文档库 最新最全的文档下载
当前位置:文档库 › 固体物理基本概念

固体物理基本概念

固体物理基本概念
固体物理基本概念

固体物理总结

绪论

1研究对象及内容

研究固体的结构及其组成粒子间相互作用与运动规律以阐明固态物质性能和用途的学科。

2 固体物理学发展的里程碑

十八世纪:

阿羽依(

法)--坚实、相同、平行六面体的“基石”有

规则重复堆积.

十九世纪:

布喇菲

法)--空间点阵学晶体周期性. 二十世纪初:

X-射线衍射揭示晶体内部结构 量子理论描述晶体内部微观粒子运动过程

近几十年:

固体物理学→凝聚态物理:无序、尺度、维度、关联;晶体→凝聚态物质

第一部分 晶体结构

1 布喇菲点阵和初基矢量

晶体结构的特点在于原子排列的周期性质。布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。布喇菲点阵是晶体结构周期性的

数学抽象。点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简

称基矢。初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。 布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。

对一个给定的布喇菲点阵,初级矢量可以有多种取法。

2 初基晶胞(原胞)

初基晶胞是布喇菲点阵的最小重复单元。初基晶胞必定正好包含布喇菲点阵的一个阵点。

对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =??。

3 惯用晶胞(单胞)

惯用晶胞是为了反映点阵的对称性而选用的晶胞。惯用晶胞可以是初基的或非初基的。惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。其中,n 是惯用晶胞所包含的阵点数。

确定惯用晶胞几何尺寸的数字叫做点阵常数。

4 维格纳-赛兹晶胞(W-S 晶胞)

维格纳-赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。维格纳-赛兹晶胞是初基晶胞。

5 晶体结构

理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为

基元十点阵=晶体结构

当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。

第二部分 倒易点阵和晶体衍射

1.倒易点阵和倒易点阵初基矢量

和一种晶体结构相联系的点阵有两种:晶体点阵和倒易点阵.前者是真实空间中的点阵,具有[长度]的量纲.后者是在与真实空间相联系的傅里叶空间中的点阵,具有[长度]-1量纲.

一个具有晶体点阵周期的周期函数n (r )=n (r+R )展成傅氏级数后,其傅氏级数中的波矢在傅里叶空间中表现为一系列规则排列的点,这些点排列的规律性只决定于函数n (r )的周期性而与函数的具体形式无关.我们把在傅里叶空间中规则排列着的点的列阵称为倒易点阵.倒易

点阵是晶体结构周期性在博里叶空间中的数学抽象.如果把晶体点阵本身看作一个周期函数,我们可以说,倒易点阵就是晶体点阵的傅里叶变换.反之晶体点阵就是倒易点阵的傅里叶逆变换.

倒易点阵的初基矢量(简称倒易点阵基矢)定义为

()23

11232π?=??a a b a a a

()3121232π?=??a a b a a a

()

12

31232π?=??a a b a a a (2.1) 由此式定义的倒易点阵的每个初基矢量都与晶体点阵的两个初基矢量正交:

0,22,i j ij i j b a i j πδπ≠??==?=? (2.2)

倒易点阵矢量定义为112233l l l =++G b b b ,其中1l 、2l 、3l 均为整数.很容易证明,由倒易点阵矢量G 所联系的诸点的列阵正是前面由傅里叶分析所定义的倒易点阵.

2.倒易点阵矢量与晶面指数间的关系

对于晶体中面间跃为d 的任何一组平行平面(hkl ),有一组倒易点阵矢量与之垂直,其中最短的就是以晶面指数为指数的倒易点阵矢量

()123hkl h k l =++G b b b ,(h 、k 、l 是整数).且面间距等于该倒易点阵矢量

长度倒数的2π倍. ()2d hkl π

=G (2.3)

如果用与平面族(hkl )垂直的任一倒易点阵矢量G 来表示,

2n

d π=G (2.4)

这里n 是G 与平行于它的最短倒易点阵矢量G (hkl )长度之比

()n hkl =G

G (2.5)

3.X-射线衍射的布喇格定律和劳厄条件

X-射线的衍射条件有两种等价的表示法:

(i)布喇格定律:布喇格假设入射波从晶体中的平行原子平面作镜面反射,每个原子平面只反射很少一部分辐射,而将大部分辐射透射到下一层原子平面.当来自平行原子平面的反射有相同位相时,发生相长干涉,于是得到尖锐的反射峰(称为布喇格峰),由此导出X-射线反射的布喇格定律为

2sin n d λθ= (2.6)

其中λ是入射波波长,n 为相应的反射级,θ是入射束的布喇格角,d 为面间距.

(ii) 劳厄条件: 劳厄对X-射线衍射的处理方法和布喇格不同,他把晶体看作由放置在布喇格点阵阵点上的微观物体所组成,每个微观物体都向各个方向将入射辐射再辐射出去.由相距r 的体元散射出的射线束之间的位相差因子是()exp[]i '

-?k k r ,在'k 方向散射波的总振幅正比于积分: ()()exp u dVn r i =-???k r (2.7)

()exp[]

G G u dVn i =-??∑?G k r

在一定的方向和入射波长下,当散射矢量?k 等于倒易点阵矢量G 时,散射振幅有极大值,由此导出衍射的劳厄条件

?=k G (2.8)

在弹性散射中,劳厄条件又可写为

220G ?+=k G (2.9a ) 或 22G ?k G = (2.9b ) 可以证明,布喇格定律和劳厄条件完全是等价的。

衍射条件的另一种表示法是劳厄方程:

123222h k l πππ??=????=?

???=?a k a k a k (2.10)

4.布里渊区

第一布里渊区定义为倒易点阵的维格纳-赛兹(w-s)初基晶胞.

