文档库 最新最全的文档下载
当前位置:文档库 › 平行四边形例题一

平行四边形例题一

平行四边形例题一
平行四边形例题一

例题一(矩形)

1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB=4cm,求矩形对角线长.

分析:注意到矩形的对角线相等且平分这个特性,不难求解.

解:∵ABCD为矩形

∴AC=BD,且OA=AC,OB=BD,∴OA=OB,

∵∠AOD=120°,∴∠AOB=60°∴△AOB为等边三角形

∴OB=OA=AB=4,∴BD=2OB=2×4=8cm.

2.如图12-2-2所示:□ABCD中AC,BD直交于O,EF⊥BD垂足为O,EF分别交AD,BC 于点E,F,且AE=EO=DE.

求证:□ABCD为矩形

分析:观察给出的已知图象的特征,要证□ABCD为矩形,显然只要证AC=BD即可,若Rt△DOE的斜边上的中线OM,易证△AOE≌△DOM,∴OA=OD问题得证.

证明:取DE的中点M,连结OM,

∴在Rt△DOE中,OM=DE=DM,

∴OE=AE=DE,∠OME=∠OEA

∴OM=OE,DM=AE,∠OMD=∠OEM,

∴△OMD≌△OEA,∴OA=OD,

在□ABCD中,∵OA=AC,OD=BD,

∴AC=BC ∴□ABCD为矩形.

3.已知:如图所示,E是已知矩形ABCD的边CB延长线上的一点,CE=CA,F是AE的中点.求证:BF⊥FD

分析:由于CE=CA,F是AE的中点,若连结CF,则CF⊥AE.所示∠AFC=90°.所以要证BF⊥FD,只须再证∠CFB=∠AFD.易知,只要证△AFD≌△BCF.

证法一:连结CF.因为CE=CA,F是AE中点,所以CF⊥AE.

所以∠AFD+∠DFC=90°,因为四边形ABCD为矩形,所以AD=BC,∠ABC=∠BAD=90°

又∵F是Rt△ABE斜边BE的中点,所以BF=AF,所以∠FAB=∠FBA,所以∠FAD=∠FBC.所以△FAD≌△FBC.所以∠CFB=∠AFD,所以∠CFB+∠DFC=90°,即BF⊥FD.

证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.

4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.

分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.

证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC

∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.

5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.

分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE

解:OA=CO

过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E

∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO

∴∠EAO=∠E ∴CE = CA

随堂练习(矩形)

一、填空题

1.矩形ABCD的边AB的中点为P,且∠DPC为直角,则AD:BA=.2.已知矩形ABCD中,对角线AC,BD交于O点,∠AOB=2∠BOC,AC=18cm,则AD= cm.

=8cm2,则AD=,3.如图矩形ABCD中,E是CD的中点,且AE⊥EB,若S

EAB

AB= .

4.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长

为,对角线的长 .

5.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数

是 .

6.在Rt△ABC中,∠A=90°,AB=AC,如图,且四边形AFDE为矩形,若EF=5,矩形AFDE的面积为12,则AC= .

7.如图,在矩形ABCD中,AB=16,BC=8,将矩形沿AC折叠,点D落在点E处,且CE 交AB于点F,则AF= .

8.如图,宽为3,长为4的矩形纸片ABCD,先沿对角线BD对折,点C落在点C′位置,BC′交AD于G,再折叠一次使点D与点A重合.得折痕EN,EN交AD于点M,则点ME的长

为 .

二、选择题

1.矩形的边长为10cm和15cm,其中一个内角平分线分长边为两部分,这两部分为()

A.6cm和

9cm B.5cm和10cm

C.4cm和

11cm D.7cm和8cm 2.下列四边形中,不是矩形的是()

A.三个角都是直角的四边形

B.四个角都相等的四边形

C.一组对边平行且对角线相等的四边形

D.对角线相等且互相平分的四边形

3.如图,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数()

A.18° B.36°

C.54° D.72°

4.已知矩形ABCD对角线相交于O,且AB:BC=1:2,AC= 3cm,则矩形ABCD的周长为()

A.(6+2)

cm B.cm

C.(6+)

cm D.12cm 5.矩形具有的特征而一般的平行四边形不一定具有的特征是()

A.对角线相

等B.对边相等

C.对角相

等D.对角线互相平分

6.矩形的两条对角线与各边围成的三角形中,共有多少对全等的三角形()

A.2

B.4对

C.6

D.8对

7.矩形的对角线所成的角是65°,则对角线与各边所成的角度是()

A.57.5°

B.32.5°

C.57.5°,

33.5° D.57.5°,32.5°

8.下面真命题的个数是()

(1)矩形是轴对称图形,又是中心对称图形

(2)矩形的对角线大于夹在两对边间的任意线段

(3)两条对角线相等的四边形是矩形

(4)有两个角相等的平行四边形是矩形

(5)两条对角线相等且互相平分的四边形是矩形.

