文档库 最新最全的文档下载
当前位置:文档库 › 湘潭大学 现代控制理论第1章2

湘潭大学 现代控制理论第1章2

湘潭大学 现代控制理论第1章2
湘潭大学 现代控制理论第1章2

现代控制理论第一章答案1

习题解答 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ??-??????????=+???? ???? -???????????? (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ????===?? ?????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 11i 221211011010 x x L U L x x C RC x y x R ??-?????????? =+????????-? ??????????? ??? ?=????? ???

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

习题解答_现控理论_第6章

6-1 对线性系统 A B C D =+?? =+? x x u y x u 作状态反馈v x u +-=K ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型,则有 ()()()()A B K A BK B C D K C DK D =+-+=-+=+-+=-+x x x v x v y x x v x v 因此,闭环系统的状态空间模型和传递函数分别为 1()()()()()K A BK B C DK D G s C DK sI A BK B D -=-+?? =-+?=--++x x v y x v 6-2 对线性系统 A B C D =+?? =+? x x u y x u 作输出反馈u =-H y +v ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型的输出方程,则有 () C D H C DH D =+-+=-+y x y v x y v 即 ()I DH C D +=+y x v 因此,当()I DH +可逆时,闭环系统输出方程为 11()()I DH C I DH D --=+++y x v 将反馈律和上述输出方程代入状态方程,则有 11() [()][()]A B A B H A BH I DH C BH I DH D B --=+=+-+=-++++x x u x y v x v 当闭环系统的状态空间模型和传递函数分别为 1111 11111[()][()]()()()()[()][()]()H A BH I DH C BH I DH D B I DH C I DH D G s I DH C sI A BH I DH C BH I DH D B I DH D ---------?=-++++?=+++?=+-++++++x x v y x v

现代控制理论-第7章

第六次课小结 一、 Lyapunov 意义下的稳定性问题基本概念 平衡状态的概念 Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等) 纯量函数的正定性,负定性,正半定性,负半定性,不定性 二次型,复二次型(Hermite 型) 二、 Lyapunov 稳定性理论 第一方法 第二方法 三、 线性定常系统的Lyapunov 稳定性分析 应用Lyapunov 方程 Q PA P A H -=+ 来进行判别稳定性 四、 线性定常系统的稳定自由运动的衰减率性能估计 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。 计算min η的关系式 五、 离散时间系统的状态运动稳定性及其判据 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用

六、线性多变量系统的综合与设计的基本问题 问题的提法 性能指标的类型 研究的主要内容 七、极点配置问题 问题的提出 可配置条件 极点配置算法

爱克曼公式(Ackermann’s Formula) 考虑由式()给出的系统,重写为 Bu Ax x +=& 假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21Λ。 利用线性状态反馈控制律 Kx u -= 将系统状态方程改写为 x BK A x )(-=& 定义 BK A A -=~ 则所期望的特征方程为 ) ())((~ 11121=++++=---=-=+-* *--*n n n n n a s a s a s s s s A sI BK A sI ΛΛμμμ 由于凯莱-哈密尔顿定理指出A ~ 应满足其自身的特征 方程,所以

现代控制理论第2章l

第2章 线性系统理论 线性系统是实际系统的一类理想化模型,通常用线性的微分方程或差分方程描述。其基本特征是满足叠加原理,可分为线性定常系统和线性时变系统。 现代控制理论中,采用状态变量法描述系统,它既能反映系统内部变化情况,又能考虑初始条件,也为多变量系统的分析、综合提供了强有力的工具。 2.1 基本概念 输入:外部施加到系统上的全部激励。 输出:能从外部测量到的来自系统的信息。 状态变量:确定动力学系统状态的最小的一组变量。 状态向量:若n 个状态变量)(1t x ,)(2t x ,…,)(t x n 是向量)(t x 的各个分量,即 )(t x 为状态向量。 状态空间:以各状态变量作为基底组成的n 维向量空间。在特定的时间,状态向量)(t x 在状态空间中只是一个点。 状态轨迹:状态向量)(t x 在状态空间中随时间t 变化的轨迹。 连续时间系统:)(t x 的定义域为某时间域],[f 0t t 内一切实数。 离散时间系统:)(t x 的自变量时间t 只能取到某实数域内的离散值。 状态方程:描述系统状态变量与输入变量之间动态关系的一阶微分方程

