文档库 最新最全的文档下载
当前位置:文档库 › 基因编辑基本原理

基因编辑基本原理

基因编辑基本原理
基因编辑基本原理

1 基本介绍

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。

而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

2016年美国间谍首脑发布了一项公开警告,将基因编辑列为潜在的大规模杀伤性武器(WMD)之一。[2]

2 应用技术

这不是CRISPR/Cas9这项明星技术第一次得到人们的关注。在此之前,有着“豪华版”诺奖之称的“2015年度生命科学突破奖”颁发给了发现基因组编辑工具“CRISPR/Cas9”的两位美女科学家——珍妮弗·杜德娜和艾曼纽·夏邦杰。二人更是获得了2015年度化学领域的引文桂冠奖——素有诺奖“风向标”之称,曾被认为是今年诺贝尔化学奖的最有力竞争者。

那CRISPR/Cas9到底是一项什么技术,为何能够获得如此这般青睐,又何以在短短两三年时间内,发展成为生物学领域最炙手可热的研究工具之一,并有近700篇相关论文发表?它将来又会如何影响到我们的生活?

CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。

3 执行手段

1)基因敲除:如果想使某个基因的功能丧失,可以在这个基因上产生DSB,NHEJ修复的过程中往往会产生DNA的插入或删除(indel),造成移码突变,从而实现基因敲除。2)特异突变引入:如果想把某个特异的突变引入到基因组上,需要通过同源重组来实现,这时候要提供一个含有特异突变同源模版。正常情况下同源重组效率非常低,而在这个位点产生DSB会极大的提高重组效率,从而实现特异突变的引入。3)定点转基因:与特异突变引入的原理一样,在同源模版中间加入一个转基因,这个转基因在DSB修复过程中会被拷贝到基因组中,从而实现定点转基因。通过定点转基因的方法可以把基因插入到人的基因组AAVS1位点,这个位点是一个开放位点,支持转基因长期稳定的表达,破坏这个位点对细胞没有不良影响,因此被广泛利用。

基因编辑技术的方法、原理及应用

Hans Journal of Biomedicine 生物医学, 2015, 5, 32-41 Published Online July 2015 in Hans. https://www.wendangku.net/doc/5d1895933.html,/journal/hjbm https://www.wendangku.net/doc/5d1895933.html,/10.12677/hjbm.2015.53005 Methods, Principles and Application of Gene Editing Yuchang Zhu1, Xiaojiang Zheng1, Yibing Hu2* 1School of Biological Science and Technology, Hubei University for Nationalities, Enshi Hubei 2College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing Jiangsu Email: *huyb@https://www.wendangku.net/doc/5d1895933.html, Received: Jul. 1st, 2015; accepted: Jul. 24th, 2015; published: Jul. 27th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/5d1895933.html,/licenses/by/4.0/ Abstract Fast development of gene editing technologies provides more powerful tools for gene function analysis. Now researchers can easily manipulate targeted gene with the Zinc Finger Nuclease (FZN), Transcription Activation Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR) technologies emerged in the last dec-ade. These technologies revolutionized gene functional analysis and medical treatment. In this re-view, several typical gene editing technologies were listed, and their principles, characteristics and application were discussed. Keywords Gene Editing, Methods, Principles, Application 基因编辑技术的方法、原理及应用 朱玉昌1,郑小江1,胡一兵2* 1湖北民族学院生物科学与技术学院,湖北恩施 2南京农业大学资源与环境科学学院,江苏南京 Email: *huyb@https://www.wendangku.net/doc/5d1895933.html, 收稿日期:2015年7月1日;录用日期:2015年7月24日;发布日期:2015年7月27日 *通讯作者。