A.5个 B.4

个 C.3

个 D.2个

三、判断题

1.两条对角线互相垂直并且相等的四边形是矩形()

2.两条对角线的交点到四个顶点的距离相等的四边形是矩形()

3.矩形是轴对称图形,而且有四条对称轴()

四、解答题

1.已知,如图在△ABC中,D是AB上一点,且AD=DC=BD,DF,DE分别是∠ADC,∠BDC 的平分线.求证:四边形DECF是矩形.

2.已知:如图AC、BD的交点O是四边形ABCD的对称中心,且∠A=90°.求证:四边形ABCD是矩形.

3.已知:如图△ABC中,CE⊥AD于点E,BD⊥AD于点D,M是BC的中点.求证:ME=MD.

4.已知:如图,矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC,交BC于点E,∠BDE=15°.求∠COD与∠COE的度数.

5.如图:多边形ABCDEFGH相邻两边都互相垂直,若要求出其周长,那么最少要知道多少条边的长度?

参考答案

一、填空题

1.1:2 2.12 3.cm 4.5,10

5.15° 6.7 7.10 8.

二、选择题

1.B 2.C 3.A 4.B 5.A 6.B 7.D 8.C

三、判断题

1.× 2.× 3.×

四、解答题

1.证明:因为AD=CD=DB,所以∠DCA=∠A,∠BCD=∠B

所以∠ACB=∠DCA+∠BCD=∠A+∠B

又因为∠ACB+∠A+∠B=180°

所以2∠ACB=180°,即∠ACB=90°

因为DF平分∠ADC,DE平分∠BDC

又AD=CD=DB

所以DE⊥BC,DF⊥AC

所以∠DEC=∠DFC=90°

所以四边形DECF是矩形

点拨:要判断DECF是矩形,除了根据定义判断外,还可用有三个角是直角的四边形,或者对角线相等的平行四边形.由题设AD=CD=BD知△ADC,△BDC都是等腰三角形.又DF,DE是角平分线,所以DF⊥AC,DE⊥BC.

2.证明:因为四边形ABCD是关于O的中心对称图形,则相对的顶点是关于O点的对称点,所以OA=OC,OB=OD,即AC,BD互相平分于点O,所以四边形ABCD是平行四边形.又因为∠A=90°,所以四边形ABCD是矩形.

点拨:由O是对称中心,易知OA=OC,OB=OD,可得四边形为平行四边形,根据定义,只要有一个角为90°,即可.

3.证法一:延长DM交CE于点N,延长EM交BD延长线于点H,连结HN.

因为CE⊥AD,BD⊥AD,所以CE∥BD,所以∠NCM=∠DBM,又∵CM=BM,

∠CMN=∠BMD,所以△CMN≌△BMD,所以NM=DM,同理可证EM=HM.所以四边形EDHN是平行四边形,又因为CE≌AD,所以EDHN是矩形.所以EH=DN所以ME=MD.

证法二:延长DM交CE于点N,同证法一△CMN≌△BMD,所以NM=MD,即M为DN的中点,所以ME=MD

点拨:注意到CE⊥AD,BD⊥AD,提示构造矩形EDNH,使它的对角线交于点M来证.

另若延长DM交CE于点N,则构成直角三角形,可设想到利用直角三角形斜边上的中线性质来证.

4.解:因为DE平分∠ADC,所以∠ADE=45°,所以∠ADB=∠ADE-∠ODE=45°-15°=30°.所以∠ODC=∠ADC-∠ADB=90°-30°=60°.因为ABCD为矩形,所以△OCD为等腰三角形.所以∠COD=180°-2∠ODC=60°,所以△OCD是等边三角形.所以OC=CD.又在Rt△ECD中∠EDC=45°,所以CE=CD.所以OC=CE.又因为ABCD是矩形,所以∠OCE=∠ADB=

30°.所以△CEO中,∠COE=(180°-∠OCE)=(180°-30°)=75°.

点拨:由于ABCD为矩形,求∠COD的度数,只要先求出∠CDO或∠DCO的度数,由图及题设条件可知.