组或一阶差分方程组。一般形式为 或 式中 u ——输入向量; k ——采样时刻。 状态方程表征了系统由输入引起的内部状态的变化。 输出方程:描述输出变量与系统输入变量和状态变量间函数关系的代数方程,具有形式 它是一个代数变换过程。 状态空间表达式:状态方程与输出方程联立,构成对动态系统的完整描述,总称为系统的状态空间表达式,又称动态方程。 线性系统的状态空间表达式具有下列一般形式: 1)连续时间系统 ? ??+=+=)()()()()()()()()()(t t t t t t t t t t u D x C y u B x A x & (2–1) 式中 A (t )——系统矩阵或状态矩阵,n ?n 矩阵; B (t )——控制矩阵或输入矩阵,n ?p 矩阵; C (t )——观测矩阵或输出矩阵,q ?n 矩阵; D (t )——输入输出矩阵,q ?p 矩阵; x ——状态向量,n 维; u ——控制作用,p 维; y ——系统输出,q 维。 2)离散时间系统

王金城现代控制理论第一章知识题目解析

王金城化工出版社第1章习题参考答案: 1-1(a )选123123,,,,,y y y v v v 为状态变量,根据牛顿定律, 对1M ,有()1 1112121 dv M g K y K y y M dt ---= 对2M ,有()()2 22123232dv M g K y y K y y M dt +---= 对3M ,有()3 3323433dv M g K y y K y M dt +--= 令312112233415263,,,,,dy dy dy x y x y x y x v x v x v dt dt dt ===== ====,整理得 ()()()122214253641 11 23342332 51262322233 ,,,, ,K K K x x x x x x x x x g M M K K K K K x K K x x x g x x x g M M M M M +====-++++= -++=-+ () ()() 122 11 23222 22 3433 3 000100000010000000100000 01100010000K K K M M x x g K K K K M M M K K K M M ? ????? ??????? ? ??+??-????=+??????+?? ??- ? ? ???? ??? ? +- ?? ??? ? 100000010000001000y x ?? ??=?? ???? (b )选12,12,,y y v v 为状态变量,根据牛顿定律, 对1M ,有()1 1121111 dv M g B v v K y M dt +--= 对2M ,有()2 2221212dv f M g B v B v v M dt +---= 令1211223142,,,dy dy x y x y x v x v dt dt === ===,整理得 11113243134111 ,,K B B x x x x x x x x g M M M ===--++, 112434222 B B B f x x x g M M M +=-++

(完整word版)现代控制理论习题解答(第二章)

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010A (6)? ???? ? ??? ???=λλλλ000100010000A 【解】: (1) ???? ? ? ????? ?++=?? ????+-=-=Φ-----)2(10)2(11}201{])[()(11 111s s s s L s s L A sI L t ??? ? ????-=????? ? ??????++-=---t t e e s s s s L 22105.05.01)2(10)2(5.05.01 (2) ?? ? ???-=???? ? ? ??????+++- +=?? ????-=-=Φ-----t t t t s s s s s s L s s L A sI L t 2cos 2sin 22sin 5.02cos 44 441 4}41{])[()(222211 111 (3) ??? ? ? ?????? ?++-+++=?? ????+-=-=Φ-----222211 111)1()1(1)1(1 )1(2 }211{])[()(s s s s s s L s s L A sI L t ??? ? ????--+=Φ------t t t t t t te e te te e te t )( (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为

现代控制理论基础第二章习题答案

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010 A (6)? ???? ? ??????=λλλλ000100010000A 【解】: (1) (2) (3) (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为 ???? ??????=421211101P ,??????????----=-1211321201 P 线性变换后的系统矩阵为: (5) 为结构四重根的约旦标准型。 (6) 虽然特征值相同,但对应着两个约当块。 或}0 100010000{ ])[()(1 111----?? ??? ????? ??------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。 【解】:

(1) (2) 特征方程为: 特征值为: 2,1321===λλλ。 由于112==n n ,所以1λ对应的广义特征向量的阶数为1。 求满足0)(11=-P A I λ的解1P ,得: 0110000000312111=????????????????????--P P P ,???? ? ?????=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得: 对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为: []??????????-==11001000132 1 P P P P ,???? ??????=-1100100011P 线性变换后的系统矩阵为: (3) 特征值为: 2,1321===λλλ。 即 (4) 3-2-3 试判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求对应的矩阵A 。 (1)??? ???????-=Φt t t t t sin cos 0cos sin 0001 )((2)????????-=Φ--t t e e t 220)1(5.01)( (3)???? ??? ?+--+--=Φ--------t t t t t t t t e e e e e e e e t 22222222)((4)? ??? ??? ?++-+-+=Φ----t t t t t t t t e e e e e e e e t 33335.05.025.025.05.05.0)( 【解】: (1) ∴不满足状态转移矩阵的条件。 (2) ∴满足状态转移矩阵的条件。 由)()(t A t Φ=Φ &,得A A =Φ=Φ)0()0(&。

现代控制理论复习题[1]

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 ( √ )5. 根据线性二次型最优控制问题设计的最优控制系统一定是渐近稳定的。 二、(15分)考虑由下式确定的系统: 2 33 )(2 +++= s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 []? ? ? ???=??????+??????? ?????--=??????21212113103210x x y u x x x x & & 能观测标准形为 []? ? ? ???=??????+??????? ?????--=??????21212110133120x x y u x x x x & & 对角标准形为 []? ? ? ???-=??????+????????????--=??????21212112112001x x y u x x x x && 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 x x ?? ????--=3210 & 求其状态转移矩阵。 解:解法1。

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流与电容上的电压作为状态变量的状态方程,与以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式与传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有 相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++= s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- ++-=+++= 1-7 给定下列状态空间表达式 []??? ? ? ?????=???? ??????+????????????????????----=??????????321321321100210311032010x x x y u x x x x x x ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数

现代控制理论基础_周军_第二章状态空间分析法

2.1 状态空间描述的基本概念 系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。因此传递函数不能包含系统的所有信息。由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。于是需要用新的对系统内部进行描述的新方法-状态空间分析法。 第一节基本概念 状态变量指描述系统运动的一组独立(数目最少的)变量。一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。若变量数目多于,必有变量不独立;若少于, 又不足以描述系统状态。因此,当系统能用最少的个变量 完全确定系统状态时,则称这个变量为系统的状态变量。 选取状态变量应满足以下条件:给定时刻的初始值, 以及的输入值,可唯一确定系统将来的状态。而时 刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。 状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。

第七章---现场控制盘

第七章现场控制盘 在海上平台,一个大的处理系统,经常包含有多个子系统,如注水系统、分子筛干燥再 生系统、热油炉供热系统、丙烷制冷系统、三甘醇脱水及再生系统等。这些子系统规模较小,控制简单且相对独立,这些子系统的控制因此也常常采用现场控制PLC来实现子系统的控制,子控制系统PLC经过通讯方式与主控制系统相连,把它的数据信息传递给主控制系统,主控制系统又可将ESD信号通过硬线送到就地控制盘,实施对就地盘的关断,从而实现整个控制系统的集中管理与监视。也实现了平台控制系统的控制分散和危险分散的概念。 一、现场控制盘所用的控制系统 许多子系统都采用了性能好、可靠性高的A-B公司P LC的S LC500系列控制器,下面主要 介绍由SLC500系列控制器组成的现场控制系统。 1. 结构 SLC500系列控制器是为小规模应用而设计的可编程控制器,该系列有两种硬件结构:一种是用于固定式控制器,电源、CPU,I/O卡等都连为一体,不能随意配置;另一种用于模块式控制器,由于该系列可提供各种各样I/O模块,可以随意地、很经济地配置其控制系统。 一个SLC500系列的现场控制系统包括S LC硬件、显示终端、寻址、软件等。模块式现场 控制系统的结构如图4-1所示。 图7-1 模块式现场控制系统结构图 2. 硬件 SLC硬件包括安装框架、处理器模块、I/O模块、电源块等。 SLC安装框架均需要电源向处理器CPU及每个I/O槽供电。 处理器模块是现场控制系统的核心部分,它负责整个控制系统的数据处理、通讯、工作方式等。在处理器模块上有一个钥匙开关,使用钥匙开关可以改变处理器的操作方式。在处理器上有三种操作模式:运行(RUN)、编程(PROG)、远程(REM)。如表7-1 162

