限制性内切酶的基本特性 3)同裂酶和同尾酶 4)核酸限制性内切酶的命名法 5)影响核酸限制性内切酶活性的因素 限制性核酸内切酶的类型及特性 按照限制酶的组成、与修饰酶活性的关系以及切断核酸的情况不同,分为三类: Ⅰ型 Ⅱ型* Ⅲ型 第一类(I型)限制性内切酶: 能识别专一的核苷酸顺序 并在识别点附近的一些核苷酸上切割DNA分子中的双链 但是切割的核苷酸顺序没有专一性,是随机的 这类限制性内切酶在DNA重组技术或基因工程中用处不大,无法用于分析DNA结构或克隆基因 如:Eco B、Eco K等 第二类(II型)限制性内切酶: 能识别专一的核苷酸顺序(回文对称顺序) 并在该顺序内的固定位置上切割双链 是DNA重组技术中最常用的工具酶之一 这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10个和11个核苷酸的 回文对称顺序:有一个中心对称轴,从这个轴朝二个方向“读”都完全相同 切割后形成具有粘性末端(cohesive end)的DNA片段 切割后形成具有平末端(blunt end)的DNA片段 限制酶在识别序列的对称轴上切割,形成的DNA片段没有突出的单链

基因工程中常用的工具酶模板

第二章基因工程中常见的工具酶 限制性内切酶—主要用于DNA分子的特异切割 DNA甲基化酶—用于DNA分子的甲基化 核酸连接酶—用于DNA和RNA的连接 核酸聚合酶—用于DNA和RNA的合成 核酸酶—用于DNA和RNA的非特异性切割 核酸末端修饰酶—用于DNA和RNA的末端修饰 其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。§2-1核酸内切限制酶 定义: 核酸内切限制酶是一类能够识别双链DNA分子中的某种特定核苷酸序列, 并由此切割DNA双链结构的核酸内切酶。 到当前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。 核酸内切限制酶的发现及其生物功能( 图) 一、限制修饰系统的种类( 图) 二、限制性内切酶的定义、命名 1.定义: 广义指上述三个系统中的限制酶; 狭义指II型限制酶。 2.命名: 限制酶由三部分构成, 即菌种名、菌系编号、分离顺 序。 例如: Hin dⅢ前三个字母来自于菌种名称H.influenzae, ”d” 表示菌系为d型血清型; ”Ⅲ”表示分离到的第三个限制酶。 Eco RI—Escherichiacoli RI

Hin dⅢ—Haemophilusinfluensae dⅢ Sac I(II)—Streptomycesachromagenes I(Ⅱ) 三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点 a.Ⅰ型核酸内切限制酶虽然能够识别DNA分子中的特定序列, 但它们的切割作用却是随机的, 在距特异性位点至少1000bp的地方能够随机地切割DNA分子, 因此这类酶在基因克隆中显然是没有用处的。——远距离随机切割 b.Ⅲ型核酸内切限制酶大约从距离识别序列25bp处切割DNA分 子。——远距离定点切割 c.Ⅰ型核酸内切限制酶和Ⅲ型核酸内切限制酶, 在切割反应过程 中, 都会沿着DNA分子移动, 因此是一种需要能量的过程。——需要能量的反应 d.Ⅰ型和Ⅲ型核酸内切限制酶, 一般都是大型的多亚基的复合 物, 既具有内切酶活性, 又具有甲基化酶活性。——内切酶活性和甲基化酶活性 四、Ⅱ型核酸内切限制酶的特点 (1)基本特点: ①在双链DNA分子上有一个特殊的靶子序列, 即所谓的识别序 列, 并由此切割DNA分子形成链的断裂; ——识别序列 ②2个单链断裂部位在DNA分子上的分布, 一般不是彼此直接 相正确; ——单链切割部位 ③因此, 断裂的结果形成的DNA片段, 也往往具有互补的单链