由于DE平分∠ADC,∠BDE=15°,可求出∠ADB=30°,从而可求出∠ODC=60°,故∠DOC=60°

显然△COD是等边三角形,△CED是等腰直角三角形,从而可知△CEO中CE=CO,∠OCE

=30°,则∠COE=(180°-∠OCE)=(180°-30°)=75°.

5.解:至少需要知道三条边的长度.

例题二(菱形)

l.已知,如图所示,菱形ABCD中,E,F分别是BC、CD上的一点,∠D=∠EAF=∠AEF=60°.∠BAE=18°,求∠CEF的度数.

分析:要求∠CEF的度数,可先求∠AEB的度数,而要求∠AEB的度数则必须求∠B的度数,这一点则可由菱形是特殊的平行四边形可得到.

另外,由∠D=60°.如连结AC得等边△ABC与△ACD,从而△ABE≌△ACF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF

解法一:因为菱形是特殊的平行四边形.

所∠B=∠D=60°.因为∠BAE=18°,∠AEB+∠B+∠BAE=180°

所以∠AEB+60°+18°=180°.

即∠AEB=180°-60°-18°=102°.

又∠AEF=60°,∠AEB+∠AEF+∠CEF=180°

所以∠CEF=180°-60°-102°=18°

解法二:连结AC ∴四边形ABCD为菱形,

∴∠B=∠D=60°,AB=BC=CD=AD.

∴△ABC和△CDA为等边三角形∴AB=AC,∠B=∠ACD=∠BAC=60°

∵∠EAF=60°∴△BAE=∠CAF ∴△ABE≌△ACF ∴AE=AF

又∵∠EAF=60°∴△EAF为等边三角形∴∠AEF=60°

∵∠AEC=∠B+∠BAE=∠AEF+∠CEF

∴60°+18°=60°+∠CEF ∴∠CEF=18°

2.已知:如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.

求证:四边形AMNE是菱形.

分析:要证AMNE是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN是∠DAC的平分线,只要证AM=AE,则AN垂直平分ME,若证AN⊥ME,则再由BE平分∠ABN易知BE也垂直平分AN,即AN与ME互相垂直平分,故有AM=MN=NE=AE,即AMNE是菱形,此为证法一.显然,在上述证法中,证得BE垂直平分AN后,可得AM=MN,所以∠MNA=∠MAN=∠NAE,所以MN AE,则AMNE是平行四边形,又AM=MN所以AMNE是菱形.

证法一:因为∠BAC=90°,AD⊥BC,所以∠BAD=∠C

因为BE平分∠ABC,所以∠ABE=∠EBC.因为∠AME=∠BAD+∠ABE=∠C+∠EBC=∠AEM,所以AM=AE,又因为AN平分∠DAC,所以AM=MN,所以AM=MN=NE=AE.所以AMNE是菱形.

证法二:同上,若证AN垂直平分ME,再证BE垂直平分AN,则AM=MN,所以∠MNA=∠MNA=∠NAE.所以MN AE.所以AMNE是平行四边形,由AM=MN得AMNE是菱形.

3.已知:如图菱形ABCD中,DE⊥AB于点E,且OA=DE,边长AD=8,求菱形ABCD的面积.

分析:由菱形的对角线互相垂直知OA是△ABD的边BD上的高,又由DE⊥AB,OA=DE,易知△AOD≌△DEA从而知△ABD是等边三角形,从而菱形ABCD面积可求.

解:在菱形ABCD中,因为AC⊥BD,所以△AOD是直角三角形,因为DE⊥AB,所以△AED 是直角三角形.

在Rt△AOD和Rt△AED中,因为AD=AD,DE=OA,所以Rt△AOD≌Rt△DEA.所以∠ADO =∠DAE,因为ABCD为菱形,所以∠ADO=∠ABO,所以△ABD是等边三角形.因为AD=8,DE

=AB·DE=8⊥AB,所以AE=AD=4,在Rt△AED中,DE==4.从而S

菱形ABCD

×4=32

注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC,BD的长,按S

=AC·BD来计算,但后者较繁复.

菱形ABCD

4.已知:如图,□ABCD中,AD=2AB,将CD向两边分别延长到E,F使CD=CE=DF;求证:AE⊥BF

分析:注意□ABCD中,AD=2AB这一特殊条件,因此□ABCD能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.

证明:设AE交BC于点G,BF交AD于点H,连结GH.因为AB∥DF,所以∠F=∠ABH,

∠FDH=∠BAH.又因为AB=CD=DF,所以△ABH≌△DFH.所以AH=HD=AD=AB.所以BC AH,BG=AB.则四边形ABGH是菱形,所以AE⊥BF

5.如图所示,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于E,交AC于F,则四边形AEDF是菱形吗?请说明理由.

