文档库 最新最全的文档下载
当前位置:文档库 › 平面向量的正交分解及坐标表示教案

平面向量的正交分解及坐标表示教案

平面向量的正交分解及坐标表示教案

教学目的:

掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加、减 及数乘运算。

教学重点:

向量的坐标表示及坐标运算。

教学难点:

坐标表示及运算意义的理解。

教学过程:

一、复习提问:

1.复习向量相等的概念 相等向量=,方向相同,大小相等。

2.平面向量的基本定理(基底)a =λ11e +λ22e ,其实质:同一平面内任一向 量都可以表示为两个不共线向量的线性组合。

二、新课:

1.正交分解的物理背景及其概念

图2.3-6(P105),光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行于斜面的F 1力的作用,沿斜面下滑;一是木块产生垂直于斜面的压力F 2,G =F 1+F 2,叫做把重力G 分解。

由平面向量的基本定理,对平面上任意向量a ,均可以分解为不共线的两个向量a =λ11e +λ22e 。

把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。

2.平面向量的坐标表示

取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j , 记作:a =(x, y) 称作向量a 的坐标,这就叫做向量的坐标表示。

i =(1,0),j =(0,1),0=(0,0)

例2 如图,分别用基底i , j 表示向量a 、b 、c 、d ,并求出它们的坐标。解:由图可知: O B C

A x y

12AA AA =+a =2i +3j,

所以,a =(2,3),

同理,有:

b =-2i +3j =(-2,3),

c =-2i -3j =(-2,-3),

d =2i -3j =(2,-3)。

3.平面向量的坐标运算

(1)已知a (x 1, y 1),b (x 2, y 2),求a + b ,a - b 的坐标;

(2)已知a (x, y)和实数λ,求λa 的坐标。 解:a + b =(x 1 i +y 1 j )+( x 2 i +y 2 j )=(x 1+ x 2) i + (y 1+y 2) j 即:a + b =(x 1+ x 2, y 1+y 2),

同理:a - b =(x 1- x 2, y 1-y 2)。

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

平面向量的坐标运算(教案)

平面向量的坐标运算(一)(教案) 教学目标: 知识与技能:(1)理解平面向量的坐标概念;(2)掌握平面向量的坐标运算. 过程与方法:(1)通过对坐标平面内点和向量的类比,培养学生类比推理的能力; (2)通过平面向量坐标表示和坐标运算法则的推导培养学生归纳、猜想、演绎的能力; (3)通过用代数方法处理几何问题,提高学生用数形结合的思想方法解决问题的能力. 情感、态度与价值观:(1)让学生在探索中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养; (2)使学生认识数学运算对于建构数学系统、刻画数学对象的重要性,进而理解数学的本质; (3)让学生体会从特殊到一般,从一般到特殊的认识规律. 教学重点和教学难点: 教学重点:平面向量的坐标运算; 教学难点:平面向量坐标的意义. 教学方法:“引导发现法”、“探究学习”及“合作学习”的模式. 教学手段:利用多媒体动画演示及实物展示平台增加直观性,提高课堂教学效率. 教学过程设计: 一、创设问题情境,引入课题. 同学们,我们知道,向量的概念是从物理中抽象出来的,人们最初对向量的研究是从几何的的角度来进行的,但是随着问题的不断深入,我们发现用图形来研究向量有一些不便之处,那么,有没有一种更简洁的方式可以来表示向量呢? 我国著名数学家华罗庚先生说过:“数无形,少直观;形无数,难入微。”图形关系往往与某些数量关系密切联系在一起,数与形是互相依赖的,所以我们想到了用数来表示向量. 思路一:用一个数能否表示向量?(请学生回答) (不能,因为向量既有大小,又有方向)

思路二:用两个数能否表示向量?(引导学生思考) 在平面直角坐标系内,一个点和一对有序实数对之间有一一对应的关系,那么,向量是否也能找到与之对应的实数呢? 让我们先来探讨这样一个问题: 探究一:如图,为互相垂直的单位向量,请用,i j 表示图中的向量,,,.a b c d 使1122=a e e λλ+ ,其中的1e ,2e 称为平面的一组基底. 强调:基底不唯一,只要不共线,就可作为基底,而一旦基底选定,任一向量在基底方向的分解形式就是唯一的. 二、理解概念,加深认识. 根据平面向量基本定理,我们知道,在选定基底的情况下,所给,,,.a b c d 四 个向量在基底方向的分解形式是唯一的,也就是说,这几个向量用基底、来表示的形式是唯一的,每个向量对应的这对实数对我们就将其称之为向量的坐标. 推广到平面内的任意向量,我们怎样来定义向量的坐标?(引导学生思考,请学生尝试给出定义) 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得 a xi yj =+ …………○ 1 我们把),(y x 叫做向量的(直角)坐标,记作