高布里渊区:把一个给定的倒易点阵阵点同其它阵点都连接起来,作

这些连线的中垂面,于是波矢空间被这些中垂面(满足方程22G ?=k G )分

割成一块一块的区域,这些中垂面就构成了布里渊区的边界.第一布里渊区就是这些中垂面所围成的最小区域.第二布里渊区定义为从第一布里渊区出发只穿过一个中垂面所能到达的区域.依次类推,第n +1布里渊区定义为从第n 布里渊区出发只穿过一个中垂面所能到达的但不在第n -1区内的区域.各级布里渊区有相同的体积.

布里渊区边界是波矢空间中满足衍射条件(22G ?=k G )的点的轨迹,所以,布里渊区是衍射条件的几何表示法.

5. 实验衍射方法

常用的实验衍射方法有劳厄法,转动晶体法和粉末法。

6. 基元的几何结构因子

基元的几何结构因子是这样一个物理量,它标志着基元内部各个原子的散射波相互干涉的结果对散射波总振幅的贡献,其决定于散射矢量?=k G ,及基元中各原子的相对位置.

基元的几何结构因子定义为

()()

exp G j j j f G i ?=-?∑G r (2.11)

j f 是第j 原子的形状因子,代表基元中第j 原子对散射波总振幅的贡献:

()()exp j j f dVn i =-??r G r (2.12)

当基元的几何结构因子为零时,空间点阵所允许的反射消失,而根据消失了的反射(即消光规则)又可以帮助我们确定晶体结构.

第三部分 晶体结合

1 内聚能

相距无限远的自由原子(或自由离子)的总能量与它们形成晶体的能量之差,称为晶体的内聚能。换句话说,内聚能也就是把晶体分离成它

们的组成单元所需要的能量。

2 范德瓦耳斯互作用

范德瓦耳斯互作用是感生偶极矩-偶极矩间的相互作用.这种相互作用按6A r 的规律变化.

分子晶体的结合就是依赖范德瓦耳斯互作用.如果由于泡利原理而产生的排斥作用有负幂次12

B r 的形式,则惰性气体晶体相距为r 的原子间的相互作用能具有勒纳-琼斯势(Lennard-Jones potential)的形式

()1264u r r r σσε??????=-?? ? ????????? (3.1) 式中ε和σ是两个经验参数,由气相数据给出。

3 离子晶体的晶电能(马德隆能)

离子晶体的结合依靠异号荷电离子间的静电吸引.离子晶体内聚能的主要部分来自静电能.电荷为q ±的N 个离子对组成离子晶体时的静电能是

()22CGS coul

j ij q q U Na N r r ±=-=-∑ ()2200SI 44coul j ij q N q U Na r r πεπε±=-=-∑ (3.2)

式中r 是最近邻距离,1j ij

a p ±=∑称为马德隆常数.它决定于晶体结构.ij p 是以最近邻距离r 度量的参考离子i 到任何一个离子j 的距离.如果以负离子为参考离子,求和对正离子取“+”号,对负离子取“-”号. 离子间的短程排斥作用通常采取指数函数()exp r λρ-或负幂次函数n B r 的形式,这两种形式都表达了泡利原理所产生的短程排斥作用随距离增加而急剧下降的特点.

4 平衡最近邻距离

在平衡态下,晶体势能最低.由组成晶体的原子(离子)的总相互作用能对最近邻距离r 求微商,可以得到平衡时原子(离子)的最近邻距离0r ,再代回到晶体的总能量中,就可以求得晶体的内聚能.

5 晶体结合的基本形式

分子晶体,离子晶体,共价晶体.金属晶体和氢键晶体.其结合力的主要特点及特征性质如下表所示.

第四章 点阵振动(声子I )

1 格波与声子

点阵振动的简正模式是具有一定频率ω和波矢K 的平面波,通常称为格波.K 值是第一布里渊区内的一系列分立值12,,K K K K N =共有N 个,等于晶体中初基晶胞的数目.不同的(),K K s ω代表格波的不同模式,给定了波矢K ,频率ω由点阵振动的第s 支色散关系()K s ω相应地确定.波矢为K 、频率为()K s ω的格波,其能量是量子化的,

(),12n s s E n ω??=+ ???K K (4.1)

函数()K s ω又称为声子的色散关系或声子能谱,一个波矢为K 的第s 支振动模式处于它的第,K s n 个激发态,我们就说,在晶体中存在有,K s n 个波矢为K 的第s 种声子.

2 点阵振动的色散关系

简谐近似是处理点阵振动问题的理论基础.简谐近似下,如果只计入最近邻原子间的互作用,一维单原子点阵简正模式的色散关系是

1

sin 2m Ka ωω= (4.2)

初基晶胞含有两个原子的一维点阵,简正模式的色散关系分为声学支和光学支.在布里渊区边界上声学支和光学支之间有一频率间隙(声子的能隙).

三维点阵简正模式的色散关系是一维情况的推广.波矢K 是三维矢量,频率()K s ω是波矢大小的函数,又是波矢方向的函数.

单原子点阵的色散关系有三个声学支,其中两个代表横偏振,一个代表纵偏振.对带有基元的点阵,色散关系有3p 支,这里p 是基元中所包含的原子数.其中有3个声学支(晶体中有N 个初基晶胞,共有3N 个声学模式),有3p -3个光学支(共有(3p -3)N 个光学模式)。总的模式数为3pN ,等于晶体中原子的总自由度数。

简正模式的色散关系在波矢空间具有平移对称性质:

()()s s ωω=K +G K (4.4)

同时也具有中心反演的对称性

()()s s ωω=-K K (4.5)

3 第一布里渊区的振动模式

对于点阵振动色散关系的同一支而言,K 和K+G 代表同一振动模式,因而格波的波矢是限制在第一布里渊区内的.第一布里渊区外的波矢所代表的振动模式只不过是第一布里渊区内的波矢所代表的模式的重复或再现而已.当格波的波矢超出第一布里渊区时,必须平移一个适当的倒易点阵矢量,用第一布里渊区内的波矢来描写.点阵振动的最大波矢是布里渊区边界所对应的波矢,相应的波长也就是点阵振动的最短波长.

