文档库 最新最全的文档下载
当前位置:文档库 › 蓄电池智能充电系统的设计与研究

蓄电池智能充电系统的设计与研究

蓄电池智能充电系统的设计与研究
蓄电池智能充电系统的设计与研究

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

铅酸蓄电池充电器设计开题报告

铅酸蓄电池充电器设计开题报告 铅酸蓄电池充电器设计开题报告 1、目的及意义 中国是全球铅酸蓄电池的产销大国,铅酸蓄电池已有200多年的历史,是一种应用广泛的动力电源。具有原材料易得、价格低廉、可靠性好等优点,目前约有95,的市场占有率。铅酸蓄电池作为稳定电源和主要的直流电源,需求广泛,用量巨大,与我们的社会生活息息相关。由于铅酸蓄电池维护简单、价格低廉、供电可靠、使用寿命长,广泛作为汽车、飞机、轮船等机动车辆或发电机组的启动电源,也在各类需要不间断供电的电子设备和便携式仪器仪表中用作一些电器及控制回路的工作电源。 蓄电池放电后的充电问题一直是有争议的问题,目前很多充电机由于性能技术不完善,常常导致蓄电池提前损坏的现象。随着经济的发展,大容量蓄电池的应用迅速增加,人们希望能快捷、安全地对蓄电池进行充电。因此,为了适应市场的需求,我们需要设计一种恒流-恒压-恒流铅酸蓄电池智能充电器。 2、基本内容和技术方案 此次设计利用单片机的软、硬件技术,设计一台具有恒压-恒流特性的牵引式铅酸蓄电池智能充电装置,该装置能够实现对蓄电池的电压进行检测、判别,按U-I特性曲线进行充电,对充电过程进行自动监控。基本内容有: 1、有关铅蓄电池的电化学原理和充放电原理。 2、关于充电器对铅蓄电池充电的原理及其电路设计。 3、涓电流对电池充电的原理及其特点。 4、充电器对充电过程的检测及其自动转换。 5、充电器在充电过程中对电池的保护功能。 6、电路设计及其元件的选择调试等。

本次设计采用的方案是分阶段充电方法,充电曲线图如下: I(A)、U(V) 1C U(t) I(t) 0.09C 0t(h) t1t2t3快充慢充涓流充 在快充阶段(0,t1),充电器以恒定电流1C对蓄电池充电,由单片机控制快充时间, 避免过量充电;在慢充阶段(t1,t2),单片机输出PWM控制信号,控制斩波开关通断,以恒定电压对蓄电池进行充电,此时充电电流按指数规律下降,当电池电压上升到规定值时,结束慢充,进入涓流充阶段;在涓流充阶段(t2,t3),单片机输出的PWM控制信号,使充电器以约0.09C的充电电流对蓄电池充电,在这种状态下,可长时间对蓄电池充电,从而能最大限度地延长蓄电池寿命。 系统的结构框图如下: 220V交铅酸蓄电斩波电 流电源池路 电源变隔离,驱 换电路动电路 辅助电单片机 源 3、进度安排 1)第1周:选题,下达设计任务书,理解相应的设计内容;

铅酸蓄电池充电器的设计与实现

// 铅酸蓄电池的制造成本低、容量大、价格低廉,使用十分广泛。由于其固有的特性,若使用不当,寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,采用正确的充电方式,能有效延长蓄电池的使用寿命。因此,设计一种全新的智能型铅酸蓄电池充电器是十分必要的。 1常规充电方式 铅酸蓄电池的常规充电方式有两种:浮充(又称恒压充电)和循环充电。 浮充时要严格掌握充电电压,如额定电压为12V的蓄电池,其充电电压应在13.5~13.8V 之间。浮充电压过低,蓄电池会充不满,过高则会造成过量充电。电压的调定,应以初期充电电流不超过0.3C(C为蓄电池的额定容量)为原则。 循环充电,其初期充电电流也不宜超过0.3C,充电的安培小时数要略大于放电安培小时数。也可先以0.1C的充电速率恒流充电数小时,当充电安培小时数达到放电安培小时数的90%时,再改用浮充电压充电,直至充满。 以上为目前常用的铅酸蓄电池充电方式,但这两种方式存在着一些不足之处。在充电过程中,电池电压逐渐增高,充电电流逐渐降低。由于恒压充电不管电池电压的实际状态,充电电压总是恒定的,充电电流刚开始比较大,然后按指数规律下降;采用快速充电可能使蓄电池过量充电,易导致电池损坏。对于循环充电而言,采用较小电流充电,充电效果较好。但对于大容量的蓄电池,充电时间就会拖得很长,时效低,造成诸多不便。 2智能型充电器的充电过程分析 通过对上述两种充电方式的分析比较,综合其优点设计出具有快充和慢充的智能型铅酸蓄电池充电器。该充电器采用单片机控制,充电过程分为快充、慢充及涓流充三个阶段,充电效果更佳。图1所示为该充电器的充电电流、电压曲线。 从图1可以看出:在快充阶段(0~t1),充电器以恒定电流1C对蓄电池充电,由单片机控制快充时间,避免过量充电;在慢充阶段(t1~t2),单片机输出PWM控制信号,控制斩波开关通断,以恒定电压对蓄电池进行充电,此时充电电流按指数规律下降,当电池电压上升到规定值时,结束慢充,进入涓流充阶段;在涓流充阶段(t2~t3),单片机输出的PWM控制信号,使充电器以约0.09C的充电电流对蓄电池充电,在这种状态下,可长时间对蓄电池充电,从而能最大限度地延长蓄电池寿命。 3智能型充电器的工作原理 根据上述分析而设计的智能型铅酸蓄电池充电器,主要由开关稳压电源、斩波开关、控制器和辅助电源等四个部分组成,并具有过流保护、过压保护和超温保护功能。图2为充电器原理框图,图3为充电器电路原理图。 3.1开关稳压电源

