文档库 最新最全的文档下载
当前位置:文档库 › 物理 电磁感应现象的两类情况的专项 培优练习题含详细答案

物理 电磁感应现象的两类情况的专项 培优练习题含详细答案

物理 电磁感应现象的两类情况的专项 培优练习题含详细答案
物理 电磁感应现象的两类情况的专项 培优练习题含详细答案

物理 电磁感应现象的两类情况的专项 培优练习题含详细答案

一、电磁感应现象的两类情况

1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别

垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求:

(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7

2L

t g

= 【解析】 【详解】

(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有

2

1sin 302

mgL mv ?=

, 则线框进入磁场时的速度

2sin30v g L gL =?=

线框ab 边进入磁场时产生的电动势E =BLv 线框中电流

E I R

=

ab 边受到的安培力

22B L v

F BIL R

== 线框匀速进入磁场,则有

22sin 30B L v

mg R

?= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv

线框所受的安培力变为

22422B L v

F BI L mg R

==''=

方向沿斜面向上

(2)设线框再次做匀速运动时速度为v ',则

224sin 30B L v mg R

?=

'

解得

4v v =

'=根据能量守恒定律有

2211

sin 30222

mg L mv mv Q ?'?+=+

解得4732

mgL

Q =

线框ab 边在上侧磁扬中运动的过程所用的时间1L t v

=

设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:

22sin 302mg t BLIt mv mv ?-='-

其中

()022BL L x I t R

-=

联立以上两式解得

()02432L x v t v

g

-=

-

线框ab 在下侧磁场匀速运动的过程中,有

00

34x x t v v

='=

所以线框穿过上侧磁场所用的总时间为

123t t t t =++=

2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。一质量m=2kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.5,ab 连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放物体,当物体下落高度h=2.0m 时,ab 开始匀速运动,运动中ab 始终垂直导轨并与导轨接触良好。不计空气阻

力,sin37°=0.6,cos37°=0.8,g取10m/s2。

(1)求ab棒沿斜面向上运动的最大速度;

(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;

(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。

【答案】(1) (2)q=40C (3)

【解析】

【分析】

(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。

(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。

(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。

【详解】

(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知

对物体,有;对ab棒,有

又、

联立解得:

(2) 感应电荷量

据闭合电路的欧姆定律

据法拉第电磁感应定律

在ab棒开始运动到匀速运动的这段时间内,回路中的磁通量变化

联立解得:

(3)对物体和ab棒组成的系统,根据能量守恒定律有:

解得:电阻R 上产生的焦耳热

3.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为

1

2

B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒: (1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.

【答案】⑴2

3kL ,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶

【解析】 【分析】 【详解】

⑴导体棒被锁定前,闭合回路的面积不变,B t

??=k 由法拉第电磁感应定律知:E =

t Φ??=B S t ??=2

3kL 由闭合电路欧姆定律知:I =E R 总=2

3kL

由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示

根据法拉第电磁感应定律有:E =

01

2

B Lv

根据闭合电路欧姆定律知:I =E R

根据安培力公式有:F =01

2

ILB 解得:F =

01

2

ILB 由牛顿第二定律知:mg -F =ma

解得:a =g -2204B L v

R

⑶由能量守恒知:mgh =2

12

mv +Q 由几何关系有:h =

34

L 解得:Q =

3

4

mgL -212mv

4.如图所示,粗糙斜面的倾角37θ?=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,

磁场的磁感应强度按2

1(T)B t π

=-

的规律变化,开始时线框静止在斜面上,T 在线框运动

前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,2

10m/s g =,

370.6sin ?=, 370.8cos ?=.

(1)求线框静止时,回路中的电流I ;

(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;

(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)

【答案】(1)1A (2)2.83J (3)0.16C

【解析】 【详解】

(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为

2

14V 22B D E n n t t π?Φ???==??= ?????

设小灯泡电阻为R ,由

2

20E P I R R R R ??== ?+??

可得

2R =Ω

解得

1A I =

== (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得

2sin 1cos mg n t ID mg θμθπ?

?=-+ ???

解得

0.45t s π=

产生的热量为

2.J 83Q Pt ==

(3)线框刚好开始运动时

210.45T 0.1T B ππ??

=-?= ???

根据闭合电路的欧姆定律可得

00

0B

n

s

E t I R R R R -?==

++ 根据电荷量的计算公式可得

0.16C nBS

q I t R R =??=

=+

5.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为

2

F

的恒定拉力作用时,可以使其保持与

向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:

(1)金属杆的质量;

(2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222

344tan RE RF

v B l B l μα

=-。 【解析】 【分析】 【详解】

(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得

sin cos F mg mg BIl αμα=++,

同理可得

sin cos 2

F

mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得

E IR =,

由法拉第电磁感应定律可得

E BLv =,

联立解得

4sin F

m g α

=

(2)金属杆在磁场中匀速向上运动时速度的大小

2222344tan RE RF

v B l B l μα

=

-。

6.如图所示,在坐标xoy 平面内存在B=2.0T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其中OCA 满足曲线方程

,C 为导轨的最右端,导轨

OA 与OCA 相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1和R 2,其R 1=4.0Ω、R 2=12.0Ω.现有一足够长、质量m=0.10kg 的金属棒MN 在竖直向上的外力F 作用下,以v=3.0m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,g 取10m/s 2,求:

(1)金属棒MN在导轨上运动时感应电流的最大值;

(2)外力F的最大值;

(3)金属棒MN滑过导轨OC段,整个回路产生的热量.

【答案】(1)1.0A(2)20.0N(3)1.25J

【解析】

【分析】

【详解】

(1)金属棒MN沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN匀速运动到C点时,电路中感应电动势最大,产生的感应电流最大.

金属棒MN接入电路的有效长度为导轨OCA形状满足的曲线方程中的x值.因此接入电路的金属棒的有效长度为

L m=x m=0.5m

E m=3.0V

A

(2)金属棒MN匀速运动中受重力mg、安培力F安、外力F外作用

N

N

(3)金属棒MN在运动过程中,产生的感应电动势

有效值为

金属棒MN滑过导轨OC段的时间为t

m

s

滑过OC 段产生的热量J.

