文档库 最新最全的文档下载
当前位置:文档库 › 久期、凸度的定义及数学推导

久期、凸度的定义及数学推导

久期、凸度的定义及数学推导

债券久期、免疫方法与凸性

债券久期、免疫方法与凸性 一、久期及其计算 多年以来,专家们运用资产到期期限作为利率风险衡量指标。例如,30年期固定利 率债券比1年期债券更具有利率敏感性。但是,人们已意识到期限只是提供的最后一笔现金流量的信息,并没有考虑到前期得到的现金流量(例如利息偿还)。通过计算持续期(久期)就可以解决这个问题。它是一个平均的到期期限,考虑了资产寿命早期所获得的现金流量因素。 有效持续期用公式表示则为: P y tC D n t t t ∑=+=1)1( 【例1】票面利率为10%,还有3年到期的债券。价格为95.2,当前利率为12%。求其持续期。 持续期=年728.22.9512.1110312.110212.110132=??? ???+??? ???+??? ??? 持续期是按照贴现现金流量的权重来加权的平均年数(1年、2年、3年)。 简单地说,持续期代表的是资产的平均到期期限。在本例中,2.728年的持续期与 3年比较接近,原因是在第3年得到一笔最大的现金流量110。 持续期与偿还期不是同一概念:偿还期是指金融工具的生命周期,即从其签订金融 契约到契约终止的这段时间;持续期则反映了现金流量,比如利息的支付、部分本金的提前偿还等因素的时间价值。 对于那些分期付息的金融工具,其持续期对于那些分期付息的金融工具,其持续期 总是短于偿还期。持续期与偿还期呈正相关关系,即偿还期越长、持续期越长;持续期与现金流量呈负相关关系,偿还期内金融工具的现金流量越大,持续期越短。 二、债券价格对利率变动的敏感程度 由金融工具的理论价格公式:∑=+=n t t t y C P 1)1( 两边对利率求导,可得出金融工具现值(理论价格)对利率变动的敏感程度: ∑=++-=n t t t y tC dy dP 11)1(∑=++-=n t t t y tC y 1) 1(11 两边同时乘以p dy 得

概率论中数学期望的概念

毕业论文(设计) 题目:概率论中数学期望的概念 姓名: 学号:0411******* 教学院:数学与计算机科学学院 专业班级:数学与应用数学专业2008级1班 指导教师: 完成时间:2012年04月10日 毕节学院教务处制

概率论中数学期望概念 摘要:数学期望是现代概率论中最重要的基本概念之一,无论在理论上还是在应用中都具有重要的地位和作用。但是,数学期望这一概念对许多学者来说却又是一个难点,特别是对概念的理解和对这一数学工具的使用上都很难掌握。本文从离散型随机变量的来源、定义、分布及其理解上详细阐述概率论中的数学期望的概念及其性质,并介绍说明这一数学工具在实际生活中的应用。目的是希望能给更多的学者提供一些参考及帮助。 关键词:离散型;随机变量;分布;函数;期望 Mathematical expection concept

in theory of probability Candidate:Xiong Xiao-ping Major:Mathematics and applied mathematics Student No:0411******* Advisor:Xue Chao-kui(Lecturer) Abstract:Mathematical expectation is the modern theory of probability in the most important one of the basic concept, whether in theory or in the applications has an important position and role. But, mathematical expectation is a difficult concept for many scholars, especially for the understanding of concepts and the mathematical tools to the use of all difficult to master. This article from source of discrete random variable, definition, distribution and understand the detail on the mathematics of the concept of probability theory and its properties expectations, and introduces the mathematical tools that in the actual life application. The main purpose is to give more scholars can provide some reference and help. Keywords:discrete; Random variable, Distribution; Functions; expect