4 声学支和光学支

对初基晶胞含有不只一个原子的点阵,色散关系分为声学支和光学支.长声学波描写同一初基晶胞中原子(连同它们的质心)的整体运动,色散关系近似为直线

vk ω= (4.6)

其性质类似声波,具有恒定的声速v 。

长光学波描写同一初基晶胞中原子的相对运动(质心固定不动).离子晶体的长光学波可以用光波激发,如果它们具有相同的频率和波矢,可以发生共振,这决定了离子晶体的红外光学性质.

5 中子的非弹性散射

声子对中子的非弹性散射可以用来测量声子能谱.该实验方法所依据的基本原理是散射过程遵守能量守恒和波矢守恒定律.

能量守恒定律要求:

()i n n

s E E ω'=±K (4.16) 式中

i n E 和n E '是散射前后中子的能量,()s ωK 是吸收或发射的声子的频

率. 波矢守恒定律要求:

i '+=±k G k K (4.17)

i k 和'k 是散射前后中子的波矢,K 是吸收或发射的声子的波矢,G 是

一个倒易点阵矢量,G 的选取必须使声子波矢不超出第一布里渊区。

以上二式中“+”号对应发射声子的过程,“-”号对应吸收声子的过程。

第五部分 热学性质(声子II )

1 简正模式密度(声子能级密度)

每单位体积的简正模式密度()g ω定义为在频率ω附近单位频率间隔内的简正模式数除以该晶体的体积.或者说,()g d ωω表示单位体积的晶体在ω到d ωω+无穷小频率间隔内的简正模式数.

由于一个简正模式对应于单个声子的一个可能的能级,所以,模式密度又称为声子的能级密度.引入模式密度概念,在计算点阵的平衡态性质时,可以将对模式K 的求和化为对频率ω的积分.模式密度依赖于色散关系,不同的物理模型,就在于假定了不同的色散关系,相应也有不同的模式密度.

模式密度的一般表达式是

()()()()32s s d g ωδωωπ??=-??∑?K K (5.1)

s 表示色散关系的第s 支. 积分对第一布里渊区进行. 式(5.1)又可写为

()()()31

2s s dS g ωωπ=?∑?K (5.2)

积分沿第一布里渊区中()K s ωω≡的频率等值面进行. ()K s ω?是波矢为K 的第s 支格波的群速度. 对于一维情况,模式密度为

()1

g g v ωπ=

2 爱因斯坦模型和德拜模型

爱因斯坦模型假定晶体中所有简正模式都具有相同的频率:E ωω=.于是爱因斯坦模型的模式密度为

()()3E E g n ωδωω=- (5.4)

式中n 是单原子点阵的原子密度N n V ??= ???

. 德拜模型把晶体看作连续介质,色散关系为直线vK ω=,声速v 为常数.另外,假定波矢K 取在波矢空间中半径为D K 的球(称为德拜球)内,而不是取第一布里渊区中的所有K 值.于是三维晶体的德拜模式密度为

()2

23

3,20D D D D K v g v ωωωωπωω?<=?=??>? (5.5)

其中D D v ω=K 称为德拜截止频率,也就是晶体中可能存在的简正模式的最高振动频率.D ω由单原子点阵中N 个原子的3N 个自由度决定,

23

3

6D

v N V πω= (5.6) 对初基晶胞含有两个原子的点阵而言,色散关系的光学支在长波极限下近似有ω为常数,适于用爱因斯坦模型;而对色散关系的声学支,长波极限下近似有直线型色放关系,vK ω=,适于用德拜模型.

3 点阵热容

经典模型把原子看作一组独立的经典谐振子.从而得到点阵热容的杜隆珀替定律;

3V B C Nk = (5.7)

热容V C 与温度T 无关. 这个结论只在高温情况下才和实验结果相符. 用量子统计方法得到的点阵热能为

()()()(),,1s s s s s s U n e βωωω==-∑∑K K K K K K (5.8)

用爱因斯坦模型得到的点阵热容为

()2

231E E E V B T e C Nk T e θθθ??= ???- (5.9) 式中E

E B k ωθ=,称为爱因斯坦温度.

用德拜模型得到的点阵热容为

()342

091D x T V B x D T x e C Nk dx e θθ??= ???-? (5.10) 式中D

D B k ωθ=,称为德拜温度,它是表征固体热学性质的特征温度.在

德拜温度以上,几乎所有模式都被激发,而在德拜温度以下,有的模式开始转入“冻结”.爱因斯坦热容和德拜热容在高温下都趋近于经典值

3Nk B ,,在低温下,爱因斯坦热容按E

e θ-规律变化,德拜热容按T 3规律变

化.后者与实验结果符合甚好. 4 非简谐效应

简谐近似下,点阵振动的简正模式是独立的,声子气体是理想气休.考虑到非简谐效应,各格波可以有相互作用,声子气体是非理想气体,但在势能的非简谐项比简谐项小得多的情况下,声子气体仍可近似地当作理想气体处理,不过这时要考虑声子与声子的碰撞.这是因为没有声子与声子之间的碰撞,点阵就不可能过渡到热平衡分布,同时也没有点阵热阻.

5 热膨胀

热膨胀是由于非简谐效应所引起的一种重要的热现象.它可以用原子势能曲线的不对称性得到解释.

6 点阵热导率

将气体分子运动论用于声子气体,可以导出点阵热导率为

1

3cvl κ= (5.11)

式中c 是每单位体积的点阵热容,v 是声速,l 是声子的平均自由程,它取决于声子与声子的碰撞、声子与杂质缺陷的碰撞和声子与样品边界的碰撞.

7 倒逆过程

声子与声子的碰撞过程分为正规过程(或N 过程)即G =0的碰撞过程和倒逆过程(U 过程).倒逆过程是如下形式的三声子碰撞过程:

123+=+K K K G (5.12)

其中G 是不为零的倒易点阵矢量.由于倒逆过程可以大幅度地改变声子团的总动量,因而可以建立起声子的热平衡分布,并决定在高温下的点阵热阻.