BOMS蓄电池智能管理及自动维护系统517

BOMS蓄电池在线监测及自动维护系统 正通BOMS 开创蓄电池免人工维护新时代!!! 目前蓄电池组的维护主要由人工利用一些智能仪表、设备根据相关规范进行。而且有些维护工作费时费力还容易发生一些安全隐犯。且随着蓄电池组大面积广泛使用,人工维护显然不能满足实际需求,实际中由于蓄电池使用不当或维护不及时导致的安全事故在逐年增加。 无需繁琐的放电容量实验….

无需定期的端电压及温度测量…. 无需定期做均充…. 无需进行内阻检测…. 不用担心容量不足….. 不用担心火灾,爆炸…. 一、产品概述 蓄电池在线监测及自动维护装置集在线监测、异常告警、在线检测及自动维护四大功能于一身。可在线监测蓄电池组的状态及各项参数,及时发现落后电池,进行异常告警,并对电池组的健康状况进行系统评估,提供状态维护、检修建议。同时装置能在线对电池组进行自动维护,确保电池组浮充时保持电压均衡,使每节电池都始终处于最佳活性状态,能有效抑制并消除硫化。具体采用对低于设定浮充电压的单体电池进行阶段性补充充电,夯实单体电池容量的同时提高了蓄电池组的后备时间,并且保证了整组蓄电池中单体电池的电压、容量整体一致性,打破“水桶原理”即使有落后电池存在也不会再影响其他电池性能。同时为日常维护中容量、性能试验提供一个“起点”一致的试验平台,提高了检测精度;此外,小电流脉冲还对落后电池的去硫有很好的效果。 本装置智能化程度高,可以实现在线自动监测、检测及维护,使蓄电池组中的每节单体电池保持最佳活性状态,提高了电池后备时间及运行寿命,及时发现落后电池并自动做相应的维护,极大的减少了人力、物力维护成本,有效的进行节能减排,为使用单位创造很好的经济效益和社会效益。 二、产品功能 1、在线监测功能: 实时监测的蓄电池组的:运行状态,总电压、总电流、、环境温度、单体电压、单体内阻、单体电池负极温度、软连接条压降、电压均衡度、电池组容量、放电可持续时间; 2、自动维护功能: 在蓄电池处于浮充状态时自动巡检各单体电池电压,并针对低于设定浮充电压的电池(长期欠充)进行阶段性补充充电,并对过充电池进行单体放电以解除

锂电池充电器的设计毕业设计

毕业设计课题名称:锂电池充电器的设计

总目录 第一部分任务书 第二部分开题报告 第三部分毕业设计正文

第一部分 任 务 书

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

BQ2057锂电池充电器原理

摘要:本文介绍美国TI 公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP 、TSSOP 和SOIC 的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP 、TSSOP 和SOIC 三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C 、BQ2057T 和BQ2057W 四种信号,分别适合4.1V 、4.2V 、8.2V 和8.4V 的充电需要。 BQ2057的引脚功能描述如下: VCC (引脚1):工作电源输入; TS (引脚2):温度感测输入,用于检测电池组的温度; STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; VSS (引脚4):工作电源地输入; CC (引脚5):充电控制输出; COMP(引脚6):充电速率补偿输入; SNS (引脚7):充电电流感测输入; BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。 元件型号 充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V

电子信息专业论文 蓄电池智能充放电系统的设计

中国网络大学CHINESE NETWORK UNIVERSITY 本科毕业设计(论文)蓄电池智能充放电系统的设计 院系名称: 专业: 学生姓名: 学号:123456789 指导老师: 中国网络大学教务处制 2019年03月01日