固定收益证券_久期与凸度的matlab计算

第一讲固定收益证券的matlab计算 第一节固定收益基本知识 固定收益证券: 一组稳定现金流的证券.广义上还包括了债券市场上的衍生产品及优先股.以债券为主. 一. 固定收益的品种 国债是固定收益的重要形式,以贴现债券(discount security)与息票债券(coupon bonds)两种形式发行. 贴现债券: 发行价低于面值,不支付利息,在到期日获取面值金融的收益. 息票:按一定的票息率发行,每隔一段时间支付一次利息,到期按面值金额赎回. 美国的固定收益证券可以分为以下几个品种: 1. (短期)国库券(Treasury bills, T-bills) 期限小于一年,贴现发行,面值usu. 1~10万美元.是流动性最高的债券品种,违约风险小,其利率usu当作无风险利率。 2.政府票据(Treasury notes, T-notes) 即美国中期国债,期限1~10年,是coupon. 3. 长期国债(Treasury bonds, T-bonds) 期限>10年,面值1~10万美元,是coupon.通常每半年付一息,到期偿本息。 4.零息票债券(Zero-coupon bond) 零息票债券是指买卖价格相对布什有较大折让的企业或市政债券。出现大额折让是由于债券并无任何利息,它们在发行时就加入折扣,或由一家银行除去息票,然后包装成为零息票债券发行,投资者在债券到期时以面值赎回。 零息票债券往往由附息债券所”剥离”出来:购买息票国债的经纪人可以要求财政部停止债券的现金支付,使其成为独立证券序列,这时每一证券都具有获得原始债券收益的要求权.

如一张10年期国债被剥离成20张半年期债券,每张都可视为零息票,它们到期日从6个月到10年不等,最后本多支付是另一张零息证券,所有的支付都单独计算,并配有自己的CUSIP号码(统一由美国证券鉴定程序委员会颁布). 具有这种标识的证券都可以在联邦银行及其分支机构上进行电子交易,财政部仍旧具有支付责任.由于这种债券息票被“剥离”了,因此被称为本息剥离式国债STRIPS(separate trading of registered interest and principal of securities). 1982年麻省海湾运输局发行了免税零息债券,标志着政府开始参与长期零息券的发行. 1987年5月起,美国财政部也允许一个被剥离债券的息票重新组合成息票. 5. 美国CD存单 美国CD存单(certificate deposit): 由银行等金融机构向存款人改选的证券,存单上标有一个到期日和利率,并且以任意面值发行,可以买卖, 偿还期限小于1年. 6. 回购协议(repurchase agreement) 短期抵押贷款,是指一方向另一方出售证券的同时,承诺在未来的某一天按协定的价格将相同的证券买回,通常由借款方发起并贷出证券,回购中涉及的证券通常具有较高的信用质量. 回购协议建立了货币市场和债券市场之间的联系. 回购协议的步骤: (1) 以债券作为抵押借入资金; (2) 经过一段时间,按照约定的价格买回抵押债券. 7. 可转换债券(convertible security) 可转换债券(简称可转债)是一种具有固定收益的证券,其特点是持有者可以转换为普通股股票,在合约的条款中规定了可转换债

第十四章 债券投资组合管理-久期和凸性

2015年证券从业资格考试内部资料 2015证券投资基金 第十四章 债券投资组合管理 知识点:久期和凸性 ● 定义: 久期的性质和凸性计算 ● 详细描述: 1.附息债券的麦考莱久期和修正的麦考莱久期小于其到期期限。对于零 息债券而言,麦考莱久期与到期期限相同。在所有其他因素不变的情况下,到期期限越长,债券价格的波动性越大。对于普通债券而言,当其他因素不变时,票面利率越低,麦考莱久期及修正的麦考莱久期就越大(这一特点不适用于长期贴现债券)。同时,假设其他因素不变,久期越大,债券的价格波动性就越大。具有相同麦考莱久期的债券,其利率风险是相同的。 2.债券投资者可以选择到期期限与目标投资期不同的债券进行投资,只 要麦考莱久期与目标投资期相同,就可以消除利率变动的风险,这被称为利息免疫。 3. 大多数债券价格与收益率的关系都可以用一条向下弯曲的曲线来表 示,这条曲线的曲率就是债券的凸性。由于存在凸性,债券价格随着利率的变化而变化的关系就接近于一条凸函数而不是直线函数。 4.凸性的作用在于可以弥补债券价格计算的误差,更准确地衡量债券价 格对收益率变化的敏感程度。凸性对于投资者是有利的,在其他情况相同时,投资者应当选择凸性更高的债券进行投资。尤其当预期利率波动较大时,较高的凸性有利于投资者提高债券投资收益。 5.凸性计算,凸性用cv表示。零息债券凸性cv=N(N+1)/(1+Y)的平方。 非零息债券cv=(P1+P2-2P0)/P0(Δr)的平方 6.流动性较强的债券在收益率上往往有一定折让,折让的幅度反映了债 券流动性的价值。 例题: 1.测算债券价格波动性的方法不包括()。

