文档库 最新最全的文档下载
当前位置:文档库 › 模糊控制系统设计及实现

模糊控制系统设计及实现

模糊控制系统设计及实现
模糊控制系统设计及实现

物理与电子工程学院

《人工智能》

课程设计报告

课题名称模糊控制系统的设计与实现专业自动化

班级 2班

学生姓名梁检满

学号

指导教师崔明月

成绩

2014年6月18日

模糊控制系统的设计与实现

摘要

自然界与人类社会有关系的系统绝大部分是模糊系统,这类系统的数学模型不能由经典的物理定律和数学描述来建立。本文在模糊控制理论基础上设计模糊温控系统,利用专家经验建立模糊系统控制规则库,由规则库得到相应的控制决策,并分析系统隶属度函数,利用matlab与simulink结合进行仿真。仿真结果表明,该系统的各项性能指标良好,具有一定的自适应性。模糊控制算法不但简单实用,而且响应速度快,超调量小,控制效果良好。

关键词:模糊逻辑;隶属度函数;模糊控制; 控制算法

1引言

在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。随着社会及科技的发展,现代工程实践对系统的控制要求也在不断地提高,但对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,随着人类生产、生活对控制的精细需求,传统的控制理论已渐渐不能满足工艺要求。虽然于是工程师利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了,因此便尝试着以模糊数学来处理这些控制问题。

“模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。模糊并非是将这个世界变得模糊,而是让世界进入一个更现实的层次。“模糊”比“清晰”所拥有的信息量更大,内涵更丰富,更符合客观世界。“模糊控制理论”是由美国学者加利福尼亚大学著名教授L. A. Zadeh于1965年首先提出,至今已有50多年的历史。模糊控制是用模糊数学的知识模仿人脑的思维方式,对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制,它是用语言规则描述知识和经验的方法,结合先进的计算机技术,通过模糊推理进行判决的一种高级控制策略。它含有人工智能所包括的推理、学习和联想三大要素;它不是采用纯数学建模的方法,而是将相关专家的知识和思维、学习与推理、联想和决策过程,有计算机来实现辨识和建模并进行控制。因此,它无疑是属于智能控制范畴,而且发展至今已发展成为人工智能领域中的一个重要分支。其理论发展之迅速,应用领域之广泛,控制效果之显著,实为世人关注。

在工业生产过程中,温度控制是重要环节,控制精度直接影响系统的运行和产品质量。在传统的温度控制方法中,一般采取双向可控硅装置,并结合简单控制算法(如PID算法),使温度控制

实现自动调节。但由于温度控制具有升温单向性、大惯性、大滞后等特点,很难用数学方法建立精确的模型[4]。因此用传统的控制理论和方法很难达到好的控制效果。鉴于此,本文拟以模糊控制为基础的温度智能控制系统,采用人工智能中的模糊控制技术,用模糊控制器代替传统的PID控制器,以闭环控制方式实现对温度的自动控制。

2. 模糊控制

2.1模糊控制的诞生

自20世纪60年代以来,传统的自动控制,包括经典理论和现代控制理论已经在工业生产过程、军事科学以及航空航天等许多方面取得了成功的应用,但它们有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程、传递函数或状态方程)的基础上。然而在实际工业生产中,由于一系列原因(例如被控对象和过程的非线性、时变性、多参数间的强烈耦合、较大的随机干扰、过程机理错综复杂以及现场测量仪条件的不足等),建立精确的数学模型特别困难,甚至是不可能的,而通常只能测得其参数间模糊的关系估计。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。

1965年美国的伯克利加州大学教授扎德发表了著名的论文《模糊集合论》,提出了模糊性问题,给出了其定量的描述方法,从而模糊数学诞生了。模糊数学不是使数学变得模模糊糊,而是让数学进入模糊现象这个客观的世界,用数学的方法去描述糊涂现象,揭示模糊现象的本质和规律,模糊数学在经典数学和充满模糊的现实世界之间架起了一座桥梁。