分析:由已知判断△AOF和△DOF是关于直线EF成轴对称图形,再由轴对称的特征,得到∠OAF=∠ODF,再结合已知得到∠ODF=∠OAE,从而判断DF∥AE,得到AEDF是平行四边形,进一步推出对角线互相垂直平分,得到AEDF是菱形。

解:四边形AEDF是菱形,理由如下:

因为,EF垂直平分AD,所以,△AOF与△DOF关于直线EF成轴对称.所以∠ODF=∠OAF,又因为AD平分∠BAC,即∠OAF=∠OAE所以∠ODF=∠OAE.所以AE∥DF同样的道理可得DE ∥AF.所以四边形AEDF是平行四边形,所以EO=OF,即□AEDF的对角线AD,EF互相垂直平分.□AEDF是菱形.

注意:用轴对称,平移和旋转的观点处理几何问题,往往会得到意想不到的效果.

6.如图所示,将宽度为1的两张纸条交叉重叠在一起,得到重叠部分为四边形ABCD,四边形ABCD为菱形吗?为什么?

分析:纸条的宽度即是图中线段AE,AF的长,而AE,AF又分别与BC,CD垂直.因此,如果ABCD是平行四边形,则AE,AF即为它的高,再从面积入手不难推出ABCD是菱形.

解:四边形ABCD为菱形.因为:由已知可得,AB∥CD,AD∥BC,所以,四边形ABCD是平行四边形,由纸条的宽度为1,知AE=AF=1,又因为□ABCD的面积=BC·AE=CD·AF,所以BC=CD,故平行四边形ABCD为菱形

7.已知:如图所示,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:EB=OA.

分析:要EB=OA,证它们所在的三角形全等,即△AOD≌△BEA

证明:∵四边形ABCD为菱形,∴AD∥BC,AD=BA,

∠ABC=∠ADC=2∠ADB ∴∠DAE=∠AEB

∵AB=AE,∴∠ABC=∠AEB ∴∠ABC=∠DAE

∵∠DAE=2∠BAE,∴∠BAE=∠ADB

又∵AD=BA ∴△AOD≌△BEA ∴AO=BE

习题二

一、填空题

1.菱形的对角线长为24和10,则菱形的边长为,周长

为 .

2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角

为,,, .

3.菱形的两条对角线分别为3和7,则菱形的面积为 .

4.已知在菱形ABCD中,E,F是BC,CD上的点,且AE=EF=AF=AB,则∠

B= .

5.已知菱形两邻角的比是1:2,周长为40cm,则较短对角线的长是 .

6.已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 .

7.已知菱形ABCD中AE⊥BC,垂足E,F分别为BC,CD的中点,那么∠EAF的度数

为 .

8.顺次连结菱形各边的中点,所得的四边形为形.

二、选择题

1.能够判定一个四边形是菱形的条件是()

A.对角线相等且互相平分

B.对角线相等且对角相等

C.对角线互相垂直

D.两组对角分别相等且一条对角线平分一组对角

2.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()

A.相

B.互相垂直且不平分

C.互相平分且不垂

直 D.垂直且平分3.已知菱形ABCD的周长为40cm,BD=AC,则菱形的面积为()

A.96cm2 B.94cm2

C.92cm2 D.90cm2

4.菱形的周长等于高的8倍,则这个菱形较大内角是()

A.60° B.90°

C.120° D.150°5.菱形具有而矩形不具有的性质是()

A.对角线互相平

分 B.对角线互相垂直

C.对角线相

等 D.对边平行且相等

6.下列说法正确的是()

A.对角线相等且互相垂直的四边形是菱形

B.对角线相等的四边形是矩形

C.对角线互相垂直平分的四边形是菱形

D.邻边相等的四边形为菱形

7.矩形具有而菱形不具有的性质是()

A.对角相等且互补

B.对角线互相平分

C.一组对边平行,另一组对边相等

D.对角线互相垂直

8.菱形的对角线把它分成全等的直角三角形的个数是()

A.4个 B.3

个 C.2个 D.1个

三、解答题

1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.

2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.

3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.

4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。

5.如图,在□ABCD中,对角线AC的垂直平分线交AD于E,交BC于F,求证:四边形AFCE是菱形.

6.已知:如图,四边形ABCD中,AC=BD,E,F,G,H分别为AB,BC,CD,AD的中点,求证:四边形EFGH是菱形.

参考答案

一、填空题

1.13,52 2.100°,80°,100°,80° 3.4.80°

5. 10cm 点拨:两邻有为60°,120°,边长为10,两边和较短的对角线组成等边三角形.