数学期望的性质

知识点4.2 数学期望的性质

1. 随机变量函数的数学期望 定理1设Y 是随机变量X 的函数:Y =g(X)(g 是连续函数). (1)设离散型随机变量X 的分布律为 p k =P{X =x k },k =1,2,?. 若?k=1+∞g x k p k <+∞,则有E Y =E g X =?k=1 +∞g x k p k .

(2)设连续型随机变量X 的密度函数为f(x),若 ? ?∞+∞ g(x)f(x)dx <+∞, 则有 E(Y)=E g X =? ?∞+∞g(x)f(x)dx.

定理2设Z 是随机变量X,Y 的函数:Z =g(X,Y)(g 是连续函数). (1) 设离散型随机变量(X,Y)的分布律为 p ij =P(X =x i ,Y =y j ),(i,j =1,2,?), 若?j=1+∞?i=1+∞ g(x i ,y j )p ij <+∞, 则有 E(Z)=E g X,Y =?j=1+∞?i=1 +∞g x i ,y j p ij .

(2) 设连续型随机变量(X,Y)的密度函数为f(x,y), 若 ? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy <+∞, 则有 E(Z)=E g X,Y =? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy.

2. 数学期望的性质 (1)设C是常数,则有E(C)=C. (2)设X是一个随机变量, C是常数,则有E(CX)=CE(X).(3)设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y).(4)设X,Y是两个相互独立的随机变量,则有E(XY)=E(X)E(Y). 性质3和4可以推广到有限个随机变量的和及积的情况.

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

久期与凸性的理解

久期与凸性的理解 (2010-12-22 10:43:20) 最近在研究企业债券的投资,对于某些术语了解了一下,在此与大家共同学习一下,我的心 得是,久期和凸性都是衡量利率风险的指标,衡量债券价格对利率的敏感程度;但久期具 有双面性,就是在利率上升周期,要选择久期小的债券,而在利率下降周期,要选择久期 大的债券;而凸性是具有单面性,就是凸性越大,债券的风险越小,因此需要选择凸性较 大的债券。 久期描述了价格-收益率(利率)曲线的斜率,斜率大表明了作为Y轴的价格变化较大,而凸性描述了这一曲线的弯曲程度,或者是由于该曲线的非线性程度较大,使得衡量曲线斜 率的这一工具变化较大,无法以统一的数字来判断,因此再次对斜率的变化进行衡量,引 入凸性参数。凸性就是债券价格对收益率曲线的二阶导数,就是对债券久期(受利率影响,对利率敏感性)的再度测量。 简单计算方法为:例如债券久期为3,那么当市场利率提高1%,那么债券价格就近似下跌3*1%=3%;凸性用于衡量债券久期对市场利率变化的敏感性,比如债券凸性为3,那么当市场利率提高1%,那么债券久期就近似上升3*1%=3%。 在利率变化很小的时候,传统的久期(是以每期现金流现值占总体现值的比例为权重计算 的加权平均到期日)可以近似衡量债券价格和利率之间关系,但是更为精确的衡量则是修 正久期。 什么是久期? 久期(Duration)—— 久期是衡量债券利率风险最常用的指标,反映的是市场利率变化引起债券价格变化的幅度。直观地讲,就是收益率变化1%所引起的债券全价变化的百分比。 公式如下: 久期=价格的变化幅度/单位收益率的变化 久期的分析方法 债券的久期越大,利率的变化对该债券价格的影响也越大,因此,该债券所承担的利率风险也越大。在降息时,久期大的债券价格上升幅度较大;在升息时,久期大的债券价格下跌的幅度也较大。 由此,投资者在预期未来降息时,可选择久期大的债券;在预期未来升息时,可选择久期小的债券。 久期运用的局限性 久期运用的前提是假设债券价格与收益率之间的反比关系是线性的,因此,久期计算的收益率变动所引起价格变动的值,只是一个近似的公式。当收益率变动幅度比较小时,久期的准确性较高,但对于收益率变化较大时,会产生较大的误差,这时就有必要引进凸性的概念。一般情况下,久期(duration)就是麦考来持续期,这一概念最早由麦考莱为研究债券的期 限结构于1938年提出,因而被称为麦考莱久期。它是债券在未来产生现金流的时间的加权平均,其权重是各期现金流现值在债券价格中所占的比重。 但是麦考莱久期不适用于具有隐含期权性质的金融工具,在久期模型研究中存在一个重要假设,即随着利率的波动,债券的现金流不会发生变化,然而这一假设对于具有隐含期权的金