美国著名的学者教授L. A. Zadeh于1965年首先提出模糊控制理论,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。1974年,英国伦敦大学教授E. H. Mamdani研制成功第一个模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功,这一开拓性的工作标志着模糊控制论的诞生,也充分展示了模糊控制技术的良好应用前景。

2.2模糊控制的发展

1974年E. H. Mamdani成功对发动机组模糊控制之后,模糊控制如雨后春笋般迅速发展起来,1980年,在丹麦对水泥生成炉进行模糊控制获得成功。最重视模糊控制应用的当属日本,在成功应用模糊控制于仙台地铁以及家用电器之后,1989年4月,在通产省的支持下,成立“国际模糊工程研究所”,作为政府、工业界与高等学校协同合作科研的机构。从1989年开始,投资50亿日元,进行模糊控制产品系列开发,参加的公司企业有48家。1983年,美国加州决策产业公司推出模糊处理的决策支持系统,并在饭店管理和VAX超级小型机管理方面取得成功。1985年开始研究自动导航的模糊控制器,并用飞行模糊控制器做了实验,取得了好的性能。在宇航领域,NASA的约翰逊宇航中心在以控制无人飞行器对接的原型系统中利用了模糊控制器。经过仿真试验表明,利用模糊控制器比利用库里斯普控制规则控制器的性能高出20%以上。

目前,模糊控制技术日趋成熟和完善。各种模糊产品充满了日本、西欧和美国市场,如模糊洗衣机、模糊吸尘器和模糊摄像机等等,模糊技术几乎变得无所不能,各国都争先开发模糊新技术和新产品。多年来一直未解决的稳定性分析问题正在逐步解决。模糊芯片也已研制成功且功能不断加强,成本不断下降。直接采用模糊芯片开发产品己成为趋势。模糊开发软件包也充满市场。模糊控制技术除了在硬件、软件上继续发展外,将在自适应模糊控制、混合模糊控制以及神经模糊控制上取得较大发展。随着其它学科新理论、新技术的建立和发展,模糊理论的应用更加广泛。模糊理论结合其它新技术和人工神经网络和遗传基因形成交叉学科神经网络模糊技术(Neuron Fuzzy Technique)和遗传基因模糊技术(Genetic Fuzzy Technique),用于解决单一技术不能解决的问题。模糊理论在其它学科技术的推动下,正朝着更加广泛的方向发展。

2.3模糊控制的优势

模糊控制能在世界各个国家得到重视发展,在各个科学领域得到长足快速的发展,是因为它有优越于经典控制和现代控制理论的突出特点:

(1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。

(2)由工业过程的定性认识出发,容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

(3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。

(4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。

(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。

在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。然而,对于模糊控制来说,这些控制问题,便不成为问题。

3. 模糊控制基本理论

3.1模糊控制的基本结构

模糊控制是利用模糊数学的基本思想和理论的控制方法发展起来的。传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。

一般的模糊控制系统包含以下五个主要部分:

(1)定义变量

也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差e与输出误差之变化率ec,而控制变量则为下一个状态之输入u。其中e、ec、u统称为模糊变量。

(2)模糊化(Fuzzify)

将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(Linguistic value)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzy sub sets)。

(3)知识库

包括数据库(database)与规则库(rule base)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

(4)逻辑判断

模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。

(5)解模糊化(defuzzify)

将推论所得到的模糊值转换为明确的控制讯号,作为系统的输入值。

3.2模糊数学的基础

模糊数学由美国控制论专家L. A. 扎德(L. A. Zadeh,1921)教授所创立。他于1965年发表了题为《模糊集合论》(《Fuzzy Sets》)的论文,从而宣告模糊数学的诞生。模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支,它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具[11-13]。模糊数学的研究内容主要有以下三个方面:

(1)研究模糊数学的理论,以及它和精确数学、随机数学的关系

查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型,并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就能构造出研究现实世界中的大量模糊的数学基础,能够对复杂的模糊系统进行定量的描述和处理的数学方法。