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

2.3.1平面向量基本定理(教、学案)

2. 3.1 平面向量基本定理 教学目标: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ 2使 a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被 a ,1e ,2e 唯一确定的数量 三、讲解范例:

例1 已知向量1e ,2e 求作向量-2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且=a , =b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用,表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线. 四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量的坐标运算教案

平面向量的坐标运算教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

“平面向量的坐标运算”教学方案 教学目标: 1.知识与技能: 理解平面向量坐标的概念,掌握平面向量坐标的运算。 2.过程与方法: 在对平面向量坐标表示及坐标运算的学习过程中使学生的演绎、归纳、猜想、类比的能力得到发展,利用图形解决问题,也让学生体会到数形结合的思想方法解决问题的能力的重要性。 3.情感、态度与价值观: 通过本节课的学习,使学生感受到数学与实际生产、生活的密切联系,体会客观世界中事物之间普遍联系的辩证唯物主义观点。 教学重点: 平面向量的坐标表示及坐标运算。 教学难点: 平面向量坐标表示的意义。 教学方法: 结合本节课的目标要求、重难点的确定以及学生实际思维水平,教学设计中采取启发引导、类比归纳、合作探究、实践操作等教学方法。 教学手段: 投影仪、多媒体软件 教学过程 1.情境创设 教师借助多媒体动画演示人站在高处抛掷硬物的过程作为本节课的问题情境引入课题,引导学生注意观察硬物下落轨迹,提出问题:结合同学们的生活常识及物理学知识,想一想硬物的速度可做怎样的分解? 学生回答:速度可按竖直和水平两个方向进行分解 设计目的:情境与生活联系,激发学生学习兴趣,同时为下面展开的知识做好铺垫。 2.展开探究 问题一:平面向量的基本定理内容是什么? 教师请一学生回答,同时投影出示其内容。 问题二:向量能不能象平面坐标系中点一样给出坐标表示呢?我们如何表示更加 合理呢? 组织学生谈论,给出各种想法,教师做点评归纳。 投影展示:将一任意向量a置于直角坐标系中,给出向量的起点、终点坐标,并提出问题 问题三:既然向量的起点和终点的坐标是确定的,那么向量也可以用一对实数来表示吗?

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

高中数学《平面向量基本定理》导学案

2.3.1平面向量基本定理 1.平面向量基本定理 2.向量的夹角

1.判一判(正确的打“√”,错误的打“×”) (1)平面向量的一组基底e 1,e 2一定都是非零向量.( ) (2)在平面向量基本定理中,若a =0,则λ1=λ2=0.( ) (3)在平面向量基本定理中,若a ∥e 1,则λ2=0;若a ∥e 2,则λ1 =0.( ) (4)表示同一平面内所有向量的基底是唯一的.( ) 答案 (1)√ (2)√ (3)√ (4)× 2.做一做 (1)设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案 B 解析 ∵3e 1+3e 2=3(e 1+e 2), ∴两个向量共线,不能作为基底. (2)(教材改编P 94向量夹角的定义)在锐角三角形ABC 中,关于向量夹角的说法正确的是( ) A.AB →与BC → 的夹角是锐角 B.AC →与AB → 的夹角是锐角 C.AC →与BC → 的夹角是钝角 D.AC →与CB → 的夹角是锐角 答案 B 解析 AB →与BC →的夹角是钝角,AC →与AB →的夹角是锐角,AC →与BC →

的夹角是锐角,AC →与CB → 的夹角是钝角.故选B. (3)若向量a ,b 的夹角为30°,则向量-a ,-b 的夹角为( ) A .60° B .30° C .120° D .150° 答案 B 解析 将向量移至共同起点,则由对顶角相等可得向量-a ,-b 的夹角也是30°. (4)在等腰直角三角形ABC 中,∠A =90°,则向量AB →,BC → 的夹角为________. 答案 135° 解析 将向量移至共同起点,由向量的夹角的定义知AB →,BC → 夹角为135°. 探究1 正确理解基底的概念 例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB → ,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④ D .③④ 解析 ①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA → 与DC →不共线;④OD →=-OB →,则OD →与OB → 共线. 由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.