久期与凸度-固定收益答案

固定收益证券练习题:久期与凸度 1、已知一种息票利率为6%的债券每年付息,如果它离到期还有3年且到期收益率为6%,求该债券的久期。如果到期收益率为10%,久期又为多少? 答:题目没说债券面值,则默认为1000。当到期收益率=6%时,计算过程如下: 久期=2542.90/900.53=2.824 年。 2、把下列两类债券按久期长短排序。 a. 债券A:息票利率8%,20年到期,按面值出售;债券B:息票利率8%,20年到期,折价出售。 b. 债券A:不可赎回,息票利率8%,20年到期,按面值出售;债券B:可赎回,息票利率9%,20年到期,也按面值出售。 答:两者均为A大于B。 a.债券B的到期收益率高于债券A,因为它的息票支付额和到期期限等于A,而它的价格却较低,因此,它的久期更短。 b. 债券A的收益率更低,息票率也较低,两者都使得它比B的久期更长。而且,A不可赎回,这将使得它的到期期限至少与B一样长,也使得久期随之增加。 3、一保险公司必须向其客户付款。第一笔是1年支付1000万元,第二笔是5年后支付400万元。收益率曲线的形状在10%时达到水平。 a. 如果公司想通过投资于单一的一种零息债券以豁免对该客户的债务责任,则它购买的债券的期限应为多久? b.零息债券的市场价值应为1157 万元,与债务的市场价值相等,因此,面值: 1.856 ?=万元 1157 1.11381 4、a. 对拟定发行的债券附加赎回条款对发行收益有何影响? b.对拟定发行的债券附加赎回条款对其久期和凸度有何影响?

a.1)提供了较高的到期收益率,因为赎回的特性给发行人提供了一个有价期权,因为它可以按既定的赎回价格将债券买回,即使计划中的利息支付的现值比赎回价格要高。投资者因此会要求,而发行人也愿意支付一个较高的收益率作为该特性的补偿。 (2)减少了债券的预期有效期。利率下降,债券可被赎回;利率上升,债券则必须在到期日被偿付而不能延后,具有不对称性。 (3)缺点在于有被赎回的风险,也限制了利率下降导致的债券价格上涨的幅度,对价格收益率曲线影响体现在价格压缩。 b.附加赎回条款后如果利率下降,则债券不会经历较大的价格上升。而且作为普通债券的特征的曲率也会因赎回特性而减小。使其久期下降,小于其他方面相同的普通债券的久期。可以看成零息债券,久期即为赎回债券时所经历的期限。对其凸度的影响体现在一个负凸性区间的存在。 5、长期国债当前的到期收益率接近8%。你预计利率会下降,市场上的其他人则认为利率会在未来保持不变。对以下每种情况,假定你是正确的,选择能提供更高持有期收益的债券并简述理由。 a. i. 一种Baa级债券,息票利率8%,到期期限20年; ii. 一种Aaa级债券,息票利率8%,到期期限20年。 b. i. 一种A级债券,息票利率4%,到期期限20年,可以按105的价格赎回; ii. 一种A级债券,息票利率8%,到期期限20年,可以按105的价格赎回; c. i. 长期国债,息票利率6%,不可赎回,20年到期,YTM=8%; ii. 长期国债,息票利率9%,不可赎回,20年到期,YTM=8%。 答:根据久期判断,选择久期较长的债券,可以在利率下降中获益。 a. Aaa级债券的到期收益率较低而久期较长。 b. 息票率较低的债券久期较长,具有更多的赎回保护。 c. 选择息票率较低的债券,因为它的久期较长。 6、以下问题摘自CFA试题: 1)一种债券的息票利率为6%,每年付息,调整的久期为10年,以800元售出,按到期收益率8%定价。如果到期收益率增至9%,利用久期的概念,估计价格会下降为: a. 76.56元 b. 76.92元 c. 77.67元 d. 80.00元 2)一种债券的息票利率为6%,半年付息一次,在几年内的凸性为120,以票面的80%出售,按到期收益率8%定价。如果到期收益率增至9%,估计因凸性而导致的价格变动的百分比为: a. 1.08% b. 1.35% c. 2.48% d. 7.35% 3)有关零息债券的麦考利久期,以下说法正确的是: a. 等于债券的到期期限。 b. 等于债券的到期期限的一半。 c. 等于债券的到期期限除以其到期收益率 d. 因无息票而无法计算。