6.40cm 7.60° 8.矩形

二、选择题

1.D 2.D点拨:△ACD是等边三角形 3.A 4.D 点拨:画出图形即可求解 5.B 6.C 7.A 8.A

三、解答题

1.证明:如图(1)1所示,连结FD,在菱形ABCD中,AC平分∠BCD CD=CB

∴∠DCF=∠BCF

∵FC=FC ∴△DCF≌△BCF(SAS)

∴∠FDC=∠CBF DF=BF

∵BF=DE ∴DF=DE ∴∠DFE=∠E

∵AE∥BC ∴∠E=∠CBF ∴∠DFE=∠FDC ∴DH=HF

点拨:欲证DH=HF,在同一个三角形中,只要两对角相等,从而连结DF,证∠DFH≌∠FDH,因AC平分∠BCD得证∠BCF≌∠CDF,代换出BF=DE=DF,转成角相等即可证.

2.证明:∵四边形ABCD是菱形∴AC平分∠BAD(菱形的对角线平分一组对角)

又∵AC⊥EF ∴APM≌△AEM ∴AP=AE

又∵AE=AD且AD=AB

∴AP=AB即AP=PB ∠F=∠AEP,∠BPF=∠APM

∴△APE≌△BPE ∴EP=FP 即AB与EF互相平分

点拨:证明时先审题,菱形的每一条对角线平分一组对角,并把菱形分成全等的等腰三角形和直角三角形,所以有关菱形的一些问题可以应用角平分线,等腰三角形、直角三角形的知识来解答.

3.解:菱形的面积为:底×高,故24÷5=4.8cm,即高为4.8cm,即一组对边之间的距离为4.8cm.

4.解,由BD=2DE只有∠ABD=∠ADB=30°,∠EAD=60°,∠ADE=30°,故AE=AD =2,DE=,所以S

=AB·DE=8

ABCD

5.证明:∵四边形ABCD为平行四边形∴AE∥FC ∴∠CAE=∠ACF

又∵OF=OE ∴△AOE≌△COF ∴AE FC 四边形∴AFCE是平形四边形

又∵AE=EC ∴四边形AFCE是菱形

点拨:先证△AOE≌△COF,则有AE FC,故四边形AFCE为平行四边形.

6.证明:E,F是△ABC的边AB,BC的中点∴EF AC

同理可得GH AC,FG BD

∴EF GH ∴四边形EFGH为平行四边形

∵EF=AC ∴FG=BD ∵AC=BD

∴EF=FC ∴□四边形EFGH为菱形

点拨:此题中含众多的中点条件,很自然联想到三角形的中位线定理得EF AC,GH AC,则有EF GH得□EFGH,只需证明EF=FG,考虑到EF=AC,FG=BD,而AC=BD,从而有EF=FG,即可得证.

例题三(正方形)

1、如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE⊥BC于E,作PF⊥CD于F.试说明AP=EF.

分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP=CP,由正方形对角线互相垂直平分知AP=CP.

解:连结AC、PC,

∵四边形ABCD为正方形,

∴BD垂直平分AC,

∴AP=CP.

∵PE⊥BC,PF⊥CD,∠BCD=90°,

∴四边形PECF为矩形,

∴PC=EF,

∴AP=EF.

注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.

②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.

思考:由上述条件是否可以得到AP⊥EF.

提示:可以,延长AP交EF于N,由PE∥AB,有∠NPE=∠BAN.

又∠BAN=∠BCP,而∠BCP=∠PFE,故∠NPE=∠PFE,

而∠PFE+∠PEF=90°,所以∠NPE+∠PEF=90°,则AP⊥EF.

2、如图12-2-15,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,试说明四边形BEDF是正方形.

解:∵∠ABC=90°,DE⊥BC,

∴DE∥AB,同理,DF∥BC,

∴BEDF是平行四边形.

∵BD平分∠ABC,DE⊥BC,DF⊥AB,

∴DE=DF.

又∵∠ABC=90°,BEDF是平行四边形,

∴四边形BEDF是正方形.

思考:还有没有其他方法?

提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)

注意:灵活选择正方形的识别方法.

3、如图12-2-16所示,四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的大小.

分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ABE和△DCE都是等腰三角形,顶角都是150°,可得底角∠AEB与∠DEC都是15°,则∠BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和△DCE是等腰三角形,顶角是30°,可得底角∠AEB和∠DEC为75°,再利用周角可求得∠BEC=150°.