第六部分 自由电子费米气体

1 金属自由电子论的物理模型

金属自由电子论对于解释金属,特别是简单金属的许多重要物理性质非常成功.其基本假定是

(a) 自由电子近似:当金属原子聚集成为金属晶体时,原子的价电子脱离了母体原子而在金属晶体中自由运动.金属自由电子论认为,离子实对电子的作用是可以忽略不计的,离子实的作用仅仅是维持整个金属晶体的电中性.

(b) 独立电子近似: 金属自由电子论忽略了电子与电子间的相互作用.

(c) 弛豫时间近似:假定电子在单位时间内受到一次碰撞的几率为1τ,τ称为弛豫时间.电子通过碰撞和周围环境达到热平衡,电子经过每次碰撞后,其速度的方向是随机的,速率的大小由碰撞处的局部温度决定.碰撞的后果和碰撞时电子的状态无关.

早期的金属自由电子论[特鲁德(Drude)模型]把金属中的传导电子看作自由电子经典气体,服从麦克斯韦-玻尔兹曼统计;近代自由电子论

[索末菲(Sommerfeld)模型]把金属中的传导电子看作自由电子费密气体,服从费密-狄喇克统计.

2 费密-狄喇克统计

在温度T 下,能量为ε的状态被电子占据的几率为

()()1

1B k T f e εμε-=+ (6.1)

式中μ是电子气体的化学势,它是温度的函数。在绝对零度时,

F με=,F ε是电子气体的费米能.

3 三维自由电子气体的能级和状态密度

自由电子波函数()k r ψ满足单电子薛定谔方程

()()2

2222222k k k r r m x y z ψεψ?????-++= ?????? (6.2) 在周期性边界条件下,波函数具有行波形式

(

)i k r ψ?=k r (6.3)

式中V 是晶体体积,波矢k 取一系列分立值

222x x y y z z k n k n k n L L L πππ=== (6.4)

,,0,1,2,x y z n n n =±

±

自由电子的能量为

()()2

2

222222x y z k k k k k m m ε==++ (6.5) 动量为

=p k (6.6)

速度为

m =k v (6.7)

自由电子在波矢空间中的等能面是球面.波矢空间中的一个点[平均占体积()32L π]代表自旋相反的两个状态,可容纳自旋相反的两个电子.

自由电子的状态密度()g ε定义为单位体积的晶体在单位能量间隔中的状态数,故

()1

g d V εε=[在能量范围d εεε-+中的状态数] (6.8)

三维自由电子的状态密度为

()22

2,00,0g εεπε>?=??

4 自由电子在基态下的性质

对于由N 个自由电子组成的系统,基态(绝对零度)下被电子占据的状态可以用波矢空间中一个球内的点来表示,这个球称为费米球.费密球的半径F k 称为费米波矢量,

()

123F k n π= (6.10)

仅决定于电于浓度n .通常我们用无量纲量00s r r a ≡表示电子浓度,0r 定义为体积等于每个自由电子平均所占体积的球体的半径,即

30143V r N n π==

13034r n π??= ??? (6.11)

0a 是玻尔半径,

2800.52910cm a me -==?. 于是, 式(6.10)又可写为 3.63

F s k r =

?-1 (6.12)

费密面是基态下电子所填充到的最高等能面.自由电子费密面是球面.费密面把基态下波矢空间中已被电子占据的状态和未被电子占据的状态分开.由于泡利原理的限制,远离费密面的电子被冻结,只有费密面附近的电子才在低能激发中是活跃的.所以,只有费密面附近的电子才决定金属的动力学性质.

费密面上电子的能量称为费密能F ε,

()222322322F F k n m m επ== (6.13) 250.1eV

F s r ε= (6.14)

费密面上电子的速度称为费密速度,

()1323F F k v n m m π=

= (6.15) 81

4.2010cm s F s v r -=?? (6.16)

费密温度由费密能定义

F

F B T k ε= (6.17)

费密面附近电子的状态密度为

()32

1222122F F m g εεπ??= ??? (6.18)

()32F F g n εε= (6.19)

用自由电子的状态密度()g ε和分布函数()f ε,很容易计算出基态下三维自由电子气体的能量密度,

()0035F F U u g d n V εεεεε-∞===? (6.20)

自由电子气的压强为

0023N U P u V ???=-= ???? (6.21)

体弹性模量为

01052393F U p B V p n V V ε?=-===? (6.22)

5 自由电子气体的热学性质

引用自由电子的状态密度和费密分布函数,自由电子的能量密度为

()()()33d d 4k u f k g f εεεεεπ∞-∞==?????? (6.23)

电子浓度为

()()()33d d 4k n f k g f εεεεπ∞-∞==?????? (6.24)

通常可以借助索末菲展开式(见例题6.3中的附注)计算以上的积分. 由u 和n 的积分,计算出自由电子的热容为

22el B V

B n F k T u

C V Nk T πε?????== ? ?????? (6.25) 约为经典值的0.01倍. 式中N 是自由电子数,N nV =.

低温下金属的热容可以写为电子热容和点阵热容之和,

3el l V V V

C C C T AT αγ=+=+ (6.26)

其中γ和A 是两个常量.

6 电导和欧姆定律

在外加恒定电场下,波矢空间中的自由电子费密球以均匀的速率漂移.考虑到电子所遭遇的碰撞,稳态下费密球的位移为

δk E e τ=- (6.27)

其中τ为弛豫时间. δk 决定电子的漂移速度(平均速度)v

m δ=k v (6.28)

由此可以导出自由电子的电导率为

2ne m τσ= (6.29)

其中弛豫时间τ主要由电子-声子和电子-杂质缺陷间的碰撞决定。根据马提生(Matthiessen)定则,在杂志缺陷浓度不太高时,各种碰撞机制可以独立处理,

1

1

1l i τττ=+ (6.30) 其中1l τ和1i τ分别是电子-声子,电子-杂质缺陷的碰撞几率. 于是对含有少量杂志缺陷的金属,电阻率可以写为两部分之和

()l i T ρρρ=+ (6.31)

其中()l T ρ是热声子所引起的电阻率,i ρ是剩余电阻率,由静态缺陷决定.