7.如图,两根相距l =0.4m 的平行金属导轨OC 、O ′C ′水平放置。两根导轨右端O 、O ′连接着与水平面垂直的光滑平行导轨OD 、O ′D ′,两根与导轨垂直的金属杆M 、N 被放置在导轨上,并且始终与导轨保持保持良好电接触。M 、N 的质量均为m =0.2kg ,电阻均为R =0.4Ω,N 杆与水平导轨间的动摩擦因数为μ=0.1。整个空间存在水平向左的匀强磁场,磁感应强度为B =0.5T 。现给N 杆一水平向左的初速度v 0=3m/s ,同时给M 杆一竖直方向的拉力F ,使M 杆由静止开始向下做加速度为a M =2m/s 2的匀加速运动。导轨电阻不计,(g 取10m/s 2)。求:

(1)t =1s 时,N 杆上通过的电流强度大小;

(2)求M 杆下滑过程中,外力F 与时间t 的函数关系;(规定竖直向上为正方向) (3)已知N 杆停止运动时,M 仍在竖直轨道上,求M 杆运动的位移;

(4)在N 杆在水平面上运动直到停止的过程中,已知外力F 做功为﹣11.1J ,求系统产生的总热量。

【答案】(1)0.5A (2)F=1.6﹣0.1t (3)7.84m (4)2.344J 【解析】 【详解】 (1)M 杆的速度:

21m/s 2m/s M v a t ==?=

感应电流:

0.50.420.5A A 2220.4

E BLv I R R ??=

===? (2)对M 杆,根据牛顿第二定律:

M mg F BIl ma --=

M v a t =

整理得:

2M M Bla t

F mg ma B l R

=--?

? 解得:

1.60.1F t =-

(3)对N 杆,由牛顿第二定律得:

()2M N Bla t

mg B l ma R

μ+?

?= 可得:

222M N B l a t

a g mR

μ=+

解得:

10.05N a t =+

可做N a t -图

可得:

0001(10.05[)]v t t =++

解得:

0 2.8s t =

位移:

22011

2 2.87.84m 2m 2

M s at =

=??= (4)对M 杆,则有:

21

02

M F M mgS W W mv ++=

-安 解得:

1.444J I W Q ==安

对N 杆,则有:

22011

0.23J 0.9J 22

f W mv =

=??= 总热量:

1.4440.9J

2.344J I f Q Q W =+=+=总

8.如图所示,宽L =2m 、足够长的金属导轨MN 和M′N′放在倾角为θ=30°的斜面上,在N 和N′之间连接一个R =2.0Ω的定值电阻,在AA′处放置一根与导轨垂直、质量m =0.8kg 、电阻r =2.0Ω的金属杆,杆和导轨间的动摩擦因数3

4

μ=

,导轨电阻不计,导轨处于磁感应强度B =1.0T 、方向垂直于导轨平面的匀强磁场中.用轻绳通过定滑轮将电动小车与杆的中

点相连,滑轮与杆之间的连线平行于斜面,开始时小车位于滑轮正下方水平面上的P 处(小车可视为质点),滑轮离小车的高度H =4.0m .启动电动小车,使之沿PS 方向以v =5.0m/s 的速度匀速前进,当杆滑到OO′位置时的加速度a =3.2m/s 2,AA′与OO′之间的距离d =1m ,求:

(1)该过程中,通过电阻R 的电量q ; (2)杆通过OO′时的速度大小; (3)杆在OO′时,轻绳的拉力大小;

(4)上述过程中,若拉力对杆所做的功为13J ,求电阻R 上的平均电功率. 【答案】(1)0.5C (2)3m/s (3)12.56N (4)2.0W 【解析】 【分析】 【详解】

(1)平均感应电动势BLd

E t t

?Φ=

=?? ?=BLd

q I t R r R r

?Φ=?=

++ 代入数据,可得:0.5q C = (2)几何关系:

sin H

H d α

-=解得:sin 0.8α=0=53α 杆的速度等于小车速度沿绳方向的分量:1cos 3/v v m s α== (3)杆受的摩擦力cos 3f F mg N μθ==

杆受的安培力221

()

B L F BIL R r v 安==+代入数据,可得3F N =安

根据牛顿第二定律:sin =T f F mg F F ma θ---安 解得:12.56T F N =

(4)根据动能定理:211sin 2

f W W mgd F mv θ+--=

安 解出 2.4W J =-安,电路产生总的电热 2.4Q J =总 那么,R 上的电热 1.2R Q J = 此过程所用的时间cot 0.6H t s v

α

=

=

R上的平均电功率

1.2

W 2.0W

0.6

R

Q

P

t

===

【点睛】

本题是一道电磁感应与力学、电学相结合的综合体,考查了求加速度、电阻产生的热量,分析清楚滑杆的运动过程,应用运动的合成与分解、E=BLv、欧姆定律、安培力公式、牛顿第二定律、平衡条件、能量守恒定律即可正确解题;求R产生的热量时要注意,系统产生的总热量为R与r产生的热量之和.

9.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距l.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小.sin

gθ.

(1)乙金属杆刚进入磁场时,发现乙金属杆作匀速运动,则甲乙的电阻R各为多少?

(2))以刚释放时t =0,写出从开始到甲金属杆离开磁场,外力F随时间t的变化关系,并说明F的方向.

(3)乙金属杆在磁场中运动时,乙金属杆中的电功率多少?

(4)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.

【答案】(1)

222sin

B l gl

R

θ

=(2

22

sin

glθ

(3

22

2sin

glθ

(4)

2sin

Q mglθ

【解析】

【分析】

【详解】

(1)由于甲乙加速度相同,当乙进入磁场时,甲刚出磁场:乙进入磁场时2sin

v glθ

=

受力平衡有:

22

222sin sin

2

B l gl

B l v

mg

R

θθ==

解得:

222sin

B l gl

R θ

=;

(2)甲在磁场用运动时,外力F 始终等于安培力: 2A Blv

F F BIl Bl R

===, 速度为:

sin v g t θ=

可得:

22sin

2A Blg t F Bl R θ==,

F 沿导轨向下

(3)乙金属杆在磁场中运动时,乙金属杆中的电功率为:

2

222

2Blv P I R R R ??===

???