在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是1,40岁的人肯定不算老人,它的从属程度为0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。

(2)研究模糊语言学和模糊逻辑

人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。

如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。

人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑的基础上,研究模糊逻辑。

(3)研究模糊数学的应用

模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,用模糊集合的理论找到解决模糊性对象加以确切化的方法,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

3.3模糊控制系统的稳定性分析

稳定性分析是模糊控制器的一个基本问题。Tong于1978年就提出闭环模糊系统描述模型,并在模糊关系基础上提出了稳定性概念。基于Lyapunov稳定性分析方法,Kiszka等于1985年定义了模糊系统能量函数,并讨论了模糊系统稳定性。这些研究一般都是对模糊控制器提出了一定的简化模型,其结果很难适用于一般的模糊控制系统[14-15]。近年来,随着TS模糊模型的研究,一种基于TS模型的模糊系统的稳定性分析取得了一定的发展。关于TS模糊模型的稳定性分析给模糊系统的稳定性分析提出了新的思路。针对于离散系统,提出一种模糊控制器,采用各局部控制

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

中央空调系统的模糊控制.

天津大学网络教育学院 毕业设计(论文)任务书 题目:中央空调系统的模糊控制 完成期限: 2012年 12月26 日至 2013年5月30 日 学习中心福建共赢年级2011级 专业电气工程及其自动化指导教师李长滨 姓名刘丹学号111211442009 接受任务日期 2013.1.7 批准日期 2013.1.10

一、原始依据(资料) [1] 李志浩,近两年来空调技术新发展[J]. 暖通空调新技术. 1999, 1(1): 22-30 [2] 付少波,中央空调温度系统的研究. 硕士论文, 河北工业大学, 2005 [3] 王盛卫,变风量空调系统的动态模拟以及在系统控制中的应用[J]. 现代空 调, 1999, 1(1): 88-107 [4] 王建明、李训铭,变风量系统空调房间建模与特征参数计算[J]. 计算机仿 真, 2002, 18(4): 69-72 [5] 孟华、龙惟定、王盛卫等,适于系统仿真的表冷器模型及其实验验证[J]. 暖通空调, 2004, 21(8): 34 [6] 郭永吉,中央空调温度控制系统研究. 硕士论文, 兰州理工大学, 2008 [7] 刘金琨,先进 PID 控制及其 MATLAB 仿真[M]. 北京: 电子工业出版社, 2003, 1-5 [8] 何波,变频空调机的模糊控制器设计[J]. 黑龙江自动化技术与运用, 1999, 18(1): 31-34 [9] 金晓明,自适应模糊控制的新进展[J]. 信息与控制, 1996, 25(4): 217-223 [10] 吴爱国、杜春燕、宋晓强,参数自调整控制器在中央空调温度控制系统中 的应用[J]. 中国工程科学. 2004, 6(11):84-87 二、设计内容和要求:(说明书、专题、绘图、试验结果等) 1、围绕选题搜集、阅读有关中英文文献资料。 2、撰写毕业论文详细提纲。 3、撰写论文,反复修改。写作过程中要继续搜集、补充资料,写作要层次分明, 条理清楚,观点明确,论证有理有据,具有说服能力。文章的文字要简洁、通顺、流畅、无错别字。 4、按要求进行论文排版。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

在线推理法模糊控制器实验报告

在线推理式模糊逻辑控制器设计实验报告 学院:电力学院 专业:自动化 学号: 姓名: 时间:2013年11月16日

一、实验目的 利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的在线推理方法的基本原理及实现过程。 二、实验要求 以matlab模糊工具箱中提供的一个水位模糊控制系统仿真的实例,定义语言变量的语言值,设置隶属度函数,根据提供的规则建立模糊逻辑控制器。最后启动仿真,观察水位变化曲线。 三、实验步骤 叙述在线推理模糊控制的仿真的主要步骤。 1)在matlab命令窗口输入:sltank,打开水位控制系统的simulink仿真模型图,如图; 2)在matlab的命令窗口中,输入指令:fuzzy,便打开了模糊推理系统编辑器(FIS Editor),如图;