7 电子在外加磁场中的运动

经典近似下,电子在外加电磁场中的漂移动量p 满足如下方程式 ()()()d p p F t t t dt τ=-+ (6.32)

其中()()(),t m t t =p v v 是电子的漂移速度,τ是弛豫时间,()t F 是外力. ()t τp 相当于电子遭受碰撞而引入的摩擦阻力. 在外加电磁场下

()()1CGS t e c ??=-+? ???F E v H (6.33)

自由电子漂移速度所满足的方程式为

11d m e dt c τ????+=-+? ? ?????v E v H (6.34)

由此方程可以导出金属的霍尔系数,

()()1

CGS 1SI H H R nec

R ne =-=- (6.35)

用电子的漂移速度方程,联同麦克斯韦方程组,可以导出自由电子气体的等离子振荡频率

p

ω,并讨论金属的光学性质. 8 金属热导率

用自由电子模型,可以导出自由电子的热导率

LT κσ= (6.36) 并求出洛伦兹数L ,

2

23B k L e π??= ??? (6.37)

第七部分 能带

1.布洛赫(Bloch)定理

周期势场中,单电子哈密顿量22/2()r H m U =-?+(对布喇菲点阵的所有R ,有()()r r +R U U =)的本征因数可以这样选取,使得和每个ψ相联系的有一个波矢k ,对于布喇菲点阵的所有R 有

()()ψψ?=ik R r R e r + (7.1) 此即布洛赫定理。布洛赫定理要求本征函数()h ψr 具有如下的特殊形式

()()ψ?=ik r k k r e u r (7.2)

这里,()k u r 是具有布喇菲点阵周期性的函数,对布喇菲点阵的所有点阵矢量R 有

()()u u =k k r r +R (7.3)

()ψk r 称为布洛赫函数,它具有调幅波的特性。

布洛赫定理是由晶体的平移对称性导出的,凡属周期结构中的波都应具有布洛赫函数的形式。

2.周期场中电子的波动方程

周期场中单电子薛定谔方程为

2

2[()]2H U m ψψεψ=-?+=r (7.4)

在周期性边界条件下,将波函数ψ展成平面波的线性组合

()i C e ψ=∑K K K r r

(7.5)

K 取周期性边界条件所容许的值

31i i i i m N =∑K =b (7.6)

其中m i 为整数,N i 是数量级为N 1/3的整数,N=N 1N 2N 3是晶体中初基晶胞的数目。将周期势U (r )用倒易点阵矢量G 展开,

()i U U e =∑G r

G G r (7.7)

适当选择势的零点,使U 0=0,对中心反演对称的晶体,由于U (r )是实函数,应有

*

U U U -==G G G 。将上式代入式(7.4)得到单电子薛定谔方程在动量空间的形式:

22()0

2K C U C m ε'''-+=∑K G K -G G (7.8)

用第一布里渊区内的波矢=+k K G ,式(7.8)又可写为

[]02

2h ()-εC +U C =2m '''∑k -G G -G k -G G k -G (7.9)

对于第一布里渊区内指定的波矢k ,式(7.9)对所有倒易点阵矢量G 代表一组方程式,这组方程式把那些波矢和k 相差一个倒易点阵矢量的系数C k ,C 'k -G , C ''k -G ,C '''k -G …联系起来,于是求解周期势场中单电子薛定谔方程(7.4)的问题化为对第一布里渊区内的N 个k 值独立求解方程(7.9)的问题。对每一个k 值,解的形式都是波矢和k 只相差一个倒易点阵矢量的一组平面波的迭加,即

()i C e ψ=∑k -G r

k k -G G (7.10)

如果我们把上式写作

()()

i i e C e ψ-=∑k r G k k -G G r r (7.11)

令周期函数u (r )为

()i u C e -=∑G r

k -G G r (7.12)

则式(7.10)就具有布洛赫形式(7.2)。

3.弱周期势场中的电子[1]

对弱周期势场中的电子(近自由电子),我们可以从索末菲的自由电子论出发,加上弱周期势的修正来处理。分以下两种情况来讨论。

(a)非简并情况

固定一个波矢k ,考虑一个特定的倒易点阵矢量G 1,使得相应的自由电子能量满足

00||U εε-k-G 1k-G ,对固定的k 和所有≠1G G 这里222m ε=0K K ,表示波矢为K 的自由电子能量。U 表示势的典型傅里

叶分量。由此(7.9)可以得到修正到U 2的电子能量为

23||()00

U O U εεεε=++-∑-G 121G-G k -G k -G k -G 0 (7.13)

弱周期势对非简并自由电子能级

ε10k-G 的影响是U 的二级小量。

(b)近简并情况 如果所选取的k 值使得有几个倒易点阵矢量G 1,……,G m 满足ε10k-G ,……εm k-G 0彼此都相差在U 的数量级内,而和其它0-(,......,)1m k G G G ε≠ 之差则远大于U ,即

||1,...,,U m εε-=≠,...,i 00k-G k-G i 1m G G G ,由式(7.9)可以得到

311(()()m i j U U -ε

)C U C C O U εεε==≠=++-∑∑∑i j i i j i j j 1m G-G G -G 0k-G k-G G -G k-G k-G 0G G ...G k-G (7.14) 于是求解U 的二级近似下m 个简并能级的能量修正问题化为求解m 个C i k -G 的联立方程(7.14)的问题。如果仅仅修正到U 的首项,则方程(7.14)

简化为

1((1,...,)m j -C U C i m εε===∑i i j i j k-G k-G G -G k-G ) (7.15)

这正是m 个量子能级体系的一般方程式。

用式(7.14 )、(7.15)可以求解几个布喇格平面(G 的中垂面)交点附近的电子能级。

对于近简并的二能级体系,式(7.15)简化为

00((-C U C -C U C εεεε?=??=??))1121222121k -G k -G G -G k -G k -G k -G G -G k -G (7.16)