基因工程基本原理

一、 A 型题 1. F因子从一个细胞转移至另一个细胞的基因转移过程称为 (A) 转导 (B) 转化 (C) 转座 (D) 转染 (E) 接合 2. 通过自动获取或人为地供给外源DNA使受体细胞获得新的遗传表型,称为 (A) 转化 (B) 转座 (C) 接合 (D) 转导 (E) 转染 3. 由插人序列和转座子介导的基因移位或重排称为 (A) 接合 (B) 转染 (C) 转导 (D) 转座 (E) 转化 4. 由整合酶催化、在两个DNA序列的特异位点间发生的整合称

(A) 位点特异的重组 (B) 同源重组 (C) 随机重组 (D) 基本重组 (E) 人工重组 5. 发生在同源序列间的重组称为 (A) 非位点特异的重组 (B) 位点特异的重组 (C) 基本重组 (D) 人工重组 (E) 随机重组 6. 限制性核酸内切酶切割DNA后产生 (A) 5’磷酸基和3’羟基基团的末端 (B) 5’磷酸基和3’磷酸基团的末端 (C) 5’羟基和3’羟基基团的末端 (D) 3’磷酸基和5’羟基基团的末端 (E) 以上都不是 7. 可识别并切割特异DNA序列的称 (A) 非限制性核酸外切酶 (B) 限制性核酸内切酶 (C) 限制性核酸外切酶 (D) 非限制性核酸内切酶

(E) DNA酶(DNase) 8. 在重组DNA技术中催化形成重组DNA分子的是DNA (A) 解链酶 (B) 聚合酶 (C) 连接酶 (D) 内切酶 (E) 拓扑酶 9. 在重组DNA技术领域所说的分子克隆是指 (A) 建立多克隆抗体 (B) 建立单克隆抗体 (C) 有性繁殖DNA (D) 无性繁殖DNA (E) 构建重组DNA分子 10. 在下述双链DNA序列(仅列出其中一条链序列)中不属于完全回纹结构的是 (A) GGAATTCC (B) TGAATTCA (C) AGAATTCT (D) CGTTAAGC (E) AGATATCT 11. 无性繁殖依赖DNA载体的最基本性质是 (A) 卡那霉素抗性 (B) 青霉素抗性

基因编辑技术最新进展

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 基因编辑技术的基本原理

归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 基因编辑的效率 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因素的影响:1,修饰的本质,如改变的序列幅度;2,其识别特异性的干扰,如

基因工程原理与技术思考题

Chapter I Introduction 1)什么是基因?基因有哪些主要特点? 基因是一段可以编码具有某种生物学功能物质的核苷酸序列。 ①不同基因具有相同的物质基础.②基因是可以切割的。③基因是可以转移的。④多肽与基因之间存在 对应关系。⑤遗传密码是通用的。⑥基因可以通过复制把遗传信息传递给下一代。 2)翻译并解释下列名词 genetic engineering遗传工程 gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。 gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。 recombinant DNA technique重组DNA技术 gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。 molecular cloning分子克隆 3)什么是基因工程?简述基因工程的基本过程?p2 p4 4)简述基因工程研究的主要内容?p5 5)简述基因工程诞生理论基础p2和技术准备有哪些p3? 6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 否,密码子简并性 7)举例说明基因工程技术在医学、农业、工业等领域的应用。 医学:人胰岛素和疫苗 农业:抗虫BT农药 工业:工程酿酒酵母