蓄电池智能充放电系统的设计 摘要 本文介绍了一种铅酸蓄电池智能充电以及放电的设计过程,其中包括了对电池充电方法的研究和充电放电系统的具体设计。在对铅蓄电池充电方式研究的基础上,提出了采用恒流限压以及恒压限流充电相结合的方法进行充电。此方法可以使充电过程更符合蓄电池的充电特性曲线,并且在整个充电的过程中,采取去蓄电池极化的措施,理论研究和实验数据均表明,此方式可以延长电池使用寿命,提高充电效率。 在本设计中,采用了降压高频开关电源,主回路包括一个24v/1A的直流电源,P沟道MOS管及开关降压电路以及P沟道MOS管和大功率LED构成的放电回路。控制电路包括了STC12C5A60S2单片机最小系统、LCD12864液晶显示模块、按键选择电路以及执行机构。P沟道MOS管选用IRF4905,大功率LED是1W的灯珠,显示屏使用的是自带字库的LCD12864;由于STC12C5A60S2内部自带10位ADC及PWM,所以超过5V模拟量的检测直接由分压电阻分压后接到ADC端口即可实现,而控制MOS管的PWM也由单片机直接产生。通过采集采样电阻的电压,可以计算出充电电流。而通过采集铅蓄电池的端电压,可以实现充电和放电电压的检测。然后通过控制单片机进行PID调节,改变PWM的占空比达到控制电池充电电流曲线趋向理想状态的目的,从而实现铅酸蓄电池的智能充电。放电则是通过按键控制MOS 管开关大功率LED实现。实验结果表明,基于STC12C5A60S2的智能充放电系统,充电效果好,充电电流曲线趋于最佳状态,充电后电池电量足,此系统的应用前景广阔。 关键词:蓄电池;PID;恒流充电;恒压充电;LCD12864

中颖电子智能电池管理系统简介

智能电池管理系统简介 中颖电子股份有限公司高级工程师张朋翔 概述 锂离子电池研究始于20世纪80年代,1991年由索尼公司首先推出了民用产品。由于具备能量密度高、体积小、无记忆效应、循环寿命高、自放电率低等诸多优点,锂离子电池目前广泛应用于手机、MP3、笔记本电脑、相机等各种便携式设备。尤其在笔记本供电方面,其优异的高能量优势更是发挥得淋漓尽致。 但是由于能量密度高及特有的化学特性,锂离子电池的安全性和稳定性方面亦存在隐患,如过高温和过充可能会燃烧甚至导致爆炸,过放电可能造成电池本身的损坏。近年来,连续出现的笔记本电脑电池爆炸燃烧事故,导致了全球性的大批量电池召回现象,给生产厂家带来了巨大的经济损失。 为保证电池使用的安全性,在提高电池本身材料性能及加强工艺控制的同时,智能电池管理系统也成为锂离子电池应用研究的重中之重。 智能电池管理系统简介 锂离子电池发展初期,电池管理系统一般只具有检测电池组电压、温度、电流及简单保护等功能。随着锂离子电池应用范围越来越广,应用方式越来越多,对锂离子电池管理系统的要求也越来越高。 智能电池管理系统一般具有如下几个功能:电池组参数采集、剩余电量计算、电池组故障保护、电芯均衡、通信等。

● 电池组参数采集 电池组参数采集主要包括电池组中单体电池电压、系统电流、系统温度的采集,该参数可用于判定电池的剩余电量、故障保护等。 锂离子电池的电压最能体现电池的性能状态,既可以用于过充、过放等故障保护,也可以用于初步估计锂离子电池的剩余电量。系统电流可用于判断是否出现过放或过流,还可以通过对电流与时间的积分,估计电池的剩余电量等。系统温度主要用于防止电池组温度过高,发生安全事故,并对剩余容量计算进行补偿。 电池管理系统的所有算法及保护都是以采集到的电池参数为基础的,因此必须保证数据的精确度。 ● 剩余电量预测 剩余电量是反映电池性能的重要参数,也是主机进行充电、放电的判断依据。剩余电量的准确估算可以保护电池,防止过充、过放的发生,便于客户做出合理的时间安排。当前,剩余电量的检测方式主要有开路电压法、库仑积分法、内阻法、卡尔曼滤波法、混合法等。 开路电压法是目前最简单的方法,根据电池的特性得知,在电池容量与开路电压之间存在一定的函数关系,当得知开路电压时,可以初步估算电池的剩余电量。该方法精度不高,且只适用于静态检测,无法直接用于真实应用。 内阻法利用电池内阻和剩余电量的对应关系,来判定系统的剩余电量。由于锂离子电池组的内阻随工作状态变化明显,不同特性的电芯之间也有差异,该方法的重点是如何能够快速得到当前应用条件下电芯的内阻。如果可以快速进行内阻的自我测量,则可以得到相对准确的剩余容量。 库仑积分法是通过计算电池组电流与时间的积分,计算锂离子电池组充入和放出的电量,再与电池的额定电量比较,从而得出当前的剩余电量。该方法简单、稳定,但必须对电流测量非常准确,否则会出现积累误差。另外,锂离子电池的自放电以及在低温和大电流下其放电效率会变低,都会进一步降低了剩余电量的检测精度。库仑积分法必须定期进行校正。 卡尔曼滤波法是指采用卡尔曼滤波算法,综合考虑电池组循环变化、电池老化、温度等影响,进而得到精准的剩余电量。该算法相对而言最精准,但是算法复杂,又需要足够的实验数据,暂未得到具体的应用。 混合法是指通过内阻法/开路电压法与库仑积分法相结合的方式,通过开路电压法/内阻法的定期校正,使用库仑积分法得到精准的剩余电量。该方法是目前使用最广泛的方式。 ● 电池组故障保护