3)利用FIS Editor编辑器的Edit/Add variable/input菜单,添加一条输入语言变量,并将两个输入语言和一个输出语言变量的名称分别定义为:level;rate;valve。其中,level代表水位(三个语言值:低,高,正好),rate代表变化率(三个语言值:正,不变,负),valve代表阀门(五个语言变量:不变,迅速打开,迅速关闭,缓慢打开,缓慢关闭); 4)①利用FIS Editor编辑器的Edit/membership function菜单,打开隶属度函数编辑器,如下图,将输入语言变量level的取值范围(range)和显示范围(display range)设置为[-1,1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分别设置为:high,[0.3 -1];okay [0.3 0];low [0.3 1]。其中high 、okay、low分别代表水位高、正好、低; ②将输入语言变量rate的取值范围(range)和显示范围(display range) 设置为[-0.1,0.1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而 所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分

中央空调模糊控制系统几点说明

关于中央空调模糊控制系统几点说明 1、中央空调模糊控制系统的要点 针对中央空调系统定流量控制方式不能跟随负荷变化而调节系统运行参数和能量供应,造成系统效率降低、能源浪费大、机械磨损严重等问题,提出了一套完整的科学的解决方案,并以当今先进的模糊控制技术、系统集成技术和变频调速技术相结合,研制开发出了中央空调系统的最新节能产品——BKS系列中央空调节能控制系统和中央空调管理专家系统。其技术特点: (1)实现空调系统负荷的跟随性 BKS系列中央空调节能控制系统突破了传统中央空调冷媒系统的运行方式,通过对中央空调能源运行系统的动态监测和闭环控制,将空调主机的定流量运行改为变流量运行,实现空调主机冷媒流量跟随末端负荷需求而同步变化,在空调系统的任何负荷条件下,都能既确保中央空调系统的舒适性,又实现最大的节能。 (2)保障空调主机始终保持高的热转换效率 众所周知,随着中央空调系统负荷的变化,必将导致整个空调系统运行参数偏离空调主机的最佳设计参数,导致主机热转换效率降低,这一直是传统中央空调运行方式无法解决的一大难题。 BKS系列中央空调节能控制系统的一个基本思想就是按照中央空调主机所要求的最佳运行参数去控制中央空调系统的运行,根据系统的运行工况及制冷工质参数的变化,通过模糊控制器动态调整空调系统运行参数,确保空调主机始终处于优化的最佳工作点上,使主机始终保持具有高的热转换效率,有效地解决了传统中央空调系统在低负荷状态下热转换效率下降的难题,提高了系统的能源利用率。 (3)实现中央空调全系统综合性能优化和协调运行 中央空调系统是一个较复杂的系统工程,要实现中央空调系统的最佳运行和节能,从局部去解决问题(如采用通用变频器PID控制)是不可能办到的,必须针对空调系统的各个环节(包括主机、冷冻水系统、冷却水系统、冷却风系统等)

温度模糊控制实验

温度模糊控制实验(选学) 一、实验目的 1.认识Labview 虚拟仪器在测控电路的应用; 2.通过实验,改变P 的参数,观察对整个温度测控系统的影响; 3.进一步认识固态继电器和温度变送器,了解其工作原理; 4.了解什么是模糊控制理论。 二、预习要点 1.了解模糊控制理论的由来及应用; 2.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度还是通过固态继电器的导通关断来实现加热过程的,控制周期即是一个 加热和冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值 的时固态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度 预设值时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通 时间是1/2T)维持温度(假设导通时间是1/4T)。 本实验暂时用的是模糊控制原理中的的比例控制钟摆无限接近的控制理论, 所以温度预设值不能超过(最大温度+实验开始前温度)/2,例如实验开始前温度为25 度,最大为100 度,那么预设最大为62.5 度,当然这样可能几天温度才能被控制好,所以建议温度不超过实验开始温度5 度,同时我们在将来的升级中 会用更好的模糊理论代替现有的较差的控制理论,这里还要指出好的模糊控制理 论在一定程度上比好的PID 控制还要稳定,做的好的模糊控制是经验与理论的最 完美结合。 四、实验项目 用模糊PID 控制水箱温度。 五、实验仪器 ZCK-II 型智能化测控系统。