; (4)乙进入磁场前匀加速运动中,甲乙发出相同热量,设为Q 1, 此过程中甲一直在磁场中,外力F 始终等于安培力,则有:F 12W W Q ==安 乙在磁场中运动发出热量Q 2, 利用动能定理:2sin 20mgl Q θ=- 可得:

2sin 2

mgl Q θ

=

, 由于甲出磁场以后,外力F 为零,可得:

F 2sin W Q mgl θ=-。

10.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320

F g m =

,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:

(1)区域Ⅰ中磁感应强度的方向怎样?

(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .

【答案】(1)向外 (2)340mgd q U = (3)

4750mg (4)47

25

mgd 【解析】 【详解】

(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。 因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。 (2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有

Bdv I R

R

ε

=

=

,33

44U I R Bdv =?=

线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有

0A F F mg μ--=

解得

31

0.12020

A F BId mg mg mg ==

-= 通过线框任一横截面的电量q 为q It =,其中2d

t v

= 联立以上各式,解得

340mgd

q U

=

(3)MN 刚到达Ⅱ区正中间时,流过线框的电流为

34'4Bdv Bdv Bdv

I I R R

+=

== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为

4

''3'165

A A F BI d BI d F mg =+==

由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为

7

3''85

A N mg BI d BI d mg F mg =+-=+=

木块与线框组成的系统受力平衡,因此拉力F 为

4747

'55050

A F F N mg mg mg μ=+=+=

(4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有

3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+

由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为

4'27

2'2'25

BI d N mg BI d mg BI d mg ?=-+

=+= 此过程中拉力做的功W 为

4747

'222255025

A W F d N d mg d mg d mgd μ=?+?=?+?=

11.(1)如图1所示,固定于水平面上的金属框架abcd ,处在竖直向下的匀强磁场中.金属棒MN 沿框架以速度v 向右做匀速运动.框架的ab 与dc 平行,bc 与ab 、dc 垂直.MN 与bc 的长度均为l ,在运动过程中MN 始终与bc 平行,且与框架保持良好接触.磁场的磁感应强度为B .

a. 请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;

b. 在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .

(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景:如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l 的绝缘细管MN ,沿纸面以速度v 向右做匀速运动.在管的N 端固定一个电量为q 的带正电小球(可看做质点).某时刻将小球释放,小球将会沿管运动.已知磁感应强度大小为B ,小球的重力可忽略.在小球沿管从N 运动到M 的过程中,求小球所受各力分别对小球做的功.

【答案】(1)见解析 (2)洛伦兹力做功为0,管的支持力做功

【解析】 【分析】 【详解】

(1)如图1所示,在一小段时间Dt内,金属棒MN的位移

这个过程中线框的面积的变化量

穿过闭合电路的磁通量的变化量

根据法拉第电磁感应定律

解得

如图2所示,棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力

,f即非静电力

在f的作用下,电子从M移动到N的过程中,非静电力做功

根据电动势定义

解得

(2)小球随管向右运动的同时还沿管向上运动,其速度如图3所示.小球所受洛伦兹力f 如图4所示.将f合正交分解如图5所示.

小球除受到洛伦兹力f合外,还受到管对它向右的支持力F,如图6所示.

洛伦兹力f合不做功

沿管方向,洛伦兹力f做正功

垂直管方向,洛伦兹力是变力,做负功

由于小球在水平方向做匀速运动,则 因此,管的支持力F 对小球做正功

12.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,金属杆的电阻为r ,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向下,导轨电阻可忽略,让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(重力加速度为g )

(1)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;

(2)求在下滑过程中,ab 杆可以达到的速度最大值.

(3)杆在下滑距离d 的时以经达到最大速度,求此过程中通过电阻的电量和热量。

【答案】(1) I r BLv R =+,22sin ()B L v a g R r m θ=-+(2) 22

()sin m mg R r v B L θ

+=(3) BLd q r R =+,32244

sin ()sin 2R mgdR m g R r R Q R r B L θθ

+=-+ 【解析】 【详解】

(1)杆受力图如图所示:

重力mg ,竖直向下,支撑力N ,垂直斜面向上,安培力F ,沿斜面向上,故ab 杆下滑过程中某时刻的受力示意如图所示,当ab 杆速度为v 时,感应电动势E =BLv ,此时电路中电流

E BLv

I R r R r

=

=++ ab 杆受到安培力:

22B L v

F BIL r R

==

+

由牛顿运动定律得:

mg sin θ-F =ma

解得加速度为

22sin ()B L v

a g R r m

θ=-+

(2)当金属杆匀速运动时,杆的速度最大,由平衡条件得

22sin B L v

mg R r

θ=

+ 解得最大速度

22

()sin m mg R r v B L

θ

+=

(3)杆在下滑距离d 时,根据电荷量的计算公式,可得

E BLd q It t R r r R

==

=++ 由能量守恒定律得

2

1sin 2

m mgd Q mv θ=+

解得

322244

()sin sin 2m g R r Q mgd B L

θ

θ+=- 电阻R 产生的热量

32223224444

()sin sin ()sin (sin )22R R m g R r mgdR m g R r R Q mgd R r B L R r B L θθθ

θ++=-=-

++

13.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab 施加水平向右的力,使其从图示位置开始运动并穿过n 个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R 的电荷量q 。

(2)对导体棒ab 施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t 。

(3)对导体棒ab 施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab 进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab 保持该匀速运动穿过整个磁场区,求棒ab 通过第i 磁场区时的水平拉力Fi 和棒ab 通过整个磁场区过程中回路产生的电热Q 。

【答案】⑴;⑵;⑶

【解析】

试题分析:⑴电路中产生的感应电动势。通过电阻的电荷量。导体棒穿过1区过程。解得

(2)棒匀速运动的速度为v,则

设棒在前x0/2距离运动的时间为t1,则

由动量定律:F0 t1-BqL=mv;解得:

设棒在后x0/2匀速运动的时间为t2,则

所以棒通过区域1所用的总时间:

(3)进入1区时拉力为,速度,则有。

解得;。进入i区时的拉力。导体棒以后通过每区都以速度做匀速运动,由功能关系有

解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化

14.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ与M1P1Q1)间距L=0.2m,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B=0.5T,NN1右侧没有磁场;竖直放置的光滑半圆轨道PQ、P1Q1分别与水平轨道相切于P、P1,圆轨道半径r1=0.lm,且在最高点Q、Q1处安装了压力传感器.金属棒ab质量m=0.0lkg,电阻r=0.1Ω,运动中与导轨有良好接触,并且垂

直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:

(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;

(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .

【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】

(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:

A 0mgsin F θ-=

安培力:A F BIL = BLv

I R r

=+ 联立解得:2222

()sin 0.0110(0.40.1)0.6

3m /s 0.50.2

mg R r v B L θ+??+?=

==? (2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:

2211

0.01100.950.0130.05J 22

Q mgh mv ==??-??=-

故电阻R 产生的热量为:0.4

0.050.04J 0.40.1

R R Q Q R r =

=?=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:

()221111

222

mg r mgd mv mv μ--=-①

在圆轨道的最高点,重力等于向心力,有:2

11

v mg m r =②

联立①②解得:221535100.1

0.5m 220.410

v gr d g μ--??=

==??

15.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

九年级物理电磁感应现象教学设计人教版.docx

电磁感应现象教学设计 一、教学设计思想 这节课的设计思想是:把电磁感应现象的发现过程,从教育的角度编制成既有一定难度、又有操作可能的科学探究活动,让学生通过科学探究,认识电磁感应现象,体会实验探索的艰辛,进一步提高科学探究能力,学习科学家执着探究科学真理的精神。 二、教学目的 《一》、知识目标 1.启发学生观察实验现象,从中分析归纳出产生感应电流的条件,从而进一步理解电磁感应现象,理解产生感应电流的条件。 2.培养学生运用所学知识,独立分析问题的能力。 3.培养学生观察、实验操作能力和概括能力。 《二》教学目标 1.知识与技能:认识电磁感应现象。 2.过程与方法:经历科学探究的过程,提高科学探究的能力。 3.情感态度与价值观:培养热爱科学的情感和实事求是的科学态度。 三、教学重难点: 1.教学重点:电磁感应现象及电磁感应现象的科学探索过程。 2.教学难点:对切割磁感线运动的认识及探究过程中问题的提出和解决问 题办法的猜想。 初三学生已经具有了初步的动手操作能力、初步的空间想象能力和逆向思维能力,经过教师的提示点拨、分析比较与实际的动手操作,可以探究并归纳出产生电磁感应现象的条件。 四、教学过程

引入: 1820 年,丹麦物理学家奥斯特发现了——电流的磁效应,揭示了电 和磁之间存在着联系,受到了这一发现的启发,人们开始考虑这样一个问题:既然“电能生磁”,“磁能不能生电”呢?不少科学家进行了这方面的探索,英国 平民科学家法拉第,坚信电与磁有密切的联系。经过10 年坚持不懈的努力,在 无数次的挫折与失败之后,终于在1831 年一个偶然的机会里,发现了利用磁场 产生电流的条件。法拉第的发现使发电机等用电设备的发明和应用成为可能,我们现在能很方便的用电。我国令人瞩目的三峡工程等都与法拉第的发现有着联 系。 我手中就有一个发电机模型(简介其结构),它为什么能发电呢?其发电的 条件是什么呢?带着这些问题,我们一起来学习第一节:电磁感应现象。 师:同学们,我们在初中就学过,导体切割磁感线时,闭合电路中有电流产 生。 (教师演示)在这个实验中,磁场是由马蹄形磁体提供的。是不是只有马蹄形磁铁才能提供磁场呢? 生:不,电流也能产生磁场,通过电螺线管也能产生磁场。 师:通电螺线管的磁场与哪种磁体周围的磁场相似? 生:条形磁铁。 师:好。除了这个演示实验所示的方法外,还有没有另外的利用磁场产生电流的办法呢?请大家选用桌上的实验器材,两个同学一组,共同探究利用磁场怎么样才能产生电流。将你们的实验过程及实验现象记录在表格中。若实验器材不够,请到台前来取。 实验探究产生感应电流的条件的记录表格 探究设计活动过程现象记录初步分析初步结论 活动 1 活动 2 活动 3

物理电磁感应现象的两类情况的专项培优练习题

物理电磁感应现象的两类情况的专项培优练习题 一、电磁感应现象的两类情况 1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =? 感应电流:11E I R = 由力的平衡得:12BI L mg ?= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势 2222E B Lv =? 感应电流:2 2E I R = 由力的平衡得:222BI L mg ?=

解以上各式得:222 16mgR v B L = 设感应电流在线圈中产生的热量为Q ,由能量守恒定律得: 22122 mg L Q mv ?-= 解以上各式得:322 44 2512m g R Q mgL B L =- 2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。 【答案】(1)22 FR v B L =;(2)F I BL =;(3)4FL Q = 【解析】 【分析】 【详解】 (1)线圈向右匀速进入匀强磁场,则有 F F BIL ==安 又电路中的电动势为 E BLv = 所以线圈中电流大小为 = =E BLv I R R 联立解得 22 FR v B L = (2)根据有F F BIL ==安得线圈中的电流大小 F I BL = (3)AB 边产生的焦耳热 22( )4AB F R L Q I R t BL v ==??

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

最新初中物理电磁感应发电机知识点与习题(含答案)好

电磁 安培定律 法拉第电磁感应定律 电流的磁效应 电磁感应 右手螺旋定则右手定则 安培力 左手定则1.安培定律:表示电流和电流激发磁场的 磁感线方向间关系的定则,也叫 右手螺旋定则。(1)通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (2)通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致 ,那么大拇指所指的那一端是通电螺线管的N 极。 左手反之。

应用:电能转化为磁,可以用于人造磁铁等。 2. 法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁 通变化率成正比。 右手定则:使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把 右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向产生的感应电流的方向。 应用:将动能转化为电能,发电机。 3.安培力:电流导体在磁场中运动时受力。 左手定则:左手平展,使大拇指与其余四指垂直,并且都跟手掌在一个 平面内。把左手放入磁场中,让磁感线垂直穿入手心(手心对准N极,手背对准S极),四指指向电流方向(既正电荷运动的方向)则大拇指的方向 就是导体受力方向。 应用:通过磁场对电流的作用,将电磁能转化为机械能:电动机。 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时, 导体中就会产生电流,这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线