基因工程的载体和工具酶

第二章基因工程的载体和工具酶 【教学时数】9小时 【教学目录与学时分配】 2.1 载体(6) 2.1.1 质粒载体 2.1.2 噬菌体载体 2.1.3 其他载体 2.1.4 穿梭载体与表达载体 2.2 工具酶(3) 2.2.1 限制性内切核酸酶 2.2.2 DNA聚合酶和Klenow大片段 2.2.3 DNA连接酶 2.2.4 碱性磷酸酶 2.2.5末端脱氧核苷酸转移酶 【教学目的】 让学生掌握什么是基因工程的载体,有哪些典型的基因工程载体,哪些常用的基因工程工具酶,什么情况下使用工具酶等基本常识。 【教学重点】 常用基因工程载体的结构、工具酶的用途。 【教学难点】 基因工程载体的结构和使用 【教学方式】 多媒体讲解结合启发讨论式教学 第一节载体 一、质粒载体(3) 【教学重点】 质粒载体的构建与标记基因;克隆质粒载体的克隆过程 【教学难点】 质粒的结构 【教学过程与内容】 载体是指运载外源DNA有效的进入受体细胞内的工具。载体同外源DNA在体外重组成DNA重组分子,在进入受体后形成一个复制子,即形成在细胞内能独自进行自我复制的遗传因子。 作为载体必须满足的条件:①有多种限制性内切酶的切点,但每一种酶最好只有一个切点;②外源DNA插入以后载体在受体细胞中自我复制;③有便于选择的标记基因;④具有促进外源DNA表达的调控区。 2.1.1 质粒载体 质粒是在许多种细菌中发现的染色体外的遗传因子。它是闭合环状双链DNA分子,大小1kb到200kb不等。能自主复制,但要利用寄主细胞复制染色体的同一组酶系。有某些基因,如抗药性基因,对寄主的生长是有利的。 质粒的复制分松弛型和严谨型两种。松弛型质粒是指质粒的复制跟细菌染色体的复制不同步,一般在一个菌体内能复制10-200 拷贝;严谨型质粒是指质粒复制跟细菌染色体同步,一般含有1-10 拷贝。 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制

基因工程常用的工具酶

基因工程常用的工具酶 常州工程职业技术学院制药与生物工程技术系 生物制药0911 刁亚军学号:2009423134 引言:在基因工程的研究和发展过程当中,有许多必不可少的因素影响和制约着基因工程的进展。本篇综述主要讲述的是基因工程常用的一些工具酶,他们包括限制性内切酶,DNA聚合酶,T4噬菌体DNA连接酶,T4多聚核苷酸激酶,碱性磷酸酶,核酸酶。这些酶在基因工程中发挥着非常重要的作用。 限制性内切酶 限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶。根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一型(Type I)、第二型(Type II)及第三型(Type III)。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。III型限制性内切酶同时具有修饰及认知切割的作用。 限制性内切酶的由来 一般是以微生物属名的第一个字母和种名的前两个字母组

限制性核酸内切酶 成,第四个字母表示菌株(品系)。例如,从Bacillus amylolique faciens H中提取的限制性内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基顺序的几种不同特异性的酶,可以编成不同的号,如HindII、HindIII,HpaI、HpaII,MboI、MboI等。限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。别名Endodeoxyribonuclease简称限制酶酶反应限制性内切酶能分裂DNA分子在一限定数目的专一部位上。它能识别外源DNA并将其降解。单位定义在指明pH与37℃,在0.05mL反应混合物中,1小时消化1μg的λDNA的酶量为1单位。性状制品不含非专一的核酸水解酶(由10单位内切酶与1μg λDNA,保温16小时所得的凝胶电泳图谱的稳定性表示),这类酶主要是从原核生物中分离出来的,迄今已经从近300多种不同的微生物中分离出约4000种限制酶。 类型 根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一型(Type I)、第二型(Type II)及第三型(Type III)。 第一型限制酶

相关文档
相关文档 最新文档