2.4平面向量的坐标----教案

2-4平面向量的坐标 一、教学目标: 1.知识与技能 ⑴平面向量的坐标表示,平面向量的坐标运算. ⑵理解平面向量的坐标概念,掌握已知平面向量的和、差、实数与向量的积的坐标表示方法. 2.过程与方法 通过探索平面向量共线的坐标形式,灵活运用公式解决一些问题。 3.情感态度价值观 通过本节的学习,了解相关数学知识的来龙去脉,认识其作用和价值,培养学生的探索研究能力。 二.教学重、难点 重点: 平面向量的坐标运算. 难点: 向量的坐标表示的理解及运算的准确性. 三.学法与教学用具 自主性学习+探究式学习法 教学用具:电脑、投影机. 四.教学设想 【复习引入】 1.平面向量的基本定理:1212a e e λλ=+ ; 2.在平面直角坐标系中,每一个点都可用一对实数(,)x y 表示,那么,每一个向量可否也用一对实数来表示? 【新课讲解】 【知识点1】向量的坐标表示的定义 分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,对于任一向量a ,a xi y j =+ ,(,xy R ∈),实数对(,)x y 叫向量a 的坐标, 记作(,)a x y = . 其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标。 说明:⑴对于a ,有且仅有一对实数(,)x y 与之对应; ⑵(1,0)i = ,(0,1)j = ,0(0,0)= ; ⑶只有从原点引出的向量OA 的坐标(,)x y 才是点A 的坐标;不是从原点引出的向量C B 的坐标(,)x y ,就不是终点C 的坐标 ⑷要把点的坐标与向量的坐标区别开来,相等的向量的坐标是相同的,但起点、终点的坐标却可以不同,若()3,5A ,()6,8B ,则()3,3AB = ;若()C 5,3-,()D 2,6-,则()3,3CD = 。这里AB CD = ,显然,,,A B C D 四点坐标各不相同。 ⑸向量的坐标表示实质上是向量的代数表示,引入向量表示后,可使向量运算代数化,将数形紧密结合起来,从而使许多几何问题的证明转化为数量运算。 【知识点2】向量的坐标运算 y x O (,)A x y j i a

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

平面向量基本定理导学案

§2.3.1平面向量基本定理 高一( )班 姓名: 上课时间: 【目标与导入】 1、学习平面向量基本定理及其应用; 2、学会在具体问题中适当选取基底,使其他向量能够用基底来表达。 【预习与检测】 1、点C 在线段AB 上,且35 AC AB --→ --→ = ,AC BC λ--→--→=,则λ等于( ) A 、23 B 、32 C 、-23 D 、-32 2、设两非零向量12,e e →→不共线,且12k e e →→+与12e k e →→ +共线,则k 的值为( )。 .1.1.1.0A B C D -± 3、已知向量12,e e → → ,作出向量1223OA e e → → =+与 122(3)OB e e → →=+-。 两个向量相加与物理学中的两个力合成相似,如果与力的分解类比,上述所作的OA 分解成两个向量:在1e → 方向上的____与在2e → 方向上的______,OB 则分解成_____与_____。 4、阅读课本P93—94,了解平面向量基本定理:如果 12 ,e e →→ 是同一平面内的两个_______ 向量,那么对于这一平面内的______向量a → ,有且只有一对实数12,λλ, 使_____________, 其中不共线的向量 12 ,e e → →叫做表示这一平面内所有向量的一组__________。 5、已知两个非零向量,a b →→,作,O A a O B b →→→→==,则()0180A O B θθ∠=?≤≤?叫做向量a → 与 b → 的__________,若0θ=?,则a →与b →_______;若180θ=?,则a →与b → __________;若 90θ=?,则a → 与b → _______,记作______。 【精讲与点拨】 如图所示,在平等四边形ABCD 中,AH=HD ,MC= 1 4 BC ,设,AB a AD b →→→→==,以,a b →→ 为基底表示,,AM MH MD →→ 。 C 2 e → 1 e → A B