运动的方向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。

电磁感应现象的两类情况练习题

课后巩固作业 限时:45分钟总分:100分 一、选择题(包括8小题,每小题8分,共64分) 1.下列说法中正确的是( ) A.感生电场由变化的磁场产生 B.恒定的磁场也能在周围空间产生感生电场 C.感生电场的方向也同样可以用楞次定律和右手定则来判定 D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向解析:磁场变化时在空间激发感生电场,其方向与所产生的感应电流方向相同,可由楞次定律和右手定则判断,故A、C项正确,B、D项错. 答案:AC 2.如图所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,因而在电路中有电流通过,下列说法中正确的是( ) A.因导体运动而产生的感应电动势称为动生电动势

B.动生电动势的产生与洛伦兹力有关 C.动生电动势的产生与静电力有关 D.动生电动势和感生电动势产生的原因是一样的 解析:根据动生电动势的定义可知A项正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,B项正确,C、D项错误. 答案:AB 3.如图所示,一个带正电的粒子在垂直于匀强磁场的平面做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( ) A.不变B.增加 C.减少D.以上情况都可能 解析:当磁感应强度均匀增大时,产生感生电场,根据楞次定律判断出感生电场的方向沿逆时针方向.粒子带正电,所受电场力与感生电场的方向相同,因而运动方向也相同,从而做加速运动,动能增大,B选项正确. 答案:B 4.如图所示,一金属半圆环置于匀强磁场中,当磁场突然减弱

时,则( ) A.N端电势高 B.M端电势高 C.若磁场不变,将半圆环绕MN轴旋转180°的过程中,N端电势高 D.若磁场不变,将半圆环绕MN轴旋转180°的过程中,M端电势高 解析:将半圆环补充为圆形回路,由楞次定律可判断圆环中产生的感应电动势方向在半圆环中由N指向M,即M端电势高,B正确;若磁场不变,半圆环绕MN轴旋转180°的过程中,由楞次定律可判断,半圆环中产生的感应电动势在半圆环中由N指向M,即M端电势高,D正确. 答案:BD 5.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,假定线圈产生的磁感线全部集中在铁芯.a、b、c为三个闭合金属圆环,位置如图所示.当滑动变阻器滑片左右滑动时,能产生感应电流的圆环是( )

初中物理 电磁感应讲解学习

初中物理电磁感 应

一、【教学过程】 (一)复习引入 1. 师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢? 生答:导线中电流的方向、磁感线的方向有关。 2. 师问:通过上节的学习,我们得到了电动机的工作原理是什么呢? 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中是否能够产生电呢?本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,

这种现象叫做电磁感应。 2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线运动的方 向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。 3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。 磁铁(定子) 线圈(转子) 滑环 电刷 4. 直流电与交流电: (1)方向不变的电流叫做直流电大小和方向作周期性改变的电流叫做交流电。(2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就是时间的单位秒(s)。 (3)交流电的频率:电流每秒发生周期性变化的次数。其单位是赫兹,符号是Hz。频率和周期的数值互为倒数。 5.电动机与发电机的比较:

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

《电磁感应现象的两类情况》教案2

电磁感应现象的两类情况 【教学目标】 1、知识与技能: (1)、了解感生电动势和动生电动势的概念及不同。 (2)、了解感生电动势和动生电动势产生的原因。 (3)、能用动生电动势和感生电动势的公式进行分析和计算。 2、过程与方法 通过探究感生电动势和动生电动势产生的原因,培养学生对知识的理解和逻辑推理能力。 3、情感态度与价值观 从电磁感应现象中我们找到产生感生电动势和动生电动势的个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。 【教学重点】感生电动势和动生电动势。 【教学难点】感生电动势和动生电动势产生的原因。 【教学方法】类比法、练习法 【教具准备】 多媒体课件 【教学过程】 一、复习提问: 1、法拉第电磁感应定律的内容是什么?数学表达式是什么? 答:感应电动势的大小与磁通量的变化率成正比,即E= ?Φ。 t? 2、导体在磁场中切割磁感线产生的电动势与什么因素有关,表达式是什么,它成立的条件又 是什么? 答:导体在磁场中切割磁感线产生的电动势的大小与导体棒的有效长度、磁场强弱、导体棒的运动速度有关,表达式是E=BLv sinθ,该表达式只能适用于匀强磁场中。 二、引入新课 在电磁感应现象中,由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,本节课我们就一起来学习感应电动势产生的机理。 三、进行新课 (一)、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。

中考物理(真题版)专题练习题:电磁感应

电磁感应 1.(2019黔东南,5)关于如图甲、乙所示的实验,下列说法错误的是() A.甲实验可以研究通电导体周围存在磁场 B.甲实验可以研究电磁感应现象 C.乙实验可以研究通电导体在磁场中受力情况 D.乙实验的过程中,电能转化为机械能 2.(2019天水,5)如图所示,对下列图中现象解释不正确的是() A.如图是利用安培定则判断通电螺线管的极性 B.如图是发电机原理装置图 C.如图是电动机原理装置图 D.如图中动圈式话筒是根据电流磁效应原理工作的 3.(2019毕节,7)关于如图甲、乙所示的实验,下列说法错误的是() A.甲实验可以研究通电导体周围存在磁场 B.甲实验可以研究电磁感应现象 C.乙实验可以研究通电导体在磁场中受力情况 D.乙实验的过程中,电能转化为机械能

4.(2019云南,8)如图所示的实验中,相关现象说法正确的是( ) A.图甲中闭合开关,通电螺线管右端为N极 B.图乙中通电导线周围存在着磁场,将小磁针移走,该磁场消失 C.图丙中闭合开关,导体ab左右运动,灵敏电流计指针不会偏转 D.图丁中闭合开关,仅对调磁体的N.S极,导体ab所受磁场力方向相反 5.(2019通辽,9)以下是对电与磁部分四幅图的分析,其中错误的是() A.如图装置闭合电路后磁针会偏转,说明电流能产生磁场 B.如图装置说明通电导线在磁场中受到力的作用 C.如图装置所揭示的原理可制造发电机 D.图中动圈式话筒应用了磁场对电流的作用 6.(2019无锡,16)如图是一种手摇发电的手电筒,当沿图中箭头方向来回摇动时,灯泡就能发光。这个手电筒壳体透明,可以清晰地看到里面有线圈,摇动时,可以感觉到有一个物块在来回运动。小明猜想这个物块是磁体,依据是:磁体运动时,闭合线圈切割磁感线产生,线圈相当于电路中的。 7.(2019泸州,5)如图所示,两根绝缘细线悬挂着的导体ab,放在U形磁铁中央,ab两端连接着导线。在虚线框中接入某种实验器材可进行相应的实验探究。下列说法中正确的是() A. 接入电流表可探究电磁感应现象,与发电机原理相同 B. 接入电流表可探究通电导体在磁场中受力,与发电机原理相同 C. 接入电源可探究电磁感应现象,与电动机原理相同

电磁感应现象的两类情况.