习题解答_现控理论_第2章

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 12212 1111i dx x U dt L L dx x x dt C RC =-+ =- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110 110x x L U L x x C RC ?? - ?? ????????=+???????? -???????? ???? (4) 列写描述输出变量与状态变量之间关系的输出方程, 12211 10C x y U x x R R R ?? ??= = =???????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下: u K x K x K x X K x K x x x x J K x J x J K x J K x x J K x x x p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ?? ?

令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ??????????????? ????????????? ??????????? ?-----=????????????????????????????? ?654321165432111111112654321000001000000 000000010010000000000010x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 U 图1-28 电路图 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为:

赵明旺版习题解答_现控理论_第2章

习题解答 2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出量。试列写状态空间模型。 题图2-1 解:?(1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()()1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t?t 0时 刻后的输入量U i (t ),则电路中各部分的电压、电流在t?t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ?? -??????????=+????????-? ????? ?????? && (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ?? ? ?= ==????? ???

(5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 1 1 i 221211011010 x x L U L x x C RC x y x R ??-?? ????????=+???????? -? ???????????????=????? ??? &&

最新现代控制理论知识点汇总

第一章 控制系统的状态空间表达式 1. 状态空间表达式 n 阶 Du Cx y Bu Ax x +=+=&1:?r u 1:?m y n n A ?: r n B ?: n m C ?:r m D ?: A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。 2. 状态空间描述的特点 ①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。 ②状态方程和输出方程都是运动方程。 ③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。 ④状态变量的选择不唯一。 ⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。 ⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。 ⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。 3. 模拟结构图(积分器 加法器 比例器) 已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。 4. 状态空间表达式的建立 ① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积 分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。 ② 由系统的机理出发建立状态空间表达式:如电路系统。通常选电容上的电压和电感上的电流作为状态变量。 利用KVL 和KCL 列微分方程,整理。 ③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。实现是非唯一的。 方法:微分方程→系统函数→模拟结构图→状态空间表达式 注意:a 如果系统函数分子幂次等于分母幂次,首先化成真分式形式,然后再继续其他工作。 b 模拟结构图的等效。如前馈点等效移到综合反馈点之前。p28 c 对多输入多输出微分方程的实现,也可以先画出模拟结构图。 5.状态矢量的线性变换。也说明了状态空间表达的非唯一性。不改变系统的特征值。特征多项式的系数也是系统的不变量。 特征矢量 i p 的求解:也就是求0)(=-x A I i λ的非零解。 状态空间表达式变换为约旦标准型(A为任意矩阵):主要是要先求出变换矩阵。a 互异根时,各特征矢量按列排。b 有重根时, 设3阶系统,1λ=2λ,3λ为单根,对特征矢量1p ,3p 求法与前面相同, 2p 称作1λ的广义特征矢量,应满足121)(p p A I -=-λ。 系统的并联实现:特征根互异;有重根。方法:系统函数→部分分式展开→模拟结构图→状态空间表达式。 6.由状态空间表达式求传递函数阵)(s W D B A sI C s W ++-=-1)()( r m ?的矩阵函数[ij W ] ij W 表示第j 个输入对第i 个输出的传递关系。 状态空间表达式不唯一,但系统的传递函数阵)(s W 是不变的。 子系统的并联、串联、反馈连接时,对应的状态空间表达及传递函数阵)(s W 。方法:画出系统结构图,理清关系,用分块矩阵表示。 第二章 控制系统状态空间表达式的解