平面向量基本定理及其坐标表示教案

考情播报 1.平面向量基本定理的应用、坐标表示下向量的线性运算及向量共线条件的应用是考查重点. 2.题型以客观题为主,与三角、解析几何等知识交汇则以解答题为主. 1.平面向量基本定理 (1)条件:e 1,e 2是同一平面内的两个不共线向量. 结论:对于这一平面内任意向量a ,有且只有一对实数λ1、λ2,使a = λ1e 1+λ2e 2. (2)关于平面向量基本定理的几点说明: ①e 1、e 2为不共线向量,把它们叫做这一平面内所有向量的一组基底. ②平面向量基本定理实际上是向量的分解定理,由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;同一平面内任一向量都可以表示为两个不共线向量的线性组合 ③.基底不唯一,当基底给定时,分解形式唯一:λ1、λ 2 是被a 、e 1、e 2唯一确定的数量. 2.平面向量的正交分解与坐标表示 (1)平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)平面向量的坐标表示 在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的 一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y,使得a =x i +y j ,这样,平面内的任一向量a 都可由x 、y 唯一确定,因此把(x,y)叫做向量a 的坐标,记作a=(x,y),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标. 3.平面向量的坐标运算 (1)若a =(x 1,y 1),b =(x 2,y 2),则a ±b =(x 1±x 2,y 1±y 2); (2)若A(x 1,y 1),B(x 2,y 2),则AB =(x 2-x 1,y 2-y 1 ); (3)若a =(x,y),则λa =(λx,λy); (4)若a =(x 1,y 1),b =(x 2,y 2 ),则a =b ????==;2121y y ,x x (5)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ?x 1y 2-x 2y 1=0. 质疑探究:相等向量的坐标一定相同吗?相等向量起点和终点坐标可以不同吗?

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

高中数学必修4优质学案(第三辑)平面向量基本定理 Word版含解析

§平面向量的基本定理及坐标表示 .平面向量基本定理 【课时目标】 .理解并掌握平面向量基本定理. .掌握向量之间的夹角与垂直. 【知识梳理】 .平面向量基本定理 ()定理:如果,是同一平面内的两个向量,那么对于这一平面内的向量,实数λ,λ,使=. ()基底:把的向量,叫做表示这一平面内向量的一组基底. . 两向量的夹角与垂直 ()夹角:已知两个和,作=,=,则=θ (°≤θ≤°),叫做向量与的夹角. ①范围:向量与的夹角的范围是. ②当θ=°时,与. ③当θ=°时,与. ()垂直:如果与的夹角是,则称与垂直,记作. 【作业反馈】 一、选择题 .若,是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) .-,-.+,+ .--.+,- .等边△中,与的夹角是( ) .°.°.°.° .下面三种说法中,正确的是( ) ①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;② 一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③ 零向量不可作为基底中的向量. .①②.②③.①③.①②③ .若=,=,=λ(λ≠-),则等于( ) .+λ.λ+(-λ) .λ++ .如果、是平面α内两个不共线的向量,那么在下列各命题中不正确的有( ) ①λ+μ(λ、μ∈)可以表示平面α内的所有向量; ②对于平面α中的任一向量,使=λ+μ的实数λ、μ有无数多对; ③若向量λ+μ与λ+μ共线,则有且只有一个实数λ,使λ+μ=λ(λ+μ); ④若实数λ、μ使λ+μ=,则λ=μ=. .①②.②③.③④.② .如图,在△中,是边上的中线,是上的一点,且=,连结并延长交于,则 等于( )

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

平面向量基本定理(教案)

《2.3.1 平面向量基本定理》教案 【教材】人教版数学必修4(A版)第105-106页【课时安排】1个课时 【教学对象】高一学生【授课教师】华南师范大学数学科学学院陈晓妹 【教材分析】 1.向量在数学中的地位 向量是近代数学中重要的概念,它不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具,因此具有很高的教育价值。 2.本节在教学中的地位 平面向量基本定理是向量进行坐标表示,并由此进一步将向量运算转化为坐标运算的重要基础;该“定理”以二维向量空间为依托,可以推广到n维向量空间,是今后引出空间向量用三维坐标表示的基础。因此本节知识在本章中起承上启下的作用。 3.本节在教学思维方面的培养价值 平面向量基本定理蕴含了转化的数学思想。它是用基本要素用基本要素(基底、元)表达事物(向量空间、具有某种性质的对象的集合),并把对事物的研究转化为对事物基本要素研究的典型范例,这是人们认识事物的一种重要方法。 【目标分析】 知识与技能 1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表 示为一组基底的线性组合; 2.了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。过程与方法 1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上 的向量的一维性”,培养“维数”的基本观念; 2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定 理所蕴含的转化思想。 情感态度价值观 1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程; 2.与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。 【学情分析】 有利因素 1.学生在前面已经掌握了向量的基本概念和基本运算(特别是向量加法平行四边形法则和 向量共线的充要条件)都为学生学习本节内容提供了知识准备; 2.学生在物理学科的学习中已经清楚了力的合成和力的分解,同时作图习惯已经养成,这 为我们学习向量分解提供了认知准备。 不利因素

相关文档
相关文档 最新文档