六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常; 2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2(图见第三章)中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 12 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,也可以单 击冷却中左边的开关按钮进入加热程序,观察温度上升曲线及电流表和电压表变 化,确认传感器正常工作后点击程序结束,等待返回主界面图标出现即可返回温 度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。本 程序界面基本和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温 度计测量加热箱内水温,并用传感器标定控制图标完成精确标定。标定完成后加 热水箱到30 摄氏左右时程序结束,等待返回主界面图标出现即可返回温度控制主界面进入下一步实验; 12.在温度系统控制主界面中,单击模糊PID 系统图标,进入模糊PID 温度控制系统程序。点击控制参数图标,进入控制参数设定界面,按照参数表4 中的小 组1 给定的预设参数填写。确定返回后点击采集参数图标按照参数表4 中的小组

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

中央空调温度模糊控制器的设计

目录 1、摘要 2、模糊控制器理论和基本结构 2.1模糊化 2.2知识库 2.3模糊推理机 2.4解模糊 3、中央空调系统控制方法 3.1控制目标和被控对象建模 3.2系统控制方案的设计 4、中央空调模糊控制器的设计 5、系统硬件设计 5.1单片机系统设计 5.2直流电机控制电路 6、系统软件设计 6.1PC软件设计 6.2控制规则自调整模糊控制器的设计 6.3PC机与单片机串口通信设计 6.4抗干扰设计 6.5误差分析 7、仿真实验

1摘要 在现代化的楼房大厦中,大多数采用了中央空调统一供热、制冷的方法。在每一个房间内都安装了热交换器和循环风机,通过设定风机的转速来改变换热量的大小,调节房间的温度。一般的控制器可以设定“高/中/低/关”四种模式。但这种控制方法的缺点是房间温度需要手动调节,各种环境因素的变化常常会使人们感到不适。 由于被控对象具有较大的惯性和迟延,受各种因素变化影响,因而对象的传递函数具有非线性和时变特性;对于各个空调控制器,由于房间情况和安装情况不同导致对象特性不同,采用常规PID控制难以取得较好的控制效果。而模糊控制是基于模糊规则的控制,可以引入设计者的经验,对非线性对象、大惯性大迟延对象以及数学模型不太清楚的对象都可以取得较好的控制效果,具有较好的鲁棒性。 法国ST公司生产的ST62系列单片机,具有优良的噪声免疫能力,可以直接与电力线连接,能为一般民用 电器的设计提供一种可靠性高、成本低的解决方法。基于ST62系列单片机,本文提出了具有实用价值的房间温度模糊控制器的设计方案。 2模糊控制器理论及基本结构 本节将介绍模糊控制(fuzzy control)的基本原理、结构分析、稳定性理论和设计方法。模糊控制器的基本结构如图1所示。

模糊控制器的设计知识讲解

模糊控制器的设计 一、 PID 控制器的设计 我们选定的被控对象的开环传递函数为3 27 ()(1)(3)G s s s = ++,采用经典 的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。 首先,我们搭建simulink 模型,如图1。 图1simulink 仿真模型 由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。调节时间较短,同时超调量很小。响应曲线如图2所示。 图2 PID 控制响应曲线