48V铅酸储电池充电器设计方案

48V 铅酸储电池充电器设计方案 第一章 总体设计方案 1 系统设计 根据课题的要求,系统采用开关电源,通过脉冲电流的方式来实现充电的目的。由市电送来的220V 交流电经变压器降压、桥式整流、可控硅调频后送给蓄电池进行充电。 2 方案策略 用单结晶体管触发电路实现触发信号频率的调制方案。蓄电池充电时,先通过变压器将220V 市电降压为56V 交流电,然后通过桥式整流得到全波直流电、最后通过可控硅调频后的脉冲电流为蓄电池供电。脉冲电流的频率主要取决于单节晶体管触发电路发出的触发信号的频率,通过调节RC 电路的R 值,使电容器的充电时间发生改变,单节晶体管的关断时间发生改变,从而改变了输出触发信号的占空比,这个触发信号送给可控硅,从而便调节可控硅在一个周期内关断和导通的时间,从而实现控制可控硅输出脉冲电流大小。这种方法技术简单、成熟、有多年的实用经验、所需的元器件少、成本低,安全可靠,适应市电输入范围宽都是其主要的优点。如下图1.1方框图

图1.1 总体方框图 第二章 蓄电池的选择 蓄电池是电瓶式扫地车上主要能源装置,其作用包括:向驱动系统、滚扫系统和仪表供电。 1 蓄电池的种类、特点 蓄电池的种类一般可分为铅酸电池、铅酸免维护电池及镍镉电池等,它们各自的特点如下: 铅酸电池:也称为汽车用电池(需加水维护),充放电时会产生氢气,安置地点必须设置在通风处以免造成危险;电解液呈酸性,会腐蚀金属;价格低廉。 铅酸免维护电池:密封式充电不会产生任何有害气体,摆设容易,不需考虑安置地点通风问题,免保养,免维护;放电率高,特性稳定,价格较高。 镍镉电池:用于特殊场合及特殊设备上,水为介质,充放电不会产生.有害气体;失水率低,但需要固定时间加水及保养;放电特性最佳;可放置于任何恶劣环境。 2 蓄电池的选择 电机是电瓶式扫地车主要消耗源,其次是继电器和仪表车,根据驱动组和电器控制组提供的资料,电机总功率为1600W ,额定电压为48V;继电器和仪表总功率为5W,额定电压为48V 。所以蓄电池需提供的工作电流为 8004040518.548P I A U +++=== 式中P ——电机功率; U ——电瓶电压。 选60AH 的电瓶,则可续行3.3小时。这是电瓶式扫地车用最高速行驶时的情况,如果降低车速续行时间有望达到或超过5小时。 综上所述,本设计选择48V 60AH 的铅酸免维护电池,如图2.1所示:

智能充电器使用说明书

WM-S2425C系列智能型充电器使用说明书 一:功能简介 WM-2460C 系列充电器是目前一款比较先进的智能型蓄电池充电器,它一改传统充电器的充电模式。自行研发的蓄电池充电管理功能,具有优化的充放电曲线。充电时、只要接好蓄电池和充电器插件,开通电源,本机可自动检测待充蓄电池现存电量和环境温度,根据待充蓄电池不同的放电量和实时的环境温度进行充电,蓄电池充足后自动关闭充电系统。 二:应用范围 本系列充电器广泛应用于剪叉式升降平台、电瓶车、电动叉车、电动汽车、电动摩托车、电动洗地车、电动船、电动观光车、电动巡逻车、电动高尔夫球车、电动牵引车、电动残疾车、电动代步车、电动医疗设备、电动搬运车等各类电动车的铅酸免维护蓄电池、铅酸加水蓄电池、铅酸胶体蓄电池循环充电。 三:技术参数 1 ;输入电压AC185V-265V 47Hz-~63Hz 2: 最大功耗0.75KW 3: 输出电压出厂时内部软件设定(28.8V在线式) 4 输出电流25A ; 5: 充电时间蓄电池放电80%时,全程充电6-11小时 6 体积344 X177 X81(L X W XH) ;