引用符号K =k -G 1,G =G 2-G 1,式(7.16)又可写为

0((-C U C -C U C U C εεεε?=??==??*))1k -G K G K -G

0K -G K -G -G K G K (7.17)

这里有

,||000U εεεε'≈-K -G K K K -G ,对,0'≠G G ,由式(1.17)可得能量的两个根为

221/2

1([]220000U εεεεε-=+±)()+||K k -G K k -G G (7.17′)

用式(7.17′)可以求解一级近似下单个布喇格平面附近的电子能级。 由于近简并情况下一级能量修正和U 有线性关系,和非简并情况相比较,我们看到,只有近简并能级才受到弱周期势最强烈的影响。也就是说,弱周期势的主要影响只表现在对那些波矢靠近布喇格平面的自由电子能级上。

4.能隙

在某些能量范围内,波动方程不存在布洛赫解,这些能量值构成所谓能量禁区,即能隙。在此区内,波函数在空间被阻尼,波矢k 为复值。绝缘体的出现正是由于能隙所引起。

固体物理复习整理

固体物理复习整理 第12章 1.什么是布拉菲格子? 2.布拉菲格子与晶体结构之间的关系. 3.什么是复式格子?复式格子是怎么构成的? 4.原胞和晶胞是怎样选取的?它们各自有什么特点? 5.如何在复式格子中找到布拉菲格子?复式格子是如何选取原胞和晶胞的? 6.金刚石结构是怎样构成的? 7.氯化钠、氯化铯的布拉菲格子是什么结构? 8.密堆积有几种密积结构?它们是布拉菲格子还是复式格子? 9.8种独立的基本对称操作是什么? 10.7大晶系是什么? 11.怎样确定晶列指数和晶面指数? 12.晶面指数与晶面在三坐标轴上的截距之间的关系? 13.通过原点的晶面如何求出其晶面指数? 14.倒格子的定义?正倒格子之间的关系? 内容 ?正空间:晶体的结构以及特点 ?正空间:晶体的结构参数的确定→晶向指数和晶面指数 ?从正空间到倒空间→倒格子和布里渊区 晶体所呈现的物理性质来源其特殊的空间结构,所以对其空间结构的了解以及描述很有必要;而对于涉及到波函数,比如格波→晶格振动(13章)和电子波→能带论(14章)的讨论都是在倒空间中完成的,所以本章还涉及到正空间和倒空间的相互转换,以及布里渊区概念的提出和构建。 概念 ?格点和基元 ?布拉菲格子(简单格子)和复式格子 ?原胞和晶胞 ?七大晶系和十四种布拉菲格子 ?立方晶系的三种布拉菲格子:简单立方、面心立方、体心立方的结构特点——晶 胞(立方晶系)和原胞基矢的建立 ?立方晶系的几种复式格子:氯化钠结构、氯化铯结构、金刚石结构和闪锌矿结构 ——结构特点和代表物质 ?最密堆积的两种基本方式:ABAB→六方密堆积(六方晶系的复式格子)和

ABCABC→立方密堆积(立方晶系的布拉菲格子:面心立方) ?晶体的八种独立的宏观对称要素:C1、C2、C3、C4、C6、σ、i、S4 ?32点群和230空间群 ?倒格矢和晶面以及晶面间距之间的关系? ?倒格矢和正格矢之间的关系? ?布里渊区物理性质的重复? 方法 ?一维、二维和三维晶体的原胞和晶胞的选取,以及其基矢的建立,格矢的确定?(包括 简单格子和复式格子) ?晶向指数和晶面指数的确定?(从图到指数,依据指数画图) ?正格子到倒格子的转换——原胞基矢的互换:一维、二维和三维(立方晶系的正倒格子 关系)? ?求正格子和倒格子的体积Ω和Ω*? ?布里渊区的几何画法?布里渊区边界方程应用? 第13章 1.一维单原子晶格的色散关系?色散关系周期性的物理意义? 2.一维双原子晶格的色散关系? 3.同一原胞内两种原子有什么振动特点? 4.晶格振动的波矢数、格波支数及格波数是如何确定的? 5.声子这个概念是怎样引出的?它是怎样描述晶格振动的? 内容 ?对晶格振动形态的描述:从运动方程到色散关系;(简单的一维无限长模型) ?周期边界条件以及对格波状态的讨论(多维有限长模型——原胞数有限) ?格波的能量——声子的引出 ?晶格比热——声子能量的进一步讨论 概念 1、一维单原子和一维双原子的色散关系? 2、声学波和光学波的运动特点? 3、波恩卡门条件:格波支数、每支格波格波数、总格波数(n维有限——简单或者复 式格子) 4、声子的基本概念——格波能量量子化——公式? 5、了解,晶格比热的历史沿革——经典下的矛盾,爱因斯坦和德拜模型的成功与不足?方法 1、运动方程→试探解→色散方程? 2、利用周期边界条件求格波波矢(状态)?

材料科学概论考点总结

材料科学概论考点总结

1·材料: 材料是人类社会所能接受的、可经济地制造有用物品的物质(Materials is the stuff from which a thing is made for using.) 2·材料的分类及类型: 按服役领域分类:结构材料 (受力,承载),功能材料 (半导体,超导体以及光、电、声、磁等) 按化学组成分:金属材料,无机非金属材料,高分子材料,复合材料 按材料尺寸分:零维材料,一维材料,二维材料,三维材料 按结晶状态分:晶态材料,非晶态材料,准晶态材料 3·材料科学:是一门以实体材料为研究对象,以固体物理,热力学,动力学,量子力学,冶金,化工为理论基础的交叉型应用基础学科。4·材料的发展要素:材料的成分、组织结构、合成加工、性质与使用性能5·材料的力学性能:弹性模量,强度,塑性,断裂韧性,硬度 6·塑性变形:材料在外力作用下产生去除外力后不能恢复原状的永久性变形称为塑性变形。塑性变形具有不可逆性 7·能带:满带,空带,价带,禁带 8·磁性的分类: 磁滞回线: H c :矫顽力 H m :饱和磁场强度 B r :剩余磁感应强度 B s :饱和磁感应强度 9·不同材料的热导率特性:金属材料有很高的热导率,无机陶瓷或其它绝缘材料热导率较低,半导体材料的热传导,高分子材料热导率很 低 10·固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体. 11·断裂韧度:是衡量材料在裂纹存在的情况下抵抗断裂的能力 12·影响断裂失效的因素: (1)材料机械性能的影响 (2)零件几何形状的影响 (3)零件应力状态的影响 (4)加工缺陷的影响 (5)装配、检验产生缺陷的影响 13·穿晶断裂:裂纹在晶粒内部扩展,并穿过晶界进入相邻晶粒继续扩展直至断裂