解:(1)当等边△ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,

所以∠AEB=15°.同理可得∠DEC=15°,则∠BEC=60°-15°-15°=30°.

(2)当等边△ADE在正方形ABCD内部时,AB=AE,∠BAE=90°-60°=30°,所以∠AEB=75°.同理可得∠DEC=75°,则∠BEC=360°-75°-75°-60°=150°.

4、如图4-50,已知矩形ABCD中,F为CD的中点,在BC上有一点E,使AE=DC+CE,AF平分∠EAD.

求证:矩形ABCD是正方形.

图4—50

剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE =DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.

证明:在AE上截取AG=AD,连结FG、FE.

∵四边形ABCD是矩形,∴∠D=∠C=90°.

∵AD=AG,∠DAF=∠GAF,AF=AF

∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.

∵DF=CF,∴GF=CF.

∵∠FGE=∠C=90°,FE=FE,

∴Rt△GFE≌Rt△CFE.

∴GE=CE,∴AD+CE=AE.

又DC+CE=AE,∴AD=DC.

∴矩形ABCD是正方形.

说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.

习题三

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

平行四边形经典题型

1.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 2.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 3.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 4.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形 课堂练习 1.下列图形中,既是中心对称图形,又是轴对称图形的是() A.正三角形 B.平行四边形 C.等腰直角三角形 D.正六边形 2.下列图形中,不是中心对称图形的是() 3.下列图形中,既是轴对称图形又是中心对称图形的是(). 4.下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形,使 所得的新图形分别为下列A,B,C题要求的图形,请画出示意图. (1)是中心对称图形,但不是轴对称图形; (2)是轴对称图形,但不是中心对称图形; (3)既是中心对称图形,又是轴对称图形. 第五节:平行四边形的判定 例题讲解 例1:判断下列说法的正误,如果错误请画出反例图 ①一组对边平行,另一组对边相等的四边形是平行四边形。 ( ) ②一组对边相等,另一组对边平行的四边形是平行四边形. ( ) ③一组对边平行,一组对角相等的四边形是平行四边形.( ) ④一组对边平行且相等的四边形是平行四边形. ( ) ⑤两组邻角互补的四边形是平行四边形。( ) ⑥相邻两个角都互补的四边形是平行四边形。 ( ) ⑦对角互补的四边形是平行四边形 ( ) ⑧一条对角线分四边形为两个全等三角形,这个四边形是平行四边形 ( ) ⑨两条对角线相等的四边形是平行四边形 ( )例2:如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗为什么

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

平行四边形经典题型(培优提高)

中心对称与平行四边形的判定 知识归纳 1.中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与 原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心. 分析:一个图形;围绕一点旋转1800;重合. 2.思考:中心对称与中心对称图形有什么区别和联系? 1)区别: 中心对称是指两个全等图形之间的位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点都在这;而中心对称图形是指一个图形本身成中心对称,中心对称图形上所有点关于对称中心的对称点都在这个图形本身上. 2)联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形也可以看成是关于中心对称的两个图形. 3.中心对称图性质 1)中心对称图形的对称点所连线段都经过对称中心,而且被对称中心所平分. 2)中心对称图形的两个部分是全等的. 注:常见的中心对称图形有:矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些规则图形等. 正偶边形是中心对称图形 正奇边形不是中心对称图形如:正三角形不是中心对称图形、等腰梯形不是中心对称图形 4.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 5.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。

6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 7.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

(完整)初中数学平行四边形经典例题讲解(3套)

平行四边形经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

初三数学-平行四边形专题练习题(含答案)

初三数学 平行四边形专题练习 1 ?如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等, 那么这个正方 形的边长为 _______ c m. 2 2.如图1,正方形ABCD 的边长为4cm 则图中阴影部分的面积为 cm . 3若四边形ABCD 是平行四边形,请补充条件 _______________________ (写一个即可),使四边形ABCD 是菱形. 4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点0, △ ABO 的周长 为17,AB = 6,那么对角线AC + BD = ____________________ 7?以正方形 ABCD 的边BC 为边做等边△ BCE ,贝U / AED 的度数 为 . 5.已知菱形ABCD 的边长为6,Z A = 60°如果点P 是菱形内一点,且 PB = PD = 2、那么AP 的长为 _____________________ . 6 .在平面直角坐标系中,点 A 、B 、C 的坐标分别是A ( — 2, 5), B ( — 3,— 1),C (1,— 1),在第一象限内找一点D ,使四边形 ABCD 是平行四边形,那么点 D 的坐标是 二、选择题(每题3分,共30分) 7. 如图2在平行四边形ABCD 中,/ B=110°,延长AD 至F ,延长CD 至E , 8. 菱形具有而矩形不具有的性质是 ( ) A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等 9. 如图3所示,平行四边形ABCD 中,对角线AC 、 的中点.若OE=3 cm ,则AB 的长为 ( ) A . 3 cm B . 6 cm C . 9 cm D . 12 cm 10 .已知:如图4,在矩形ABCD 中, E 、 F 、 G 、 H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB = 2, AD = 4, 则图中阴影部分的面积为 ( BD 交于点O ,点E 是BC 图1 连结 EF ,贝U/ E +Z F =( ) .70 A H 图4