4.5 电磁感应现象的两类情况 课型:新授编号:5 日期:2018-12-28 学习目标: 1.了解感生电场,知道感生电动势产生的原因。会判断感生电动势的方向,并会计算它的大小。 2.了解动生电动势的产生以及与洛伦兹力的关系。会判断动生电动势的方向,并计算它的大小。 3. 了解电磁感应规律的一般应用,会联系科技实例进行分析。 活动方案: 活动一:电磁感应现象中的感生电场 如图:一个200匝、面积为20cm2在圆形线圈,放在匀强磁场中,磁场的方向与线圈平面垂直,磁感应强度在0.05s内由0.1T增加到0.5T。在此过程中: 问题1:磁场变强会使线圈中产生什么方向的感应电流? 问题2:电流是电荷的定向移动产生的,为什么自由电荷会发生移动的? 总结: 1.变化的磁场在空间产生一种电场------ 2. 使电荷受到作用力做定向 移动 3.感生电动势的非静电力 扩展: 感生电场方向的判断: 例题1:如图所示,一个闭合电路静止于 磁场中,由于磁场强弱的变化,而使电路中 产生了感应电动势,下列说法中正确的是 () A.磁场变化时,会在在空间中激发一种感生 电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 D.以上说法都不对 活动二:电磁感应现象中的洛伦兹力。 如图所示:有导线CD长0.15m,在 磁感应强度为0.8T的匀强磁场中,以 3m/S的速度做切割磁感线运动,导线垂 直磁感线,运动方向跟磁感线及直导线 均垂直. 思考下列问题: 磁场变强

1、自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体中自由电荷的合运动在空间大致沿什么方向?为了方便,可以认为导体中的自由电荷是正电荷。 2、导体棒一直运动下去,自由电荷是否也会沿着导体棒一直运动下去?为什么? 3、导体棒的哪端电势比较高? 4、如果用导线把C、D两端连到磁场外的一个用电器上,导体棒中电流是沿什么方向的? 总结: 导线两端存在感应电动势,在这种情况下,非静电力与有关。 例题2:如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是() A.因导体运动而产生的感应电 动势称为动生电动势 B.动生电动势的产生与洛仑兹力有关 C.动生电动势的产生与电场力有关 D.动生电动势和感生电动势产生的原因是一样的 同步练习: 1.如图所示,一个有孔带正电小球套在 光滑的圆环上(重力不计),在垂直于匀强磁 场的平面内做圆周运动,当磁感应强度均匀 增大时,此小球的动能将() A.不变 B.增加 C.减少 D.以上情况都可能 2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则() A.线圈中的感应电动势一定是每秒减少2 V B.线圈中的感应电动势一定是2 V C.线圈中的感应电流一定是每秒减少2 A D.线圈中的感应电流一定是2 A 3.如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线 圈平面,已知磁感应强度随时间变 化的规律为B=(2+0.2t)T, 定值电

苏科版九年级物理电磁感应 同步练习

电磁感应同步练习 (1) 1.英国物理学家法拉第1831年首先用实验的方法发现了现象,这一重大发现使人类实现了将能转化为能的愿望。 2.电磁感应现象的发现,经历了漫长的实验探究过程,这是因为电磁感应现象的产生必须符合一定的条件,这就是电路中的导体,在中做的运动时,导体中才会有电流产生,这种电流称为。 3.实验表明,感应电流的方向不仅跟方向有关,还跟方向有关,在上述两个因素中,如果其中之一的方向改变,则感应电流的方向将,如果两者的方向都改变,则感应电流的方向将。 4.发电机是根据现象而设计制造的,发电机的诞生实现了能向能的转化。 5.如图所示,两同学甩动与电流表相连的长导线, 发现电流表的指针来回摆动。 (1)这种现象叫做现象,这是由物 理学家最早发现的。 (2)产生感应电流的磁场是由提供的。6.小明学习了电磁感应现象后,就想:产生的感应电 流的大小与什么有关呢?他找了几个要好的同学开始了讨论和猜想:既然运动有快慢之分、磁场有强弱之分,那么感应电流的大小是否与这两者有关呢? 于是他们开始做实验,首先按照课堂上探究电磁感应的实验装置(如图)重新安装了仪器,并且准备了磁性强弱不同的磁铁,以便改变磁场的强弱,闭合电路后,他先改变导体在磁场中运动的快慢,观察电流表指针摆动幅度的大小。实验发现:导体在磁场中切割磁感线运动的速度越大,电流表指针摆动的幅度越大;然后,他又保持导体运动的快慢不变,换用磁性强的磁铁来做实验,发现磁性越强,电流表指针摆动的幅度越大。对于这么重大的发现,他高兴不已。 (1 (2 (3 (4)请你解释一下为什么手摇发电机的手柄摇得越快,灯泡越亮?