Chapter ⅡThe tools of trade 1)什么是限制性核酸内切酶?简述其主要类型和特点? 是一种核酸水解酶,主要从细菌中分离得到。类型特点p11 2)II型核酸内切酶的基本特点有哪些p12-14?简述影响核酸内切酶活性的因素有哪些 p14? 3)解释限制酶的信号活性?抑制星号活性的方法有哪些? 4)什么是DNA连接酶p15?有哪几类p16?有何不同p16? 5)什么叫同尾酶、同裂酶p12?在基因工程中有何应用价值? 同裂酶:识别位点、切割位点均相同,来源不同。在载体构建方面往往可以取得巧妙的应用。应用较多的同裂酶比如Sma1和Xma1,它们均识别CCCGGG,但前者切后产生钝末 同尾酶:来源各异,识别序列各不相同,但切割后产生相同的粘性末端。由同尾酶(isocaudomer)产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。 6)什么是DNA聚合酶?根据DNA聚合酶使用的模板不同,可将其分为哪两类?各有什么活 性?p17-18 聚合酶:在引物和模板的存在下,把脱氧核苷酸连续地加到双链DNA分子引物链的3‘-OH 末端,催化核苷酸的聚合作用。 ①依赖于DNA的DNA聚合酶 ②依赖于RNA的DNA聚合酶 7)Taq DNA聚合酶:是一种从水生嗜热菌中分离得到的一种耐热的dna聚合酶,具有5-3聚 合酶活性和3-5外切酶活性,在分子中主要用于PCR。 逆转录酶:RNA指导的DNA聚合酶, 8)Klenow片段的特性和用途有哪些?举例说明。p17 9)名词解释:S1核酸酶、核酸外切酶、磷酸化酶激酶、 甲基化酶

基因编辑技术简介

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN ——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内切酶是否可以应用于基因编辑技术,韩春雨团队发表文章,利用NgAgo蛋白实现了格DNA引导的基因组编辑,但其实验结果目前依然存在争议。

基因编辑技术简介

基因编辑技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA 序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI 形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内

基因编辑基本原理

1 基本介绍 基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。 而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。 2016年美国间谍首脑发布了一项公开警告,将基因编辑列为潜在的大规模杀伤性武器(WMD)之一。[2] 2 应用技术 这不是CRISPR/Cas9这项明星技术第一次得到人们的关注。在此之前,有着“豪华版”诺奖之称的“2015年度生命科学突破奖”颁发给了发现基因组编辑工具“CRISPR/Cas9”的两位美女科学家——珍妮弗·杜德娜和艾曼纽·夏邦杰。二人更是获得了2015年度化学领域的引文桂冠奖——素有诺奖“风向标”之称,曾被认为是今年诺贝尔化学奖的最有力竞争者。 那CRISPR/Cas9到底是一项什么技术,为何能够获得如此这般青睐,又何以在短短两三年时间内,发展成为生物学领域最炙手可热的研究工具之一,并有近700篇相关论文发表?它将来又会如何影响到我们的生活? CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。 3 执行手段 1)基因敲除:如果想使某个基因的功能丧失,可以在这个基因上产生DSB,NHEJ修复的过程中往往会产生DNA的插入或删除(indel),造成移码突变,从而实现基因敲除。2)特异突变引入:如果想把某个特异的突变引入到基因组上,需要通过同源重组来实现,这时候要提供一个含有特异突变同源模版。正常情况下同源重组效率非常低,而在这个位点产生DSB会极大的提高重组效率,从而实现特异突变的引入。3)定点转基因:与特异突变引入的原理一样,在同源模版中间加入一个转基因,这个转基因在DSB修复过程中会被拷贝到基因组中,从而实现定点转基因。通过定点转基因的方法可以把基因插入到人的基因组AAVS1位点,这个位点是一个开放位点,支持转基因长期稳定的表达,破坏这个位点对细胞没有不良影响,因此被广泛利用。