将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。可以看出,PID 控制器的调节作用已经相当好。 二、 模糊控制器的设计 1、模糊控制器的结构为: 图3 模糊控制器的结构 2、控制参数模糊化 控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。首先对他们进行模糊化处理。 量化因子的计算max min ** max min x x k x x -= - 比例因子的计算**max min max min u u k u u -=- 其中,*max x ,* min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。*max u ,* min u 为控制输出信号实际变化范围的最大最小 值,max u ,min u 输出信号论域的最大最小值。 相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。分别表示负大、负中、负小、零、正小、正中、正大。 3、确定各模糊变量的隶属函数类型 语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。

离散化 Pid 模糊控制算法

论文标题: 设计PID ,离散化,模糊化控制器 PID 控制器设计 一 PID 控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )()()()(0 ++=? 相应的传递函数为: ???? ??++=S S s K K K d i p c 1)(D S S S K K K d i p 12++? = 二 数字控制器的连续化设计步骤 假想的连续控制系统的框图

1 设计假想的连续控制器D(s) 由于人们对连续系统的设计方法比较熟悉,对由上图的假想连续控制系统进行设计,如利用连续系统的频率的特性法,根轨迹法等设计出假想的连续控制器D(S)。 2 选择采样周期T 香农采样定理给出了从采样信号到恢复连续信号的最低采样频率。在计算机控制系统中,完成信号恢复功能一般有零阶保持器H(s)来实现。零阶保持器的传递函数为 3将D(S)离散化为D(Z) 将连续控制器D(S)离散化为数字控制器D(Z)的方法很多,如双线性变换法,后向差分法,前向差分法,冲击响应不变法,零极点匹配法,零阶保持法。 双线性变换法 然后D(S)就可以转化离散的D(Z) 三Matlab仿真实验 直接试探法求PID 根据这个框图,求出该传递函数的P=0.35 I=0 D=0

根据 ???? ??++=S S s K K K d i p c 1)(D D (Z )=0.35 T=0.01 数字连续话PID 控制器设计MA TLAB 仿真框图 实验结果 没有经过调节的结果为

LabVIEW的模糊控制系统设计(DOC 8页)

LabVIEW的模糊控制系统设计(DOC 8页)

基于LabVIEW的模糊控制系统设计 摘要 本文以LabVIEW为开发环境进行设计模糊控制器,将设计出的模糊控制器应用到温度控制系统中,实现了在有干扰作用的情况下对烤箱温度的控制,取得较好的控制效果。 关键词:虚拟仪器模糊控制热电偶Abstract This paper is design issue is the use of LabVIEW fuzzy control, through the design of fuzzy control procedures to control the plant (oven) temperature. Finally, it comes ture control the temperature of oven even if there has disturb. Keywords: 1引言 虚拟仪器(LabVIEW),就是在以通用计算机为核心的硬件平台上,由用户设计定义虚拟面板,测控功能由软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统的控制面板,以多种形式表达输出结果,利用计算机强大的软件功能实现数据的运算、分析、处理和保存,利用I/O接口设备完成信号采集、测量与控制。 模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。因为引入了人类的逻辑思维方式,使得模糊控制器具有一定的自适应控制能力,有很强的鲁棒性和稳定性,因而特别适用于没有精确数学模型的实际系统。 本文将模糊控制的基本思想应用到基于虚拟仪器的温度控制系统中。通过热电偶测量烤箱实际温度,与给定值比较。当测量温度与设定温度之间存在较大的偏差(e≥6℃)时,定时器产生占空比较大的脉冲序列,全力加热。当系统温度与设定温度之间偏差小于6摄氏度,采用模糊控制算法。模糊控制器根据误差和误差变化率,经过模糊推理输出脉冲序列的占空比的大小,经过固态继电器控制烤箱电源得通断,从而实现对烤箱温度的控制。 2系统组成

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

C实现模糊控制算法

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在 vc6.0,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include #include"math.h" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=0.3,a1=0.55,a2=0.74,a3=0.89 */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