(2) 1.下列情况下,能够产生感应电流的是 ( ) A .导体在磁场中运动 B .一段导体在磁场中做切割磁感线运动 C .使闭合的导体全部在磁场中不动 D .使闭合回路的一部分导体在磁场中做切割磁感线运动 2 ( ) A .使导体棒A B 上下运动 B .使导体棒AB 左右运动 C .使导体棒AB 前后运动 D .使导体棒AB 静止不动 3.下列四个图所示的实验装置中,用来研究电磁感应现象的是 ( ) 4.以下哪种物理现象的发现和利用,实现了电能大规模生产,使人们从蒸汽时代进入电气时代 ( ) A .电磁感应现象 B .电流通过导体发热 C .电流的磁效应 D .通电线圈在磁场中会转动 5.下列电气设备中利用电磁感应现象原理工作的是 ( ) A .电烙铁 B .发电机 C .电动机 D .电磁起重机 6.下课了,小明和同学们对老师桌子上的手摇发电机产生了极大的兴趣,他们争先恐后的做实验,用手摇发电机发电让小灯泡发光。咦?奇怪的现象发生了:为什么小灯泡有时亮,有时暗呢?灯泡的亮暗与什么因素有关呢?请根据这一现象,确立一个研究课题,并写出研究的全过程。 7.为研究某种植物在恒温下生长的规律,物理兴趣小组的同学,设计制作了一台如图15所示的恒温箱。箱内安装了一根电热丝,按实际需要,电热丝每秒应向箱内提供539J 的热量(设电能全部转化为内能)。经选用合适的材料制成后,用220V 的恒压电源供电,测得该电热丝每秒实际供热1100J 。为使电热丝供热达到设计要求,在不改变电热丝阻值及电源电压的条件下,应在箱外怎样连接一个电阻元件?并通过计算确定这个电阻元件的阻值。 A B C D

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

初中物理 电磁感应

初中物理电磁感应 适用学科物理适用年级初中三年级 适用区域 人教版课时时长(分钟) 60分钟 知识点 1.电磁感应现象; 2.交流发电机的工作原理和能量转化; 教学目标 1.记忆并理解电磁感应现象; 2.知道交流发电机的工作原理及其能量的转化; 教学重点 1.电磁感应现象的理解与运用; 2.交流发电机的工作原理以及能量的转化。 教学难点运用电磁感应现象解决实际问题。 一、【教学过程】 (一)复习引入 1. 师问:通过上节的学习,我们知道磁场对通电导线有力的作用,力的方向与什么有关呢 生答:导线中电流的方向、磁感线的方向有关。 2. 师问:通过上节的学习,我们得到了电动机的工作原理是什么呢 生答:通电线圈在磁场中受力转动。 通过上节课的学习,我们知道:通电导体在磁场中受到力的作用而能够运动起来,那么运动的导体中是否能够产生电呢本节针对闭合电路的一部分导体在磁场中运动产生感应电流的现象及其能量的转化作一些分析。 (二)教学内容 1.电磁感应现象:英国的物理学家法拉第在1831年发现了电磁感应现象,即闭合电路的一部分导体在磁场里做切割磁感应线的运动时,导体中就会产生电流,这种现象叫做电磁感应。2.感应电流:由电磁感应现象产生的电流。 (1)感应电流的方向跟磁场方向和导体切割磁感线运动的方向有关。 (2)感应电流的产生条件: a.电路必须是闭合电路; b.只是电路的一部分导体在磁场中; c.这部分导体做切割磁感线运动(包括正切、斜切两种情况)。

3.交流发电机 (1)原理:发电机是根据电磁感应现象制成的。 (2)能量转化:机械能转化为电能。 (3)构造:交流发电机主要由磁铁(定子)、线圈(转子)、滑环和电刷。 4. 直流电与交流电: (1)方向不变的电流叫做直流电大小和方向作周期性改变的电流叫做交流电。 (2)交流电的周期:电流发生一个周期性变化所用的时间,其单位就是时间的单位秒(s)。(3)交流电的频率:电流每秒发生周期性变化的次数。其单位是赫兹,符号是Hz。频率和周期的数值互为倒数。 5.电动机与发电机的比较: 原理通电导体在磁场中受力转动电磁感应现象 结构 转子:线圈和换向器 定子:磁体和电刷 转子:线圈和铜环定子:磁体和电刷 (实际生产中常采用线圈不动、磁极旋转)能量把电能转化为机械能把机械能转化为电能 其他换向器的作用:改变线圈中电流的方向 线圈在磁场中转动一转,感应电流的方向改变 两次。(照明电的频率为50Hz表示线圈转50 转/秒,电流方向改变100次/秒) (三)例题详解: 磁铁(定子) 线圈(转子) 滑环 电刷

电磁感应现象的两类情况(新、选)

电磁感应现象的两类情况 [随堂基础巩固] 1.某空间出现了如图4-5-9所示的一组闭合电场线,方向从上向下看 是顺时针的,这可能是() A.沿AB方向磁场在迅速减弱 B.沿AB方向磁场在迅速增强图4-5-9 C.沿BA方向磁场在迅速增强 D.沿BA方向磁场在迅速减弱 解析:感生电场的方向从上向下看是顺时针的,假设在平行感生电场的方向上有闭合回路,则回路中的感应电流方向从上向下看也应该是顺时针的,由右手螺旋定则可知,感应电流的磁场方向向下,根据楞次定律可知,原磁场有两种可能:原磁场方向向下且沿AB方向减弱,或原磁场方向向上,且沿BA方向增强,所以A、C有可能。 答案:AC 2.如图4-5-10所示,矩形闭合金属框abcd的平面与匀强磁场垂 直,若ab边受竖直向上的磁场力的作用,则可知线框的运动情况是() A.向左平动进入磁场图4-5-10 B.向右平动退出磁场 C.沿竖直方向向上平动 D.沿竖直方向向下平动 解析:由于ab边受竖直向上的磁场力的作用,根据左手定则可判断金属框中电流方向为abcd,根据楞次定律可判断穿过金属框的磁通量在增加,所以选项A正确。 答案:A 3.研究表明,地球磁场对鸽子识别方向起着重要作用。鸽子体内的电阻大约为103Ω,当它在地球磁场中展翅飞行时,会切割磁感线,在两翅之间产生动生电动势。这样,鸽子体内灵敏的感受器即可根据动生电动势的大小来判别其飞行方向。若某处地磁场磁感应强度的竖直分量约为0.5×10-4 T。鸽子以20 m/s的速度水平滑翔,则可估算出两翅之间产生的动生电动势大约为() A.30 mV B.3 mV C.0.3 mV D.0.03 mV 解析:鸽子展翅飞行时两翅端间距约为0.3 m。由 E=Bl v得E=0.3 mV。C项正确。

高中物理电磁感应知识点详解和练习

电磁感应 一、知识网络 二、画龙点睛 概念 1、磁通量

设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S,如图所示。 (1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S 的乘积,叫做穿过这个面的磁通量,简称磁通。 (2)公式:Φ=BS 当平面与磁场方向不垂直时,如图所示。 Φ=BS⊥=BScosθ (3)物理意义 物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。 (4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。 1Wb=1T·1m2=1V·s。 (5) 磁通密度:B=Φ S⊥ 磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通