浅谈基因编辑技术在农作物领域中的应用与问题探究

现代农业研究 近年来,农作物转基因技术得到了快速发展,将基因编辑技术应用在农作物育种上,能得到多个新的生物品种,尤其在玉米、大豆、棉花等农作物上有着较好应用。转基因技术的应用,一定程度推动了农业领域发展,但是还存在一定安全问题,要想充分利用作物转基因技术,还要注重基因编辑农作物的管理和检测,以便能发挥基因编辑技术在研发新品种上的作用,尽可能提高农作物营养价值。 1基因编辑技术在农作物领域的应用 1.1ZFN 技术 ZFN 主要负责识别和结合特定的核苷酸序列,将ZFN 技术应用到作物育种中,可对植物基因进行重新编辑。锌指核酸酶由锌脂蛋白和核酸酶结构域组成,其中核酸酶结构域对切割点不具有识别特异性,只有在二聚体情况下可使其具备酶活性。因此,需要对任一靶位点设置一对ZFN,以便形成核酸酶二聚体,从而进行DNA 链的切割。有研究学者采用该技术,替换掉烟草中乙酰乳酸酶基因的三个核苷酸点,进而得到抗除草剂的作物[1]。另外,将ZFN 技术应用在玉米作物 中,能合成磷酸酶基因,使得玉米具有抗除草剂性能,同时还能减少玉米中的肌醇六磷酸含量,提高了作物营养品质。尽管当前ZFN 技术在多种植物中取得较好运用,但是由于锌指单元对切割点识别性不高,因此在不同基因改造上的识别差异较大,限制了该技术的广泛使用。 1.2TALEN 技术 该技术是一种基于核苷酸的编辑技术,是由核酸内切酶和DNA 结构域共同组成的,其中DNA 结构域主要是由多个氨基酸序列构成的,重复序列能识别相应的碱基。TALEN 技术运用原理为:结合靶位点两端的序列设置一对TALEN,与识别位点结合后,两个核酸内切酶结合起到形成二聚体,在切割DNA 链后可完成基因编辑。有学者将该技术运用到水稻中,破坏了细菌性病原菌效应蛋白在作物基因组上的位点,进而提高了水稻抗百叶枯病。另外,在这一技术作用下,还能破坏水稻甜菜碱乙醛脱氢酶结合位点,能起到提高水稻品质的作用。而将该转基因技术运用到小麦育种中,能得到抗性较强的小麦,相对于传统育种技术来讲有 浅谈基因编辑技术在农作物领域中的 应用与问题探究 (威海海洋职业学院 264300) 【摘要】随着ZFN 、CPISPR/Cas9等基因编辑技术的发展和运用,大量基因编辑作物生产出来,这种背景下,基因编辑作物的检测及安全成为重点研究问题。本文主要围绕基因编辑技术在农作物领域的应用、针对基因编辑农作物的安全评价监管、基因编辑农作物的检测等方面展开讨论,具体分析了基因编辑技术在农业领域的应用现状,并以保障农作物食用安全为主,加强基因编辑作物有关问题的研究,促进农业领域良好发展。【关键词】基因编辑技术;农作物领域;应用分析 邹丹丹 Discussion on the Application and the Problem of the Gene Editing Technology in the Field of Crop Zou Dandan [Abstract]With the development and application of gene editing technology such as ZFN,CPISPR/Cas9,a large number of gene editing crops have been produced.Under this background,the detection and safe?ty of gene editing crops has become a key research issue.In this paper,the application of gene editing technology in agriculture was analyzed in detail,and the main purpose was to ensure the food safety of crops,to strengthen the research on related problems of gene editing crops,and to promote the good de?velopment of agricultural field. [Keywords]gene editing technology;crop field;application analysis (Weihai Marine V ocational College 264300) 农业经济

基因编辑技术进展

基因编辑技术最新进展 ? 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 ? 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 ? 基因编辑技术的基本原理

? 归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 ? 基因编辑疗法简介 ? 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 ? 基因编辑的效率 ? 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因

基因工程原理练习题及其答案

基因工程复习题 题型:名词解释(10个)30分;填空(每空1分) 20分;选择题(每题1分)10分;简答题(4个)20分;论述题(2个)20分。 第一章绪论 1.名词解释: 基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。 遗传工程广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。狭义:基因工程。 克隆:无性(繁殖)系或纯系。指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。 2.什么是基因克隆及基本要点? 3.举例说明基因工程发展过程中的三个重大事件。 A) 限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始);B) 载体的使用; C) 1970年,逆转录酶及抗性标记的发现。 4.基因工程研究的主要内容是什么? 基础研究: 基因工程克隆载体的研究 基因工程受体系统的研究 目的基因的研究 基因工程工具酶的研究 基因工程新技术的研究 应用研究:

基因工程药物研究 转基因动植物的研究 在食品、化学、能源和环境保护等方面的应用研究 第二章基因克隆的工具酶 1.名词解释: 限制性核酸内切酶:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。 回文结构:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成发夹结构。 同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶。 同裂酶:不同来源的限制酶可切割同一靶序列和具有相同的识别序列 黏性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为粘性末端。 平末端:DNA片段的末端是平齐的。 限制性核酸内切酶的酶活性单位(U):在酶的最适反应条件下,在50μl容积中,60分钟内完全切割1g DNA所需的酶量为1个酶活性单位(unit 或U) 限制性核酸内切酶的星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。 连杆(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。以中线为轴两边对称,其上有一种或几种限制性核酸内切酶的识别序列,酶切后可产生一定的粘性末端,便于与具有相同粘性末端的另一DNA片段连接。 衔接头(adaptor):化学合成的寡核苷酸,含有一种以上的限制性核酸内切酶识别序列。其一端或两端具有一种或两种内切酶切割产生的黏性末端。 底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。 激酶:对核酸末端羟基进行磷酸化的酶。 2.说明限制性内切核酸酶的命名原则要点。 用属名第一个字母和种名的头两个字母组成的3个字母斜体的略语表示寄主菌的物种名以

基因工程原理期末复习思考题

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸切酶? 2.什么是R/M现象?如何解释? 3.II型核酸切酶的基本特点有哪些? 4.影响II型核酸切酶活性的因素有哪些?如何克服和避免这些

不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

(完整word版)基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

(完整版)基因工程复习题(答案版)

基因工程原理复习题思考题 考试时间:2009.06.21 上午9:00-11:00 地点5D305 基因工程绪论 1、基因工程的定义与特征。 定义:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。 特征:1、具跨越天然物种屏障的能力。 2、强调了确定的DNA片段在新寄主细胞中的扩增。 2、试述基因工程的主要研究内容。 1)、目的基因的分离 2)、DNA的体外重组(载体、受体系统等) 3)、重组DNA分子转移到受体细胞及其筛选 4)、基因在受体细胞内的扩增、表达、检测及其分析。 3、基因工程在食品工业上有何应用发展? 主要是通过基因重组,使各种转基因生物提高生产谷氨酸、调味剂、酒类和油类等有机物的产率;或者改良这些有机物组成成分,提高利用价值。 4、转基因是一把双刃剑,请客观谈谈对转基因及转基因食品安全性的认识。 转基因技术所带来的好处是显而易见的,在人类历史进步和发展中起到了积极作用。 首先,通过该项技术可以提供人们所需要的特性,改良培育新品种; 第二,延长食品保存时间或增加营养成分; 第三,将抗虫防菌基因转入到作物中,使作物本身产生抵抗病虫害侵袭的能力,减少了农药的使用量,有利于环境保护; 第四,转基因技术及基因食物在医学方面得到广泛研究和应用。 人们对转基因技术的主要担忧在于环境方面。外源基因的导入可能会造就某种强势生物,产生新物种或超级杂草、损害非目标生物、破坏原有生物种群的动态平衡和生物多样性,也即转基因生物存在潜在的环境安全问题。 转基因作物的大面积种植已有数年,食用转基因食品的人群至少有10亿之多,但至今仍未有转基因食品对生命造成危害的实例;更何况目前每一种基因工程食品在上市前,都要经过国家法律认可,食品卫生部门和环境部门的严格检测。只有测试合格了,才能投放市场。因此公众完全可以安全地消费、大胆地食用转基因食品。 第一章DNA的分子特性与利用 1、原核生物和真核生物的基因表达调控有何差别? 1)原核基因表达调控的三个水平:转录水平调控、翻译水平调控、蛋白质加工水平的调控原核基因表达调控主要是在转录水平上的调控。 2)真核生物基因表达的特点: ●1.基因组DNA存在的形式与原核生物不同; ●2.真核生物中转录和翻译分开进行; ●3.基因表达具有细胞特异性或组织特异性; ●4.真核基因表达的调控在多个水平上进行:DNA水平的调控、转录水平调控、转 录后水平调控、翻译水平调控、蛋白质加工水平的调控;