7: 重量 3.6Kg 8: EMC EMI LVD符合欧洲CE标准 9:环境温度-40 C to +55 C 10:湿度< 95% 11:安全等级1(IEC364-4-41) 12 :防护等级IP65 1、使用和安装充电器之前请仔细阅读说明书。 2、机内有相当于电网量的同等电压,非专业人员不得带电拆机 3、充电电器应该安装在一个干燥、清洁的环境中,以防潮湿和尘污; 4、充电器只能与相对应容量的电池充电,否则会产生危险或重大事故

智能充电系统的设计与实现

智能充电系统的设计与实现 铅酸电池是目前大容量电池的主要品种,在通讯,交通,电力等部门得到了广泛的应用.但是因为充放电的不合理而损坏的铅酸电池占相当大的比例.所以一个好的充电系统不仅能提高电池的最大效应,同时也大大提高电池的寿命.在我们公司中,为了给2.4k逆变器设计合理的充电部分,我们单独设计了利用DSP进行控制的智能充电系统. 一.充电系统的要求及设计思路: 对于铅酸电池,根据资料显示,采用多段恒流,定压,脉冲的充电算法最有效.其充电过程曲线如图1. 根据我们设计的逆变器的要求,对充电系统的要求为: 1.充电电池为铅酸电池 2.输入市电电压波动范围230V±30%. 3.最大充电电流为100A,充电电压为13.8V±1%. 4.充电过程为:多段恒流,定压,脉冲的充电算法. 5.本系统具有过充,过流和断路保护功能. 由于我们的充电电流很大,所以我们选择了以通过控制SCR来实现对充电电流和电压调整.在程式的设计中,我们采用了以增量式PID控制为核心的数字控制理论思想.其具体论述可参考以前RD REPORT的<<数字化UPS中convertor部分的探讨>>. 二.各个阶段的充电思想以及注意的问题: 1.恒流充电阶段: 在恒流阶段,为了得到最理想的充电曲线,可采用多段恒流,在本程序中,只作了恒流值为100A的一种情况.而其他种情况均类似.在此阶段,我们以反馈的充电电流作为比较值与参考值100A作比较,得到ERROR值,通过比例控制,得到下一个周期SCR的导通角大小.由于此阶段对充电精度的要求不高,所以我们只采用了比例控制. 在多段恒流充电过程中,开始充电的瞬间进行小电流的充电是有必要的,当电

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

电力电子课程设计直流直流升压电路分析与设计电动汽车蓄电池充电器设计

题目1—直流/直流升压电路分析与设计 电动汽车蓄电池充电器设计 一、技术指标 输入电压:12-24V,输出电压42V,输出电压纹波<200mV,负载电阻10Ω,开关频率50kHz。 二、设计要求 1). 选择主电路的类型和相应的功率器件,并对功率器件进行设计; 2). 设计电压单闭环反馈补偿器; 3). 给出输出电压的仿真结果来验证你的设计: a)电阻由10Ω跳变到5Ω; b)输入电压由12V跳变到24V。 三、设计方案分析 3.1、DC-DC升压变换器的工作原理 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 图1(a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。电路的工作原理是,当控制信号Vi为高电平时,开关管VT导通,能量从输入电源流入,储存于

电感L 中,由于VT 导通时其饱和压降很小,所以二极管D 反偏而截止,此时存储在滤波电容C 中的能量释放给负载。当控制信号Vi 为低电平时,开关管VT 截止,由于电感L 中的电流不能突变,它所产生的感应电势将阻止电流的减小,感应电势的极性是左负右正,使二极管D 导通,此时存储在电感L 中的能量经二极管D 对滤波电容C 充电,同时提供给负载。电路各点的工作波形如图1(b )。 图1DC-DC 升压式变换器电路及工作波形 3.2、DC-DC 升压变换器输入、输出电压的关系 假定储能电感L 充电回路的电阻很小,即时间常数很大,当开关管VT 导通时,忽略管子的导通压降,通过电感L 的电流近似是线性增加的。即:t L U I i I ?+=LV L ,其中ILV 是流过储能电感电流的最小值。在开关管VT 导通结束时,流过电感L 的电流为: ON LV LP T L U I I I ?+=,iL 的增量为ON I T L U ?。在开关管VT 关断时,续流二极管D 导通,储能电感L 两端的电压为dt di L U U u L I L =-=0,所以流过储能电感L 的电流为:t L U U I i I LP L ?--=0,当开关管VT 截止结束时,流过电感L 的电流为OFF I LP LV L T L U U I I i ?--==0, iL 的减少量为OFF I T L U U ?-0。在电路进入稳态后,储能电感L 中的电流在开关管导通期间的增量应等于在开关管截止期间的减量,即 OFF I ON I T L U U T L U ?-=?0,所以:I I ON I OFF U q U T T T U T T U ?-=?-=?=110,其中