数学期望

§2.2 随机变量的数学期望 每个随机变量都有一个概率分布(分布函数,或分布列、概率密度),这种分布完整地刻画了随机变量取值的统计规律性。由概率分布可以计算出有关随机变量的各个事件的概率。此外,概率分布还可以确定随机变量的各种特征数,比如,数学期望、方差、中位数等,这些特征数都是用以刻画随机变量(或其概率分布)的某一方面的特征。 例如,考虑某种元件的寿命,如果知道了寿命X 的概率分布,就可以计算出寿命在任一指定范围内的概率,对这种元件的寿命状况提供了一幅完整图景。根据这一分布,还可以确定用以反映寿命平均水平的特征数-数学期望,用以刻画寿命值的散布程度(或稳定程度)的特征数-方差.这些特征数虽不能对寿命状况提供完整刻画,但却往往是人们最为关注的一个方面.无论在理论上还是在实用中,这些特征数都有着极重要的意义.尤其是实用中,概率分布虽很“完美”,但难以把握;而特征数则容易把握,并且特征数是以一个“醒目”的数值刻画随机变量的某种特征,是概率分布某个方面的概括,这使得应用方便. 一. 数学期望的定义 定义 设离散型随机变量X 的分布列为 i i p x X P ==)(, ,2,1=i 如果 ∞<∑∞=1 ||i i i p x 则称∑∞=1i i i p x 为X 的数学期望,记为)(X E ,即 ∑∞== 1 )(i i i p x X E 若级数∑∞=1i i i p x 不绝对收敛,则称X 的数学期望不存在。 由以上定义可看出,若X 只取有限个值,则它的数学期望总是存在的。而若X 取可列个值,则它的数学期望不一定存在,是否存在就看级数∑∞=1i i i p x 是否绝对收敛,这个要求的目 的在于使期望值唯一。因为若无穷级数∑∞=1i i i p x 只是条件收敛,则可通过改变这个级数各项 的次序,使得改变后的级数不收敛或收敛到任意指定的值,这意味着这个级数的和存在与否,以及等于多少,与X 的取值的排列次序有关,而)(X E 作为刻画X 取值的平均水平的特征数,具有客观意义,不应与X 的取值的排列次序有关。 由定义,X 的期望值就是其所有可能取值的加权平均,每个可能值的权重就是X 取该值的概率,因此X 的数学期望又称为X 的均值。同时还可看出X 的数学期望完全由X 的概率分布所决定,所以X 的数学期望又叫做X 的分布的数学期望(对一般的随机变量的期望

数学期望的性质

梁烨 0417

数学期望的性质 . )(,.1c c E c =则有是常数设). ()(,,.2X cE cX E c X =则有是常数是一个随机变量设). ()()(,,.3Y E X E Y X E Y X +=+则是两个随机变量设).()()(,,.4Y E X E XY E Y X =则是相互独立的随机变量设4证明()(,)d d ()()d d X Y E XY xyf x y x y xyf x f y x y +∞+∞+∞+∞-∞-∞-∞-∞== ??????+∞∞-+∞ ∞-==) ()(d )(d )(Y E X E y y yf x x xf Y X Note:性质3和4可推广到n 个随机变量的情形.