固体物理学整理要点

固体物理复习要点 第一章,第二章的前三节,第三章的1,2,4节,第五章(第四节除外),第六章的前四节 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。

史上最全最好固体物理复习资料

史上最全最好固体物理 复习资料 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章晶体的结构 a)晶体的共性: i.长程有序:晶体中的原子按一定规则排列 ii.自限性:晶体自发地形成封闭几何多面体的特性,晶面夹角守恒定律 iii.各向异性:晶体的物理性质是各向异性的,是区别晶体与非晶体的中要特征。 b)密堆积: i.正方堆积:最简单的堆积方式 ii.体心立方堆积: iii.立方堆积和六角堆积:配位数为12 c)配位数和致密度: i.配位数:一个原子球与最近邻的相切原子的个数,如配位数为12即与1个 原子求与相邻的12个原子相切。 ii.致密度:晶胞中所包含的原子体积与晶胞体积的比值。 d)布喇菲空间点阵原胞和晶胞 i.布喇菲点阵:对实际晶体结构的抽象成无数相同的点的分布,把这些点构成 的总体称为布喇菲点阵。 ii.原胞:晶体中体积最小的重复单元称为原胞,他们并不是唯一的,但是体积总是相等的。 iii.晶胞(布喇菲原胞):晶体中体积不一定是最小的,但是能够反映出晶体对称的特征的重复单元称为晶胞。 iv.原胞基矢:原胞重复单元的边长称为原胞基矢,以a1、a2、a3表示。 v.晶胞基矢:晶胞重复单元的边长称为晶胞基矢,以a、b、c表示。 e)立方晶系: i.简立方:晶胞和原胞是统一的,对应一个结点。 ii.体心立方:原胞体积V= a1 ·(a2*a3) / 2 = a^3 / 2,a是晶胞边长,又称晶格常数。一个体心立方晶胞对应两个格点。 iii.面心立方:原胞体积V=a1 ·(a2*a3)= a^3 / 4;为晶胞体积的1/4,一个面心立方晶胞对应4个格点。 iv.NaCl结构:简立方结构,一个原胞对应一个基元,包含一个钠离子一个氯离子。 v.金刚石结构:构成面心立方结构, vi.简单晶格:基元包含一个原子的晶格,又称布喇菲格子。 vii.复式晶格:基元包含两个或者以上的原子的晶格。 f)晶列、晶面指数: i.晶列的特征:1. 取向;2. 格点的周期。 ii.原胞基矢的晶列指数:设,其中l1,12,l3互质。那么称为晶列指数。晶列指数的周期为,|R|。 iii.晶胞基矢的晶列指数:设,其中m、n、p互质。那么称 [mnp] 称为晶列指数。

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

固体物理基础课后1到10题答案

一.本章习题 P272习题 1.试证理想六方密堆结构中c/a=. 一. 说明: C 是上下底面距离,a 是六边形边长。 二. 分析: 首先看是怎样密堆的。 如图(书图(a),P8),六方密堆结构每个格点有12个近邻。 (同一面上有6个,上下各有3个) 上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。 中间层的三个球相切,又分别与上下底面的各七个球相切。球心之间距离为a 。 所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。 三. 证明: 如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点 3 3 'a AB AO = = ∴ (由余弦定理 ) 330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οο ο 633.13 22384132)2()2()3 ()2(2 22 222 22 2 2' '≈===∴+=+=+ =a c c a a c a a c OA AO OO

2.若晶胞基矢c b a ρ ρρ,,互相垂直,试求晶面族(hkl )的面间距。 一、分析: 我们想到倒格矢与面间距的关系G d ρπ 2=。 倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ ++= 写出)(321b b b ρρρ与正格子基矢 )(c b a ρ ρρ的关系。即可得与晶面族(hkl ) 垂直的倒格矢G ρ。进而求 得此面间距d 。 二、解: c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ ===,, 晶胞体积abc c b a v =??=)(ρ ρρ 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π ρ

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

固体物理基础解答吴代鸣

固体物理基础解答吴代鸣

————————————————————————————————作者: ————————————————————————————————日期:

1.试证理想六方密堆结构中c/a =1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (h kl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π

3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积 ()222232 322)2 2( )2(22 1 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积2 22a a a =? 所以(110)面原子面密度22 )110(2 22a a ==σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππππππ 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b - 次近邻;2,2,,2211b b b b -- 再次近邻;,,,12122121b b b b b b b b ---+- 再再次近邻;3,322b b - 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

(完整word版)固体物理总复习资料及答案...doc

固体物理总复习题 一、填空题 1.原胞是的晶格重复单元。对于布拉伐格子,原胞只包含个原子。 2.在三维晶格中,对一定的波矢q ,有支声学波,支光学波。3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。 4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能 量区域称为;能带的表示有、、三种图式。 5.按结构划分,晶体可分为大晶系,共布喇菲格子。 6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为 格子,由若干个布喇菲格子相套而成的格子,叫做格子。其原胞中有以上的原子。 7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最 下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。 8.基本对称操作包 括,,三种操作。 9. 包含一个 n 重转轴和 n 个垂直的二重轴的点群叫。 10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率, 是一种最简单的振动称为。 11.具有晶格周期性势场中的电子,其波动方程 为。 12. 在自由电子近似的模型中,随位置变化小,当 作来处理。 13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子 场的作用可当作处理。这是晶体中描述电子状态 的