开关型铅酸蓄电池智能充电器方案

开关型铅酸蓄电池智能充电器方案设计了一种基于UC3906与UC3823的免维护铅酸蓄电池开关型双电平智能充电器,这种充电器可保证蓄电池在很宽的温度范围内精确充电,延长蓄电池的使用寿命; 可以消除充电过程中的极化现象,提高充电效率。 1 UC3906的结构及工作原理。 UC3906内部框图如图1所示,该芯片内含有独立的电压控制电路和限流放大器,它可以控制芯片内的驱动器,驱动器提供的输出电流达25 mA, 可直接驱动外部串联的调整管,从而调整充电器的输出电压与电流。电压和电流检测比较器检测蓄电池的充电状态,并控制状态逻辑电路的输入信号。

图1 UC3906内部结构框图 当蓄电池电压或电流过低时,充电起动比较器控制充电器进入涓流充电状态,当驱动器截止时,该比较器还能输出25 mA涓流充电电流。这样,当蓄电池短路或反接时,充电器只能以小电流充电,避免了因充电电流过大而损坏蓄电池。 蓄电池的电压与环境温度有关,温度每升高1 ℃,蓄电池单格电压下降4 mV, 也就是说蓄电池的浮充电压有负的温度系数- 4 mV/℃。普通充电器如果在25 ℃处于最佳工作状态,在环境温度为

0 ℃就会充电不足,而在温度为45 ℃时可能因严重过充电而缩短蓄电池的使用寿命。而UC3906的最重要的特性是具有精确的基准电压,其基准电压的大小随环境温度而变化,且变化规律与铅酸蓄电池的温度特性一致。同时芯片只需1.7 mA的输入电流就可工作,这样可以尽量减小芯片的功耗,实现对环境温度的准确检测。在 0~70 ℃温度范围内可以保证蓄电池既充足电又不会出现过充电现象,完全满足蓄电池充电需要。 UC3906可构成双电平浮充充电器,充电过程分为3个充电状态,如图2所示:大电流恒流充电状态,高电压过充电状态和低电压恒压浮充状态。 图2 双电平浮充充电状态曲线 充电过程从大电流恒流充电状态开始,在这种状态下充电器输出恒定的充电电流Imax, 同时充电器连续监控蓄电池组的两端电压,当蓄电池的电压达到转换电压U12时,其电量已恢复到放电容量的

11.1V锂电池充电器设计

11.1V锂电池充电器设计 【摘要】本文介绍了锂电池充电的控制方法,讨论了充电器的电路结构和软件设计思想。该设计以ATmega8作为控制核心,对充电过程进行全面管理,通过对充电电流、电压的自动检测与调整,完成对不同充电阶段的精确控制及充满后的自动停充,实现了智能化充电。 【关键词】锂电池充电器;ATmega8;脉宽调制 1.引言 11.1V锂电池常用于涵道机、固定翼、直升机等航模中,具有放电稳定,工作温度宽;允许较大的充电电流、充电速度快,仅需1~2个小时就可以充满;无记忆效应;自放电率低,储存寿命长;能量高、储存能量密度大;输出电压高(单节锂电池的额定电压一般为3.6V,而单节镍氢和镍镉电池的电压只有1.2V)等优点。但锂电池在使用过程中也存在娇气的一面。在对锂电池进行充电时要防止过度充电,如果充电电压高于规定电压或充电电流大于规定电流,就会损坏锂电池或者使之报废。在过充电的情况下,能量过剩锂电池温度上升,电解液将分解产生气体,使之内压上升而导致自燃或破裂的危险。通常单节锂电池的终止充电电压为4.2V,精度控制在±1%之内,充电电流不大于1C(C代表充放电速率,1C代表电池正好在1小时内,充满电或放完电所要求的速率)。锂电池在使用时也要防止过度放电,过度放电会导致电池特性及耐久性变差,可充电次数降低。通常要求放电电流不大于2C,终止放电电压控制在2.4~2.7V左右。 2.锂电池的充电方法 锂电池在充电过程中需要控制它的充电电压和充电电流并精确测量电池电压,根据锂电池电压将充电过程分为四个阶段。每个阶段的需要用不同的电压和电流进行充电,下面以单节锂电池为例分别说明每个阶段的状态。阶段一为预充电,先用0.1C的小电流对锂电池进行预充电,当电池电压≥2.5V时转到下一阶段。阶段二为恒流充电,用1C的恒定电流对锂电池快速充电,点电池电压≥4.2V 时转到下一阶段。阶段三为恒压充电,逐渐减小充电电流,保证电池电压恒定=4.2V,当充电电流≤0.1C时转到下一阶段。阶段四为涓流充电,恒压充电结束后,电池已经基本充满,为了维持电池电压,可以用0.1C甚至更小的电流对电池进行补充充电,到此锂电池充电过程结束。 3.充电器的硬件电路设计 本系统主要有微控制器、电压检测电路、电流检测电路、电池状态指示电路和充电控制电路组成,电路原理图如图1所示。 3.1 主控芯片