基因编辑技术进展

基因编辑技术最新进展-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。

基因编辑技术的基本原理 归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN;RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN 与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介

基因工程知识点

基因工程 1、操作水平:DNA分子水平 目的:定向改变遗传物质或获得基因产物。 理论基础:1)物质基础——脱氧核苷酸2)结构基础——规则的双螺旋结构3)中心法则,共用一套遗传密码2、基因工程(genetic engineering):指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。 上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细 胞的大规模培养以及基因产物的分离纯化过程。(基因操作、遗传工程、重组DNA技术)。1973年诞生的 基本用途:分离、扩增、鉴定、研究、整理生物信息资源;大规模生产生物活性物质;设计、构建生物的新性状甚至新物种。 3、重组DNA技术:是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。其核心步骤是DNA片段之间的体外连接。 4、基因工程的基本形式: 第一代基因工程蛋白多肽基因的高效表达经典基因工程第二代蛋白编码基因的定向诱变蛋白质工程 第三代基因工程代谢信息途径的修饰重构途径工程第四代基因组或染色体的转移基因组工程 5、基因工程诞生的理论基础:理论上的三大发现 1】证实了DNA是遗传物质;2】揭示了DNA分子的双螺旋结构模型和半保留复制机理; 3】遗传密码的破译和遗传信息传递方式的确定。 6、DNA双螺旋:带负电的糖--磷酸骨架在外侧,碱基在螺旋中间相互堆叠,以5’→3’方向反向平行关系。 第二章用于核酸操作的工具酶 1、寄主的限制和修饰现象: 【1】作用:保护自身DNA不受限制;破坏入侵的外源DNA,使之降解。 【2】入侵噬菌体的子代便能高频感染同一宿主菌,但却丧失了在其原来宿主细胞中的存活力。因为它们在接受新宿主甲基化酶修饰的同时,也丧失了原宿主菌甲基化修饰的标记。 2、限制性核酸内切酶的命名:如:HindⅠ属名(H)+种名(in)+株名(d)+类型(Ⅰ) II 型限制性核酸内切酶的基本特性:识别双链DNA分子中4 - 8对碱基的特定序列,大部分酶的切割位点在识别序列内部或两侧,识别切割序列呈典型的旋转对称型回文结构。 **一个单位的限制酶定义为:在合适的温度和缓冲液中,在50μL反应体系中,1h完全降解1μg底物DNA所需的酶量。两种DNA甲基化酶:①DNA腺嘌呤甲基化酶(dam),甲基化酶在5’GATC3’序列中的腺嘌呤N6位引入甲基. ②DNA胞嘧啶甲基化酶(dcm),甲基化酶在5’CCAGG3’或5’CCTGG3’序列中的胞嘧啶C5位上引入甲基, 受其影响的酶有EcoR II等. **3、诱发星号活性产生的原因:○1高甘油含量》5%;○2内切酶用量过大;○3低离子强度;○4高pH; ○5含有有机溶剂,如乙醇;○6Mn/Cu/Zn等非Mg二价阳离子存在。 4、DNA聚合酶I的基本性质:5‘→3‘DNA聚合酶活性;5‘→3‘的核酸外切酶活性;3‘→5‘的核酸外切酶活性。切口平移法:目前实验室中最常用的一种脱氧核糖核酸探针标记法。

相关文档