中央空调水泵变频节能与模糊控制的应用

一.前言 (2) 二,模糊控制原理概述 (3) 三.调节水泵转速的节电原理 (4) 四.中央空调系统的设计 (5) 五、采用PID闭环控制的中央空调泵节能系统存在的缺陷 (6) 六.采用模糊智能闭环控制的中央空调泵节能系统特点 (7) 七.中央空调变频节能方案 (8) 八.系统硬件设计框图 (10) 九.软件设计流程图 (11) 十、节能改造后对设备的影响 (12) 十一、变频器谐波的影响及抑制谐波的措施 (12) 十二.实际节能效果测试及经济效益分析 (13) 十三.结论 (15)

中央空调水泵变频节能与模糊控制的应用 【摘要】:中央空调冷水机组的最大负载能力是按最大热负荷来设计的,热负荷是随环境温度变化而变化的量,而水泵所耗的功率基本不变,这样,在空调运行的大多数时间里,存在着较大的能量浪费,用PLC可方便的实现模拟信号的数字化处理,利用编程软件的形式实现模糊控制。从而达到良好的节能效。 关键词:中央空调、水泵电机、变频节能、模糊控制。 Abstract:The maximum load capability of the central air conditioner water—coollng ssembling setis designed based on the maximum thermal load,and maximum thermal load aries with the environment Temperature and water—pump power consumptlOn keep steady hus.Use PLC can conveniently realize simulation signal of digital signals disposal Using programme software of form implement fuzzy—control and achieve better energy—saving effect vords:Central Air Conditioner,Water Pump Motor,Frequency energy—saving,fuzzy— contr01 一.前言 中央空调系统运行时间长,耗电量大,且有逐年上升趋势,在深圳年耗电量已达500亿度,随着城市建设的进一步扩大,空调能耗不

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

模糊实验报告洪帅

控制理论与控制工程 《智能控制基础》 课程实验报告 专业:控制理论和控制工程 班级:双控研2016 姓名:洪帅 任课教师:马兆敏 2016年12 月4 日

第一部分:模糊控制 实验一模糊控制的理论基础实验 实验目的: 1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘 2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响 3 模糊矩阵合成仿真程序的学习 4 模糊推理仿真程序 实验内容 (1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。 1隶属函数编程 试验结果如图1-1 图1-1隶属度函数曲线 (2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。 仿真曲线见图1-2,

图1-2隶属度函数曲线 2 典型隶属函数仿真程序 学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。 M=1 M=3 M=3 M=4

M=5 M=6 图1-3 M在1、2、3、4、5、6时的图形 2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下, (1)完成思考题P81 2-5,并对比手算结果。完成思考题P81 2-4,并对比手算结果。 (2)2-5: (1)Matlab结果如下 ① ② ③ P81 2-5手算结果:

P=? ? ? ? ? ? 7.0 2.0 9.0 6.0 Q=? ? ? ? ? ? 4.0 1.0 7.0 5.0 R=? ? ? ? ? ? 7.0 7.0 3.0 2.0 S=? ? ? ? ? ? 5.0 6.0 2.0 1.0 (P Q) R=? ? ? ? ? ? 4.0 4.0 6.0 6.0 (PUQ) S=? ? ? ? ? ? 5.0 6.0 5.0 6.0 (P S)U(Q S)=? ? ? ? ? ? 5.0 6.0 5.0 6.0 总结:手算结果和MATLAB运行结果一致。 (2) (2)思考题P81 2-4 Matlab运行结果如下: P81 2-4题手算结果如下: () 30 20 10 4.0 1 10 4.0 20 30 + + + + - + - + - = e ZE μ () 30 20 3.0 10 1 3.0 10 20 30 + + + + - + - + - = e PS μ ()() 30 20 10 4.0 3.0 10 20 30 + + + + - + - + - = ?e e PS ZE μ μ ()() 30 20 3.0 10 1 1 10 4.0 20 30 + + + + - + - + - = ?e e PS ZE μ μ 总结:手算结果和MATLAB运行结果一致。 4 模糊推理仿真程序:学习P47 例2-16,仿真程序如下。(1)完成思考题2-9,并对比手算结果。 Matlab结果如下