密度。 2、电磁感应现象 (1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。 (2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。 (3)产生电磁感应现象的条件 ①产生感应电流条件的两种不同表述 a.闭合电路中的一部分导体与磁场发生相对运动 b.穿过闭合电路的磁场发生变化 ②两种表述的比较和统一 a.两种情况产生感应电流的根本原因不同 闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。 穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。 b.两种表述的统一 两种表述可统一为穿过闭合电路的磁通量发生变化。 ③产生电磁感应现象的条件 不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

电磁感应现象的两种情况

4.5电磁感应规律的应用学习目标 1.知道感生电场。 2.知道感生电动势和动生电动势及其区别与联系。 教学重点 感生电动势与动生电动势的概念。 教学难点 对感生电动势与动生电动势实质的理解。 自主学习 1、电磁感应现象中的感生电场与感生电动势 教材图4.5-1,穿过闭合回路的磁场增强,在回路中产生感应电流。是什么力充当非静电力使得自由电荷发生定向运动呢? 什么是感生电动势? 感生电场的方向应如何判断? 提示:回想一下,感应电流的方向如何判断?电流的方向与电荷移动的方向有何关系? 若导体中的自由电荷是负电荷,能否用楞次定律判定?下面通过例题看一下这方面的应用。 例题:现代科学研究中常要用到高速粒子,电子 感应加速器就是利用感生电场是电子加速的设备, 它的基本原理如图 4.5---2所示,上下为电磁铁的两个磁 极,磁极之间有一个环形真空室,电子在真空室 中做圆周运动。电磁线圈电流的大小,方向可以变化, 产生的感应电场是电子加速。上图为侧视图, 下图为真空室的俯视图。如果从上向下看,电子 沿逆时针方向运动,那么当电磁铁线圈电流的方向 与图示方向一致时,电流的大小应该怎样变化才能使 电子加速?如果电流的方向与图示方向相反,为使电子加速,电流又该怎样变化? a被加速的电子带什么电? b电子逆时针运动,等效电流方向如何? c加速电场的方向如何? d使电子加速的电场是什么电场? e电磁铁的磁场怎样变化才能产生顺时针方向的感生电场?为什么? 2、电磁感应现象中的洛伦兹力与动生电动势

什么是动生电动势? 如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。 实例探究 感生电场与感生电动势 【例1】 如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是( ) A .磁场变化时,会在在空间中激发一种电场 B .使电荷定向移动形成电流的力是磁场力 C .使电荷定向移动形成电流的力是电场力 D .以上说法都不对 洛仑兹力与动生电动势 【例2】如图所示,导体AB 在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( ) A .因导体运动而产生的感应电动势称为动生电动势 B .动生电动势的产生与洛仑兹力有关 C .动生电动势的产生与电场力有关 D .动生电动势和感生电动势产生的原因是一样的 综合应用 【例3】如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R ,若要使cd 静止不动,则ab 杆应向_________运动,速度大小为_______,作用于ab 杆上的外力大小为____________ 巩固练习 1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( ) 磁场变强

高中物理-电磁感应知识梳理+练习

高中物理-电磁感应知识梳理+练习 一.电磁感应现象 1、电磁感应:闭合电路的一部分在磁场中做切割磁感线的运动时,导体中产生电流。由电磁感应产生的电流叫做感应电流。 2、磁通量:有“穿过一个闭合电路的磁感线的多少”来形象地理解“穿过这个闭合电路的磁通量”。 3、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生。 二.法拉第电磁感应定律 1、磁通量Φ、磁通量的变化量?Φ和磁通量的变化率 t ??Φ 2、法拉第电磁感应定律:电路中感应电动势E 的大小,跟穿过这一电路的磁通量的变化率 t ??Φ成正比。 t n E ??Φ = n 为线圈匝数 3、从能量角度理解电磁感应现象:其他形式的能转化为电能。 三.交变电流 1、发电机的结构及基本原理:各种发电机由定子和转子组成,当转子转动时,穿过线圈的磁通量发生变化,线圈中产生感应电动势。 2、正弦式电流的波形:正弦函数的规律变化 瞬时值表达式:t I i m ωsin =,t U u m ωsin = 3、正弦式电流的周期T :交流完成一次周期性变化所用的时间。单位:s 频率f :交流在1s 内发生周期性变化的次数。单位:Hz f T 1 = 4、交流电的峰值(m m I U ,):电流或电压的最大值。 有效值(e e I U ,):把交流和直流分别通过相同的电阻,如果在相等的时间内它们产生的热量相等,我们就把这个直流电压、电流的数值称做交流电压、电流的有效值。 对于正弦式交流电有:2 m e U U = ,2 m e I I = 5、电容器对交流的作用:隔直流、通交流。

四.变压器 1、变压器的基本结构:原线圈、副线圈和铁芯。 2、变压器的匝数与电压的关系:原、副线圈中,匝数多的线圈电压高。 3、升压变压器:原线圈匝数小于副线圈匝数;降压变压器:原线圈匝数大于副线圈匝数。 五.高压输电 1、输电过程中的电能损失:输电线上有电流的热效应。 2、高压输电的优点:提高电压来降低输电电流,根据Rt I Q2 ,可以有效地降低输电线上电能的损失。 3、电网的重要作用和电网安全的重要性 六.自感现象涡流 1、自感现象:线圈中电流的变化引起的磁通量变化,也会在自身激发感应电动势。 2、电感器:电感器的性能用自感系数来描述。自感系数:线圈越大、匝数越多、加入铁芯等。电感器的作用:对交流有阻碍作用。 3、涡流:只要空间有变化的磁通量,其中的导体中就会产生感应电流。 应用:电磁炉、金属探测器。 减小涡流危害的方法:电机、变压器的铁芯用电阻率很大的硅钢片叠成。 例题解析:例题:科学家探索自然界的奥秘,要付出艰辛的努力。19世纪,英国科学家法拉第经过10年坚持不懈的努力,发现了电磁感应现象。下图中可用于研究电磁感应现象的实验是() 检测卷一、选择题 1.第一个发现电磁感应现象的科学家是() 图选1-1-23 A D C B

相关文档
相关文档 最新文档