模型。 14. 固体可分 为 , , 。 15. 典型的晶格结构具有简立方结 构, , , 四种结构。 16. 在自由电子模型中,由于周期势场的微扰,能量函数将在 K= 处 断开,能量的突变为 。 17. 在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电 子共有化运动的轨道称为 ,表达式 为 。 18.爱因斯坦模型建立的基础是认为所有的格波都以相同的 振动, 忽略了频率间的差别,没有考虑 的色散关系。 19.固体物理学原胞原子都在 ,而结晶学原胞原子可以在顶点也可以 在 即存在于 。 20.晶体的五种典型的结合形式是 、 、 、 、 。 21.两种不同金属接触后,费米能级高的带 电,对导电有贡献的是 的电子。 22.固体能带论的三个基本假设是: 、 、 。 23.费米能量与 和 因素有关。 二、名词解释 1.声子; 2.;布拉伐格子; 3. 布里渊散射; 4. 能带理论的基本假设 . 5.费米能; 9.晶体; 10. 6. 晶体的晶面; 7. 布里渊散射; 11. 喇曼散射; 晶格; 12. 8. 近自由电子近似。 喇曼散射; 三、简述题 1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种或哪几种结合最可能形成绝缘体、导体和半导体。 2 .什么是声子?声子与光子有什么相似之处和不同之处?

热统知识点总结

第一类知识点 1. 大量微观粒子的无规则运动称作物质的热运动. 2. 宏观物理量是微观物理量的统计平均值. 3. 熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变. 系统经不可逆绝热过程后熵增加. 孤立系中所发生的不可逆过程总是朝着熵增加的方向进行. 4. 在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和. 5. 在等温等容条件下,系统的自由能永不增加. 在等温等压条件下,系统的吉布斯函数永不增加. 6. 理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 7. V S S p V T ??? ????-=??? ???? 8. V T T p V S ??? ????=??? ???? 9. p S S V P T ??? ????=??? ???? 10. p T T V P S ??? ????-=??? ???? 11. pdV TdS dU -= 12. Vdp TdS dH += 13. pdV SdT dF --= 14. Vdp SdT dG +-= 15. 由pdV TdS dU -=可得,V S U T ??? ????= 16. 由Vdp TdS dH +=可得,S p H V ???? ????= 17. 单元复相系达到平衡所要满足的热平衡条件为各相温度相等. 18. 单元复相系达到平衡所要满足的力学平衡条件为各相压强相等. 19. 单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等. 20. 对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等. 21. 对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ,, 晶胞体积abc c b a v )( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b 2)(2)(22)(2)(22)(2)(2321 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立

方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613 个原子。 (111)面面积 222232 322)2 2( )2(22 1 a a a a a a 所以原子面密度2 2)111(34 2 32a a (110)面 平均每个(110)面有22 1 2414 个原子。 (110)面面积2 22a a a 所以(110)面原子面密度22 )110(2 22a a 5.设二维矩形格子的基矢为j a a i a a 2,21 ,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b 次近邻;2,2,,2211b b b b 再次近邻;,,,12122121b b b b b b b b 再再次近邻;3,322b b 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。 6.六方密堆结构的原胞基矢为:

固体物理_复习重点

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵 晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格 格点:微粒重心所处的位置称为晶格的格点(或结点) 晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称) 密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数 配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数 致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度 固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性 晶胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。 布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样 复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的 声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子 非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导 点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子 布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案 第一章 微观粒子的状态 1-一维运动的粒子处在下面状态 (0,0)() (0) x Axe x x x λλψ-?≥>=? =??==?

固体物理复习资料

一.选择题: 1、面心立方晶格的晶胞的体积是其原胞体积的( D ) A. 2 1 B. 31 C. 41 D. 61 2、下图为三维晶格的平面示意图,图中1α、2α分别表示晶格在该平面上的基矢,另一基矢3α垂直于1α、2α所在的平面。现有平行于3α的 晶面截取1α、2α(如下图(a )(b )(c )所示),图(a )中晶面的密勒指数为()100,图(b )和图(c )中晶面的密勒指数分别为( D ) (a ) (b ) (c ) A. ()110和()120 B. ()110和()210 C. ()011和()120 D. () 011和()210 3、面心立方晶格和体心立方晶格的简约布里渊区分别是( D ) A. 八面体和正十二面体 B. 正十二面体和截角八面体 C. 正十二面体和八面体 D. 截角八面体和正十二面体 4、对一个简单立方晶格,若在第一布里渊区面心上一个自由电子的动能为E ,则在该区顶角上一个自由电子的动能为 A. E B. 2E C. 3E D. 4E 5、相邻原子间距为a 的一维单原子链的第一布里渊区也是波数q 的取值范围为( B ) A.a q a π π22≤<- B. a q a π π ≤ <- C. a q a 22π π ≤ <- D. a q a 44π π ≤ <- 6、关于电子有效质量下列表述中正确的是( B ) A. 在一个能带底附近,有效质量总是负的;而在一个能带顶附近,有效质量总是正的 B. 在一个能带底附近,有效质量总是正的;而在一个能带顶附近,有效质量总是负的 C. 在一个能带底附近和能带顶附近,有效质量总是正的 D. 在一个能带底附近和能带顶附近,有效质量总是负的 7、下面几种晶格中,不是金属元素常采取的晶格结构是( A ) A. 金刚石晶格 B.面心立方晶格 C.六角密排晶格 D. 体心立方晶格 9、温度升高,费米面E F ( D ) A.不变 B. 大幅升高 C. 略为升高 D. 略为降低 10、在极低温度下,晶格的热容量C v 与温度T 的关系是 ( D ) A. C v 与T 成正比 B. C v 与2 T 成正比 C. C v 与3 T 成正比 D. C v 与T 3 成反比 11、一晶格原胞的体积为v ,则其倒格子原胞的体积为( D )

相关文档