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

关于模糊控制的论文

模糊控制器在 PID 温度控制中的应用
2010-9-27 16:39:00 来源:作者:
摘 要:本文对中央空调系统的模糊控制器的设计做了比较详尽的论述,并结合 MATLAB 仿真软件对控制系统做了仿真,得到其响应曲线,并与 PID 控制方法进行比较,从而得 出模糊控制器在中央空调系统温度自动控制中具有很高的应用价值。 关键词:偏差; 模糊控制器; 系统响应 0 引言
中央空调系统的设计是以室内空气参数为基本依据,通过对整个空调系统新风、 回风的温度、湿度、送风风机运行状态、初效过滤段的压差等现场信号的采集,根据 所设计的控制策略控制送风风机的变频调速、加湿器的加湿、冷、热水阀门的开度大 小来达到设定的空气状态,且根据室内、外空气的状态(温度、湿度)确定系统的运 行工况,在保证生产工艺的要求的前提下,使空调系统运行合理、安全、可靠、能耗 低等,使控制效果达到最优。一般系统中的被控参数可设定为两个:室内温度和湿度。 常规恒温恒湿中央空调系统是一个多输入、多输出的控制系统。因为回风温、湿度与 室内温、湿度的变化情况有一致性,所以常把系统回风温、湿度作为被控参数,控制 回路采用多个回路的 PID 控制。但由于空调系统传递滞后较大,且是一个干扰大、高 度非线性、随机干扰因素多的系统,参数整定困难,一组整定好的参数只能在较小的 范围内有较好的控制效果,当参数变化超过一定范围时,系统控制效果变差,致使普 通 PID 控制难以满足要求。我们文章针对以上情况,结合航天科工集团某研究所光学 加工楼新风系统自动控制项目,我们运用模糊控制技术,采用一种基于模糊控制规则 的控制方法设计出恒温恒湿中央空调控制系统,具有超调小、调节迅速和上升时间短 的特点,且具有很好的鲁棒性。 1 制冷空调系统模型
制冷空调的实际控制对象大多可用高阶的微分方程来描述。为了分析简便,我们 常用低阶模型来近似描述控制对象的动态特性,只要能满足一定的控制精度。
在自动控制系统中一阶惯性环节定义的微分方程是一阶的,且输出响应需要一定 的时间才能达到稳态值。因此中央空调系统中表冷器、电动水阀都可以近似的用一阶 惯性环节来表示,而房间作为系统的控制对象,根据能量守恒定律,可建立控制对象 房间的微分方程,它是一个二阶系统,但在工业控制中我们往往用纯迟延的一阶模型 来代替,仿真结果表明,用带纯迟延的一阶模型来近似描述控制对象完全可以满足实 际应用的要求。温度检测和变送环节也有一定的时间滞后,但和控制对象房间的时间 常数相比,可以忽略不计,因此温度检测和变送环节可以近似用一阶比例环节来代 替。 2 模糊温度控制器的设计
模糊控制(fuzzy control)是一种对系统控制的宏观方法,加入了控制规则, 规则通常采用“IF-THEN”方式来表达实际控制中的专家知识和规则,其最大的特征 是将专家的控制经验、知识表达成语言控制规则,用规则去控制目标系统,特别适用 于那些数学模型未知的、复杂的、非线性系统进行控制。

基于MATLAB的模糊控制系统设计

实验一基于MATLAB的模糊控制系统设计 1.1实验内容 (1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统; (2)飞机下降速度模糊推理系统设计; (3)水箱液位模糊控制系统设计及仿真运行。 1.2实验步骤 1小费模糊推理系统设计 (1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。 (2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。 (3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。 通过增加隶属度函数来进行模糊空间划分。 输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10]; 输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10]; 输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。

(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则: ①if (service is poor) or (food is rancid) then (tip is cheap) ②if (service is good) then (tip is average) ③if (service is excellent) or (food is delicious) then (tip is generous) 三条规则的权重均为 1.

相关文档
相关文档 最新文档