铅酸蓄电池自动充电器(毕业设计)

【大学毕业设计论文】 铅酸蓄电池自动充电器

目录 1引言 (1) 2方案比较 (2) 2.1方案一:采用单片机脉冲宽度调制控制 (2) 2.1.1单片机控制的系统框图 (2) 2.1.2该系统的缺点 (2) 2.2方案二:涓流自动充电器 (2) 2.2.1 充电器原理与结构 (2) 2.2.2充电器方案说明 (3) 3各部分电路设计 (5) 3.1控制电路 (5) 3.2充放电电路 (9) 3.2.1电路组成 (9) 3.2.2充放电工作原理 (10) 3.3电源电路 (12) 3.3.1电源降压电路 (13) 3.3.2整流电路 (13) 3.3.3滤波电路 (14) 3.3.4稳压电路 (14) 4电路工作原理 (18) 5元件清单 (19) 6安装调试 (21) 结语 (22) 参考文献 (23) 致谢 (24) 附录1:电路原理图 (25) 附录2:印刷电路板图 (26) 附录3:电路仿真 (27)

摘要 本设计是一种能用于涓流充电的铅酸蓄电池充电器。该充电器是以模拟电路和数字电路为基础,基于集成电路的自动充电器。该充电器可以自动实时采集和计算电池的电压参数,同基准电压相比较,避免了过量充电,实现了自动控制。在环境参数测试仪中的应用表明:该充电器简单实用,工作稳定,性能可靠。 关键词:涓流充电;铅酸蓄电池;自动控制

Abstract This design introduced one kind can the trickling charge lead-acid battery charger principle of design, be take the analogous circuit and the digital circuit as a foundation, based on integrated circuit automatic battery charger. This battery charger may automatic real-time gathering and calculates the battery the voltage parameter, and compared with it same datum voltage teaches, to avoid charged enough, realization automatic control. Indicated in the environment parameter reflect oscope reflector application that, This battery charger simple practical, work stable, the performance is reliable. Key words: battery; lead-acid Charger; Auto-controlled

蓄电池智能充电机

感谢您选用ZN系列充电机,读使用说明书并将此说明书保存以备参考 使用前请仔细阅 根据需要可定制或免维护铅酸蓄电池(A G M)充电模式 液态铅酸蓄电池(WET)中文安装和使用手册 蓄电池智能充电机SMART ELECTRONIC BATTERY CHARGER CE Declaration of Conformity We hereby declare that the battery chargers of the ZN charger series fulfills the requirements of the guideline Guideline 73/23 EWG ( Low-voltage Guideline ) Guideline 89/336 EWG ( EMC Guideline ) 2004-10-9