现代控制理论第二章

一: 基本概念 1:系统:所谓系统,是由相互制约的各个部分有机结合,且具有一定功能的整体。 2:静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。 3:动态系统:对于任意时刻t,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)) 4:状态变量:是构成系统状态的变量,是指能完全描述系统行为的最小变量组中的每个变量。 5:系统变量:输入变量、状态变量、输出变量统称为系统变量。6:状态方程:是描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)。 7:输出方程:是描述系统输出变量与系统状态变量和输入变量之间关系的代数方程。 8:状态:动态系统的状态是完全地描述动态系统运动状况的信息,系统在某一时刻的运动状况可以用该时刻系统运动的一组信息表征,定义系统运动信息的集合为状态。例如,由做直线运动的质点所构成的系统,它的状态就是质点的位置和速度。 9:状态向量:设系统的状态变量为x1(t),x2(t),………,x n(t),那么用它们作为分量所构成的向量就称为状态向量,记作

10:状态空间:以状态变量x 1(t),x 2(t),………,x n (t)为坐标轴构成的n 维空间称为状态空间。 11:状态轨迹:状态向量的端点在状态空间中的位置代表了某一特定时刻系统的状态。 二:状态方程形式:系统的状态方程表征了系统由输入引起的内部状态变化的规律。连续时间系统和离散时间系统状态方程的一般形式可分别表示为 和 式中,x(t)-连续时间系统的n 维状态向量; x(k)-离散时间系统在k 时刻的的n 维状态向量; u(t)-连续时间系统的r 维输入(控制)向量; u(k)-离散时间系统在k 时刻的r 维输入向量; f[.]-n 维向量函数,f[.]=[f 1(.),f 2(.),…,f n (.)]T . 三:输出方程形式:连续时间系统和离散时间系统输出方程的一般形式可分别表示为 y(t)=g[x(t),u(t),t] ()()()12n x t x t .()..x t x t ??????????=?? ??????????[] . ()(),(),x t f x t u t t =[] (1)(),(),x k f x k u k k +=

现代控制理论讲义

第一章 系统描述 1.1 引言 一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n 个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本文将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan 、能控与能观测)、传递函数矩阵,以及利用MA TLAB 进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍传递函数的状态空间表达式,并给出状态空间表达式的各种标准形。1.3节讨论用MA TLAB 进行系统模型的转换(如从传递函数变换为状态空间模型等)。 1.2 状态空间表达式 为获得传递函数的状态空间表达式,有多种方法。在《系统分析与控制》中曾介绍过几种。本节将介绍状态空间的能控标准形、能观测标准形、对角线形与Jordan 标准形,在例1.17~1.21中将讨论由传递函数获得这些状态空间表达式的方法。 1.2.1 状态空间表达式的标准形式 考虑由下式定义的系统: )1.1(1)1(1)(1)1(1)(u b u b u b u b y a y a y a y n n n n o n n n n ++++=++++---- 式中u 为输入,y 为输出。该式也可写为 )2.1()()(1111110n n n n n n n n a s a s a s b s b s b s b s U s Y +++++++= --- - 下面给出由式(1.1)或式(1.2)定义的系统状态空间表达式之能控标准形、能观测标准形和对角线形(或Jordan 形)标准形。

现代控制理论(东大)第六章习题1105

第6章 状态反馈和状态观测器 内容提要 状态反馈 利用状态反馈进行极点配置(两种方法) 利用状态反馈进行解耦控制(两个特征量的求取)。 状态观测器,全维状态观测器 习题答案 6.1 判断下列系统能否用状态反馈任意的配置特征值。 2) 1 001 0021010 020 0x x u ???? ????=-+????????-???? 解 21 010 1001 02040 00 00 c u b A b A b ??????==-????????,秩2c u =, 系统不完全能控,所以不能通过状态反馈任意配置特征值。 6.2 已知系统为 122331233x x x x x x x x u ===---+ 试确定线性状态反馈控制律,使闭环极点都是3-,并画出闭环系统的结构图。 解 极点配置算法2:控制矩阵只有一个非零元素。 将系统写为矩阵形式如下:

010*********x x u ????????=+????????---???? 令[]123u k k k x =-,并带入原系统的状态方程,可得 1 2 3010 00 1131313x x k k k ????=????------?? 其特征多项式为 32321()(13)(13)(13)s s k s k s k α=++++++, 由已知条件,理想特征多项式为 *332()(3)92727s s s s s α=+=+++ 通过比较系数得 3139,k += 21327,k += 31327,k += 即,1263k =,2263k =,183k =,262683 33u x ??=-????。 闭环系统的结构图

最新《现代控制理论》复习提纲(2017)

现代控制理论复习提纲 第一章:绪论 (1)现代控制理论的基本内容 包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波 (2)现代控制理论与经典控制理论的区别 第二章:控制系统的状态空间描述 1.状态空间的基本概念; 系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程 2.状态变量图 概念、绘制步骤; 3.由系统微分方程建立状态空间表达式的建立; 1.2.1 第三章:线性控制系统的动态分析 1.状态转移矩阵的性质及其计算方法 (1)状态转移矩阵的基本定义; (2)几个特殊的矩阵指数; (3)状态转移矩阵的基本性质(以课本上的5个为主); (4)状态转移矩阵的计算方法 掌握:2.2.2 方法一:定义法 方法二:拉普拉斯变换法例题2-2 第四章:线性系统的能控性和能观测性 (1)状态能控性的概念 状态能控、系统能控、系统不完全能控、状态能达 (2)线性定常连续系统的状态能控性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算

(3)状态能观测性的概念 状态能观测、系统能观测、系统不能观测 (4)线性定常连续系统的状态能观测性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算 (5)能控标准型和能观测标准型 只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II 型的计算方法 第五章:控制系统的稳定性分析 (1)平衡状态 (2)李雅普诺夫稳定性定义: 李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析 例4-6 第六章线性系统的综合 (1)状态反馈与输出反馈 (2)反馈控制对能控性与观测性的影响

现代控制理论 7-1 最优控制的一般概念

第七章 动态系统的最优控制方法
§1 最优控制的一般概念 §2 最优控制中的变分法 §3 极小值原理及其应用 §4 线性二次型问题的最优控制
系统分析 System Analysis
建模 建模 稳态 稳态 性能 性能
稳定性 稳定性 动态 动态 性能 性能
控制 系统 研究 可控性 可控性 可观性 可观性
综合设计 System Synthesis
设计控制器 设计控制器
改善性能,达到各种性能指标
1

综合设计 System Synthesis 常规综合 Conventional Synthesis 常规综合 Conventional Synthesis
只满足系统某些指标的要求,如 稳定性、快速性及稳态误差;
最优综合/控制 Optimal Synthesis 最优综合/控制 Optimal Synthesis
确保系统某种指标最优的综合, 如最短时间、最低能耗等。
返回
经典控制理论设计控制方法
幅值裕量、相位裕量(频率指标); 上升时间、调节时间、超调量(时域指标)
PID控制
串联校正
特点: 系统的控制结构是确定的;
控制参数设计一般采用试凑方法; 不是最优结果。
2

现代控制理论常规综合方法
上升时间、调节时间、超调量(时域指标) 希望的闭环极点位置(复域指标);
状态反馈 特点: 系统的控制结构是确定的;
不是最优结果。
综合
最优化 (optimization)
—— 研究和解决如何从一切可能的方案中寻 找最优的方案。 (1) 如何将最优化问题表示为数学模型; (2) 如何根据数学模型(尽快)求出其最优解。
举例
最优控制 (optimal control)
—— 控制理论中的优化技术。寻找在某种性能 指标要求下最好的控制。
返回
3

相关文档
相关文档 最新文档