平行四边形的判定典型例题

《平行四边形的判定》典型例题 例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED 是平行四边形. 例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF和BE 相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由. 例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD. 例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G. 求证:EG=FH.

例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA. 求证:四边形ABCD是平行四边形.

参考答案 例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等. 事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢可以看到 ,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED是平行四边形. 证明,∴, 且,∴,∴ 又,同理.∴AFED是平行四边形. 例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形. 证明是平行四边形,∴ 又,∴,且 ∴四边形AECF是平行四边形,∴,∴ 又四边形EDFB是平行四边形,∴,∴ 在四边形GEHF中,, ∴四边形GEHF是平行四边形,∴EF和GH互相平分. 说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别. 例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。 而是4个小平行四边形面积的一半,是2个小平行四边形面积的一半。

平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 1.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三 遍的一半。 2.由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 二、例题 例1:如图1,平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F. 求证:BE = CF. 例3.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形. 例4如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F. 求证:四边形AFCE 是菱形. (图1) O A B C D E F (图2) B

(完整版)平行四边形基础练习题

1、如图1,在平行四边形ABCD 中,下列各式不一定正确的是 ( ). (A)?=∠+∠18021 (B)?=∠+∠18032 (C)?=∠+∠18043 (D)?=∠+∠18042 图1 图2 2、如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,则该图中的平行四边形 的个数共有 ( ). (A)7 个 (B)8个 (C)9个 (D)11个 3、如图3 ,在□ABCD 中, ∠B=110°,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F 的值为 ( ). (A)110° (B)30° (C)50° (D)70° 图3 图4 4. □ABCD 中,如果∠B=100°,那么∠A 、∠D 的值分别是 ( ) (A )∠A=80°,∠D=100° (B )∠A=100°,∠D=80° (C )∠B=80°,∠D=80° (D )∠A=100°,∠D=100° 5. 若□ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为 ( ) (A )11cm (B ) 5.5cm (C )4cm (D )3cm 6. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是 ( ) (A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:4 二、填空题 1.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______, ∠C=_______,∠D=_________. 2.在□ABCD 中,AC ⊥BD ,相交于O ,AC=6,BD=8,则AB=________,BC= _________. 3.如图4,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长 是________. 图5 图6 4.如图5,□ABCD 中,DB=DC,∠C=70°,AE ⊥BD 于E,则∠DAC=_____度. 5.如图6,E 、F 是□ABCD 对角线BD 上的两点,请你添加一个适当的条件: ,使四边 形AECF 是平行四边形. 三、解答题

平行四边形(知识点、经典例题、常考题型练习)

平行四边形(一) 【知识梳理】 1、平行四边形: 平行四边形的定义决定了它有以下几个基本性质: (1)平行四边形对角相等; (2)平行四边形对边相等; (3)平行四边形对角线互相平分。 除了定义以外,平行四边形还有以下几种判定方法: (1)两组对角分别相等的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形; (4)一组对边平行且相等的四边形是平行四边形。 2、特殊平行四边形: 一、矩形 (1)有一角是直角的平行四边形是矩形 (2)矩形的四个角都是直角; (3)矩形的对角线相等。 (4)矩形判定定理1:有三个角是直角的四边形是矩形 (5)矩形判定定理2:对角线相等的平行四边形是矩形 二、菱形 (1)把一组邻边相等的平行四边形叫做菱形. (2)定理1:菱形的四条边都相等 (3)菱形的对角线互相垂直,并且每条对角线平分一组对角. (4)菱形的面积等于菱形的对角线相乘除以2 (5)菱形判定定理1:四边都相等的四边形是菱形 (6)菱形判定定理2:对角线互相垂直的平行四边形是菱形。 三、正方形 (1)有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形(2)性质:①四个角都是直角,四条边相等 ②对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)判定:①一组邻边相等的矩形是正方形 ②有一个角是直角的菱形是正方形