ZN系列充电机ZN系列充电机,2 特点和功能概述 ●,外壳采用铝合金特殊工艺制造,造形合理、美观大方。程序具有 ●是基于微处理器控制的智能采用优化的特性曲线工作,运用智能动态调整充电技术。在整个充电过程中蓄电池始终处于微析气状态,有效地防止了蓄电池极板活性物质的脱落,同时降低了电解液的挥发。dv/dt和di/dt技术的运用,使终止充电判断更准确,充电电量最合理,避免蓄电池寿命减少。特有的去硫化功能,有效地延长电池的使用寿命。通过特殊算法,电池组极板局部短路检测及保护功能,避免电池组过充电而损坏全部电池的现象发生。 ●具有短路、极性接反、电池断格、短格等多种保护功能。 ●采用长寿命高可靠性设计的大功率隔离变压器,使整机与市电网隔离。冷却方式采用空气自冷,能在恶劣环境安全、稳定工作。 ●具有功能全面的LED显示,指示运行状态和充电过程。操作简单,只要把充电机插头接入电池充电插座,充电过程自动完成。 ●灵活的充电模式选择,根据需要可选择定制液态铅酸蓄电池(WET)或免维护铅酸蓄电池(AGM)充电模式。 ●适用于电动车、电动高尔夫球车、电动游艇、电动升降平台、电动清洁机械所使用的深循环动力型蓄电池充电。 3 各部位部件名称作用1 提手—移动机器。 2 市电输入过载开关—机器出现故障时,此开关会凸起。 3 多种状态充电指示灯—指示运行状态和充电过程。 4 充电输出连接线—棕色线接电池组(+)极;蓝色线接电池组(-)极。 5 电源连接线和插头—插入市电电源插座,必须带接地线的电源插座! 5.4 充电过程 5.4.1 首先将电源线插头入。然后把充电机插头接入电动车充电插座, 延时6-8秒,LED指示灯亮红灯,机器进入智能控制充电状态。 5.4.2 当LED指示灯亮橙灯,表示电池组已达到80%额定容量。当LED指示灯亮绿 灯,表示电池组已达到100%额定容量,电池已处于可用状态。 5.5 充电时间 充电时间取决于充电电流与蓄电池容量的比值以及蓄电池放电深度。对于80%放电的蓄电池,充入所需容量大约需要10-12小时。 5.6 维护 本充电机无需特别维护。 检查和清洁充电机,视当地灰尘情况而定,请制定适当的检查周期。 6 操作指示 6.1 重要提示 确认充电机的充电模式是否匹配当前蓄电池类别! 接市电电源方法:充电机与电池连接时,通过LED显示绿灯闪烁次数,确认充电模式是否匹配 当前蓄电池类别。 ● LED绿灯闪烁1次:表示“液态铅酸蓄电池”(WET)充电模式。 ● LED绿灯闪烁8次:表示升降平台“液态铅酸蓄电池”(WET)充电模式。● LED绿灯闪烁若干次:表示“不同品牌免维护蓄电池”(AGM)充电模式。 LED绿灯重复两遍充电模式,如不匹配须请求售后服务! 6.2 LED指示灯显示 6.2.1 LED指示灯亮红灯:表示蓄电池充电中6.2.2 LED指示灯亮橙灯:表示蓄电池电量达到80%6.2.3 LED指示灯亮绿灯:表示蓄电池电量达到100%6.2.4 LED指示灯循环闪烁2次红灯:表示市电电源连接故障6.2.4 LED指示灯循环闪烁红灯:(见第6页错误显示和故障处理)

BMS的构成、功能及智能充电机充电系统的设计与应用

BMS的构成、功能及智能充电机充电系统的设计与应用 锂离子电池组充电机充电不均衡易使其产生过充放电问题,严重损害其使用寿命。本文提出了一种新型智能充电机充电模式,使电池组更加安全、可靠地充电机充电,能够延长其使用寿命,增加安全性,降低使用成本。 1、车载锂离子电池管理系统 作为电动汽车电池的监测“大脑”,电池管理系统(BMS)在混合动力电动汽车中可以实现对电池剩余电量的监测,预测电池的功率强度,便于对整个电池系统的了解和整车系统的掌控。 在纯电动汽车中,BMS具有预测电池剩余电量、预测行驶里程和故障诊断等智能调节功能。BMS对锂离子电池的作用尤为明显,可以改善电池的使用状态、延长电池使用寿命、增加电池安全性。BMS将是未来电动汽车发展的关键技术。 车载动力电池系统及充电机充电技术解析 如图1所示,BMS中数据采集模块对电池组的电压、电流和温度进行测量,然后将采集的数据分别传送到热管理模块、安全管理模块并进行数据显示。热管理模块对电池单体温度进行控制,确保电池组处于最优温度范围内。 安全管理模块对电池组的电压、电流、温度及荷电状态(SOC)估算结果进行判断,当出现故障时发出故障报警并及时采取断路等紧急保护措施。状态估计模块根据采集的电池状态数据,进行SOC和健康状态(SOH)估算。 目前主要是SOC估算,SOH估算技术尚不成熟。能量管理模块对电池的充放电过程进行控制,其中包括电池电量均衡管理,用来消除电池组中各单体的电量不一致问题。数据通信模块采用CAN通信的方式,实现BMS与车载设备和非车载设备之间的通信。 BMS的核心功能是SOC估计、均衡管理和热管理,此外还具有其他功能比如充放电管理、预充电机充电管理等。在电池充放电过程中,需要根据环境状态、电池状态等相关参数进行管理,设置电池的最佳充放电曲线,例如设置充电机充电电流、充电机充电上限电压值、

相关文档
相关文档 最新文档