例12 (,),,().X N Y aX b E Y μσ=+设~求:解(), E X μ=()()()E Y E aX b aE X b a b μ=+=+=+所以 Note :正态分布r.v 的线性组合的期望为其期望的线性组合.

2例). (),(~X E p n b X ,求设:解引入计数随机变量 11,2,,0i i A X i n i A ?==?????第次试验中事件发生第次试验中事件不发生其中.)(p A P =则且分布为p X E X i i =-)(,)10(故.1∑==n i i X X ) ()(21n X X X E X E +???++=12()()()n E X E X E X np =++???+=Note :该解法具有一般性,引入计数变量可简化计算:将一复杂变量分解成n 个相互独立的服从(0-1)分布的变量之和.

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 21 3100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞ =1 k k k p x

数学期望的含义

数学期望的含义是什么? 06月282014年 【知乎用户的回答(24票)】: 简单明了地告诉你结论:期望就是均值。 首先需要明确的一点是:只有随机变量才有期望值。 何谓随机变量?简单地说,一个变量 ,它的取值是随机遇而定的,即我们不能预先知道它取值多少。所以自然地,面对一个如此奇怪充满未知的东西,我们希望用某些工具来刻画它,对它的性质有一点点了解,比如用分布函数,比如用期望方差偏度峰度等诸多统计量。 期望定义: 连续型随机变量: 离散型随机变量: 从数学上来说,这两个奇怪的公式实际上就是求加权平均数。从这个定义告诉我们,期望就是平均数,是随机变量各个取值对取这个值的概率的加权平均。如果我们知道 的分布函数,可以通过这个公式算出来它的期望。 但是现实情况往往不会那么好,对于一个随机变量 ,我们经过很多次观察,获得了一组观察值 ,并且我们对于它的分布不了解,不能直接计算出来期望。所以换一个方法“估计”它的期望。它的期望是多少?它的平均值是多少?我们对这个随机变量的“期待”是多少?在统计学上,这都是一个问题。用同样的思路,那就是取平均了, ,在统计学中,这个样本均值对随机变量期望是无偏估计,即当n充分大的时候,这个估计会和期望“非常非常接近”。 再提到你的例子,扔一个均匀硬币,正面+1分反面-1分,则数学“预期”是0。 设一个随机变量 表示丢硬币的结果,这是一个离散的随机变量,取1和-1的概率都是0.5。其实我们已经知道 的分布了,可以按照公式直接求期望。 但是为了解释清楚什么叫期望,我们还按照上述第二种情况来算。 我们丢了 次硬币,得到了一组观察值 ,这里面有1有-1,肯定没有0。 但是随着