平行四边形 矩形 菱形 正 方 形 等腰梯形 直角梯形 梯形 四边形 知识结构如下图 (1)弄清定义及四边形之间关系图1: (2)四边形之间关系图2: 2、几种特殊的四边形的性质和判定: 3、一些定理和推论: 三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。 推论:夹在两平行线间的平行线段相等。 推论:直角三角形斜边上的中线等于斜边的一半; 推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 【例题精讲】 填空题: 四边形 正方形

初三数学-平行四边形经典例题讲解(3套)

初三数学 经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

平行四边形典型例题

平行四边形典型例题 1.已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE上AD于E,OF⊥BC于F. 求证:四边形AECF是平行四边形 错证:在△AOE和△COF中 ∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ) ∴△AOE≌△COF(AAS)∴OF=OE ∴四边形AECF是平行四边形 错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线. 正确证明:在△AOE和△COF中 ∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE 又∵AD∥BC,OE⊥AD,OF⊥BC ∴E、O、F三点共线 ( ∴四边形AECF是平行四边形

2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形. 分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线. 解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C与点A重合,再焊接上去最简单. 证明:在Rt△ABC中∵AC=BC ∴∠B=45° 又∵E、D分别为AC、BC的中点 ∴EC=DC ∴∠CED=∠CDE=45° ∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180° ∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD — 又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45° 3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF 是平行四边形,并指出哪种方法最简便. 分析:可证两组对边分别相等,也可证对角线互相平分. 证明方法(一) 在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE. ∴△ABF≌△CDE ∴AF=CE 同理可证AE=CF,故四边形AECF是平行四边形 方法(二) 连AC交BD于O %

(完整版)平行四边形专项练习题

平行四边形专项练习题 一.选择题(共12小题) 1.在下列条件中,能够判定一个四边形是平行四边形的是() A.一组对边平行,另一组对边相等 B.一组对边相等,一组对角相等 C.一组对边平行,一条对角线平分另一条对角线 D.一组对边相等,一条对角线平分另一条对角线 2.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180° 3.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为() A.4S1B.4S2C.4S2+S3D.3S1+4S3 4.在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下列结论正确的有() ①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD. A.①②③B.①②④C.②③④D.①③④ 5.如图,在?ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于() A.2 B.3 C.4 D.6 6.如图,在?ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()

A.8 B.10 C.12 D.14 7.如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为() A.B.4C.2D. 8.如图,在?ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是() A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH 9.如图,将?ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为() A.66°B.104°C.114° D.124° 10.如图,?ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是() A.10 B.14 C.20 D.22 11.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件: ①AD∥BC;②AD=BC;③OA=OC;④OB=OD

平行四边形典型例题

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平行四边形典型例题 1.已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE 上AD于E,OF⊥BC于F. 求证:四边形AECF是平行四边形 错证:在△AOE和△COF中 ∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形 ∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE ∴四边形AECF是平行四边形 错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线. 正确证明:在△AOE和△COF中 ∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90° ∵四边形ABCD为平行四边形

∴OA=OC,AD∥BC ∴∠EAC=∠ACF ∴△AOE≌△COF(AAS)∴OF=OE 又∵AD∥BC,OE⊥AD,OF⊥BC ∴E、O、F三点共线 ∴四边形AECF是平行四边形 2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形. 分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线. 解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C 与点A重合,再焊接上去最简单. 证明:在Rt△ABC中∵AC=BC ∴∠B=45° 又∵E、D分别为AC、BC的中点 ∴EC=DC ∴∠CED=∠CDE=45° ∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180° ∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD 又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45° 3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形,并指出哪种方法最简便. 分析:可证两组对边分别相等,也可证对角线互相平分.

历年中考数学平行四边形题合集定稿版

历年中考数学平行四边形题合集精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

A E B C F D 1.在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DFA ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. 2. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接 EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论. 3.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与 点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么 数量关系时,四边形ABFG 是菱形?证明你的结论. A D B E F O C M A D G C B F E

4.已知:如图,在正方形ABCD中,G是CD 上一点,延长BC到E,使CE CG =,连接BG并延长交DE于F.(1)求证:BCG DCE △≌△;(2)将DCE △绕点D顺时针旋转90得到DAE' △,判断四边形E BGD '是什么特殊四边形?并说明理由. 5.(2014枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=1/2AC,则四边形ABCD是什么特殊四边形请证明你的结论. 6.如图,平行四边形ABCD的对角线AC、BD交于点O,AC⊥AB,AB=2,且AC:BD=2:3.(1)求AC的长;(2)求△AOD的面积. 7.如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数. 8.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1) A B C D E F G

相关文档
相关文档 最新文档