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

久期和凸性

久期和凸性是衡量债券利率风险的重要指标,是衡量债券价格对利率的敏感程度。久期具有双面性,在利率上升周期,要选择久期小的债券;在利率下降周期,要选择久期大的债券。凸性具有单面性,就是凸性越大,债券的风险越小,选择凸性较大的债券,对持有者越有利。 久期描述了价格-收益率(利率)曲线的斜率,斜率大表明了作为Y轴的价格变化较大,而凸性描述了这一曲线的弯曲程度,或者是由于该曲线的非线性程度较大,使得衡量曲线斜率的这一工具变化较大,无法以统一的数字来判断,因此再次对斜率的变化进行衡量,引入凸性参数。凸性就是债券价格对收益率曲线的二阶导数,就是对债券久期(受利率影响,对利率敏感性)的再度测量。 在利率变化很小的时候,传统的久期(是以每期现金流现值占总体现值的比)可以近似衡量债券价格和利率之间关系,但是更为精确的衡量则是修正久期。 久期(也称持续期,duration)是1938年由F. R. Macaulay提出的,以衡量债券利率风险最常用的指标,反映市场利率变化引起债券价格变化的幅度。直观地讲,就是收益率变化1%所引起的债券全价变化的百分比。 久期=价格的变化幅度/单位收益率的变化 它是债券在未来产生现金流的时间的加权平均,其权重是各期现金流现值在债券价格中所占的比重。久期的计算比较麻烦,一般投资者没有必要自己去计算它。久期取决于债券的三大因素:到期期限,本金和利息支出的现金流,到期收益率。 债券的久期越大,利率的变化对该债券价格的影响也越大,因此,该债券所承担的利率风险也越大。在降息时,久期大的债券价格上升幅度较大;在升息时,久期大的债券价格下跌的幅度也较大。 由此,投资者在预期未来降息时,可选择久期大的债券;在预期未来升息时,可选择久期小的债券。 案例:某只债券基金的久期是5年,如果利率下降1个百分点,则该基金的资产净值约增加5个百分点;反之,如果利率上涨1个百分点,则该基金的资产净值要遭受5个百分点的损失。又如,有两只债券基金,久期分别为4年和2年

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

债券久期,凸性与利率期限结构

麦考利久期 其中, MacD是马考勒久期, P是债券当前的市场价格, PV(Ct)是债券未来第t期可现金流(利息或资本)的现值, T是债券的到期时间。 t为从当前到t时刻现金流发生的持续时间。 y为债券的风险程度相适应的收益率。假设未来所有现金流的贴现率都固定为y。 需要指出的是在债券发行时以及发行后,都可以计算马考勒久期。计算发行时的马考勒久期,T(到期时间)等于债券的期限;计算发行后的马考勒久期,T(到期时间)小于债券的期限。

利率期限结构是指某个时点不同期限的即期利率与到期期限的关系及变化规律。 1 由于零息债券的到期收益率等于相同期限的市场即期利率,从对应关系上来说,任何时刻的利率期限结构是利率水平和期限相联系的函数。因此,利率的期限结构,即零息债券的到期收益率与期限的关系可以用一条曲线来表示,如水平线、向上倾斜和向下倾斜的曲线。甚至还可能出现更复杂的收益率曲线,即债券收益率曲线是上述部分或全部收益率曲线的组合。收益率曲线的变化本质上体现了债券的到期收益率与期限之间的关系,即债券的短期利率和长期利率表现的差异性。 1、预期假说 预期理论认为,长期债券的现期利率是短期债券的预期利率的函数,长期利率与短期利率之间的关系取决于现期短期利率与未来预期短期利率之间的关系。如果以Et(r(s))表示时刻t对未来时刻的即期利率的预期,那么预期理论的到期收益可以表达为:

2、市场分割理论 预期假说对不同期限债券的利率之所以不同的原因提供了一种解释。但预期理论有一个基本的假定是对未来债券利率的预期是确定的。如果对未来债券利率的预期是不确定的,那么预期假说也就不再成立。只要未来债券的利率预期不确定,各种不同期限的债券就不可能完全相互替代,资金也不可能在长短期债券市场之间自由流动。 市场分割理论认为,债券市场可分为期限不同的互不相关的市场,各有自己独立的市场均衡,长期借贷活动决定了长期债券利率,而短期交易决定了独立于长期债券的短期利率。根据这种理论,利率的期限结构是由不同市场的均衡利率决定的。市场分割理论最大的缺陷正是在于它旗帜鲜明地宣称,不同期限的债券市场是互不相关的。因为它无法解释不同期限债券的利率所体现的同步波动现象,也无法解释长期债券市场的利率随着短期债券市场利率波动呈现的明显有规律性的变化。 3、流动性偏好 希克思首先提出了不同期限债券的风险程度与利率结构的关系,较为完整地建立了流动性偏好理论。 根据流动性偏好理论,不同期限的债券之间存在一定的替代性,这意味着一种债券的预期收益确实可以影响不同期限债券的收益。但是不同期限的债券并非是完全可替代的,因为投资者对不同期限的债券具有不同的偏好。范·霍恩(Van Home)认为,远期利率除了包括预期信息之外,还包括了风险因素,它可能是对流动性的补偿。影响短期债券被扣除补偿的因素包括:不同期限债券的可获得程度及投资者对流动性的偏好程度。在债券定价中,流动性偏好导致了价格的差别。 这一理论假定,大多数投资者偏好持有短期证券。为了吸引投资者持有期限较长的债券,必须向他们支付流动性补偿,而且流动性补偿随着时间的延长而增加,因此,实际观察到的收益率曲线总是要比预期假说所预计的高。这一理论还假定投资者是风险厌恶者,他只有在获得补偿后才会进行风险投资,即使投资者预期短期利率保持不变,收益曲线也是向上倾斜的。如果R(t,T)是时刻T到期的债券的到期收益,Et(r(s))是时刻t对未来时刻即期利率的预期,L(s,T)是时刻T到期的债券在时刻s的瞬时期限溢价,那么按照预期理论和流动性偏好理论,到期收益率为:

债券的久期、凸性

债券的久期、凸性 久期和凸性是衡量债券利率风险的重要指标。很多人把久期简单地视为债券的到期期限,其实是对久期的一种片面的理解,而对凸性的概念更是模糊。在债券市场投资行为不断规范,利率风险逐渐显现的今天,如何用久期和凸性量化债券的利率风险成为业内日益关心的问题。 久期 久期(也称持续期)是1938年由 F.R.Macaulay提出的,用来衡量债券的到期时间。它是以未来收益的现值为权数计算的到期时间。其公式为 其中,P=债券现值,Ct=每年支付的利息,y=到期收益率,n=到期期数,M=到期支付的面值。 可见久期是一个时间概念,是到期收益率的减函数,到期收益率越高,久期越小,债券的利率风险越小。久期较准确地表达了债券的到期时间,但无法说明当利率发生变动时,债券价格的变动程度,因此引入了修正久期的概念。 修正久期 修正久期是用来衡量债券价格对利率变化的敏感程度的指标。由于债券的现值对P 求导并加以变形,得到: 我们将的绝对值称作修正久期,它表示市场利率的变化引起的债券价格变动的幅度。这样,不同现值的券种就可以用修正久期这个指标进行比较。 由公式1和公式2我们可以得到: 在某一特定到期收益率下,P为常数,我们记作P0,即得到: 由于P0是理论现值,为常数,因此,债券价格曲线P与P /P 0有相同的形状。由公式7,在某一特定到期收益率下,P /P 0的斜率为修正久期,而债券价格曲线P的斜率为P0×(修正久期)。 修正久期度量了收益率与债券价格的近似线性关系,即到期收益率变化时债券价格的稳定性。修正久期越大,斜率的得绝对值越大,P对y的变动越敏感,y上升时引起的债券价格下降幅度越大,y下降时引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券较修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。 但修正久期度量的是一种近似线性关系,这种近似线性关系使由修正久期计算得出的债券价格变动幅度存在误差。如下图,对于债券B′,当收益率分别从y上升到y1或下降到y2,由修正久期计算出来的债券价格变动分别存在P1′P1"和P2′P2"的误差。误差的大小取决于曲线的凸性。 市场利率变化时,修正久期稳定性如何?比如上图中,B′和B"的修正久期相同,是否具有同等利率风险呢?显然不同。当y变大时,B"价格减少的幅度要小,而当y变小时,B"价格变大的幅度要大。显然,B"的利率风险要小于B′。因此修正久期用来度量债券的利率风险仍然存在一定误差,尤其当到期收益率变化较大时。凸性可以更准确地度量该风险。 凸性 利用久期衡量债券的利率风险具有一定的误差,债券价格随利率变化的波动性越大,这种误差越大。凸性可以衡量这种误差。 凸性是对债券价格曲线弯曲程度的一种度量。凸性越大,债券价格曲线弯曲程度越大,用修正久期度量债券的利率风险所产生的误差越大。严格地定义,凸性是指在某一到期收益率下,到期收益率发生变动而引起的价格变动幅度的变动程度。 根据其定义,凸性值的公式为:

相关文档
相关文档 最新文档