文档库 最新最全的文档下载
当前位置:文档库 › 大气折射引起的雷达定位误差模型

大气折射引起的雷达定位误差模型

大气折射引起的雷达定位误差模型
大气折射引起的雷达定位误差模型

高斯扩散模型.

大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的 密度、温度及其组成的分布状况。根据大气温度在 垂直方向上的分布规律,可将大气划分为四层:对 流层、平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大 气质量的75%和几乎全部的水蒸气、微尘杂质。受 太阳辐射与大气环流的影响,对流层中空气的湍流 运动和垂直方向混合比较强烈,主要的天气现象云 雨风雪等都发生在这一层,有可能形成污染物易于 扩散的气象条件,也可能生成对环境产生有危害的 逆温气象条件。因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约

雷达系统实验实验报告

船用导航雷达系统实验 一、实验目的 1、掌握船用导航雷达系统的工作原理和各主要模块的功能; 2、掌握船用导航雷达系统的操作使用方法。 二、实验内容 1、结合实用船用导航雷达系统学习其工作原理和各主要模块的功能; 2、结合实用船用导航雷达系统学习掌握其操作使用方法; 3、应用实用船用导航雷达系统测试三个不同方位目标的距离和方位值。 三、船用导航雷达系统工作原理 1、基本知识 雷达(RADAR)是英文”radio detection and ranging”的缩写,意思是“无线电探测和测距”。这一发明被用于第二次世界大战。 在发明雷达前,船只在大雾中航行时,只能通过发出短促汽笛、灯光和敲钟的方法,利用回声传回的时间来大致估算与目标之间的位置从而避免碰撞。 雷达发出的射频电磁波,通过计算电磁波反射回来所需的时间来确定到达目标的距离,这是在已知雷达波传播速度是接近恒定的也就是光速的前提下实现的。这样通过计算雷达波从发出到从目标反射回到天线的时间,就可以计算出船只到目标的距离。这个时间是往返的时间,将它除以2才是电磁波从船只到达目标的单程距离的时间。这些都是由雷达内部的算法来自动完成的。 雷达确定目标的方位是通过雷达天线发射波束在空间的扫描来实现的。雷达天线发射波束在空间是不均匀分布的,其主波束内的功率密度远大于副瓣内的功率密度,因而主波束内目标反射的信号强度远大于副瓣内目标反射的信号强度,所以此时雷达探测到的目标信号可以认为是来自主波束内目标反射的信号,且认定目标方位处于雷达天线主波束的最大方向上。 当天线波束最大方向瞄准某一个目标时,如果另一个目标恰好处在天线波束第一零点方向上,则回波信号完全来自天线波束最大方向的那个目标。因此,天线的分辨率为第一零点波束宽度的一半,即FNBW/2。例如,当天线的FNBW=20时,具有10的分

协整检验及误差修正模型实验指导

协整检验及误差修正模型实验指导 一、实验目的 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、实验内容及要求 1、实验内容 用Eviews来分析1982年到2002年中国居民实际消费支出的对数序列和中国居民实际可支配收入的对数序列{}之间的关系。内容包括: (1)对两个对数序列分别进行ADF平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差修正模型ECM。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差修正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 三、实验指导 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 在workfile中按住ctrl选择要检验的二变量,击右键,选择open—as group,此时他们可以作为一个数据组被打开。点击“View”―“graph”—“line”,得到两个序列的时序图。 给出两个序列的时序图。 从上图可以看出两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,

大气污染扩散模型

第一节大气污染物的扩散 一、湍流与湍流扩散理论 1. 湍流 低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。 烟气在大气中的扩散特征取决于是否存在 湍流以及湍涡的尺度(直径),如图5-7所示。 图5-7(a)为无湍流时,烟团仅仅依靠分子 扩散使烟团长大,烟团的扩散速率非常缓慢, 其扩散速率比湍流扩散小5~6个数量级;图5 -7(b)为烟团在远小于其尺度的湍涡中扩散, 由于烟团边缘受到小湍涡的扰动,逐渐与周边 空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。 根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。热力湍流主要是由于地表受热不均匀,或因大气温度层结不稳定,在垂直方向产生温度梯度而造成的。一般近地面的大气湍流总是机械湍流和热力湍流的共同作用,其发展、结构特征及强弱决定于风速的大小、地面障碍物形成的粗糙度和低层大气的温度层结状况。 2. 湍流扩散与正态分布的基本理论 气体污染物进入大气后,一面随大气整体飘移,同时由于湍流混合,使污染物从高浓度区向低浓度区扩散稀释,其扩散程度取决于大气湍流的强度。大气污染的形成及其危害程度在于有害物质的浓度及其持续时间,大气扩散理论就是用数理方法来模拟各种大气污染源在

协整检验及误差修正模型实验指导

实验八 协整检验及误差修正模型实验指导 一、实验目的 理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF 检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。 二、基本概念 设随机向量t X 中所含分量均为d 阶单整,记为t X I(d ):。如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为t X CI(d ,b ):,向量β被称为协整向量。特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。 三、实验内容及要求 1、实验内容 用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。内容包括: (1)对两个对数序列分别进行ADF 平稳性检验; (2)进行二者之间的协整关系检验; (3)若存在协整关系,建立误差纠正模型ECM 。 2、实验要求 (1)在认真理解本章内容的基础上,通过实验掌握ADF 检验平稳性的方法; (2)掌握具体的协整检验过程,以及误差纠正模型的建立方法; (3)能对宏观经济变量间的长期均衡关系进行分析。 四、实验指导 1、对两个数据序列分别进行平稳性检验: (1)做时序图看二者的平稳性 首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。 点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。 图8-1 ln t x 和ln t y 时序图

误差修正模型

第二节 误差修正模型(Error Correction Model ,ECM ) 一、误差修正模型的构造 对于y t 的(1,1)阶自回归分布滞后模型: t t t t t y x x y εβββα++++=--12110 在模型两端同时减y t-1,在模型右端10-±t x β,得: t t t t t t t t t t t t t x y x x y x y x x y εααγβεββββαββεββββα+--+?=+---+--+?=+-+++?+=?------)(]) 1()1()[1()1()(1101012120120121100 其中,12-=βγ,)1/()(200ββαα-+=,)1/(211ββα-=。 记 11011-----=t t t x y ecm αα (5-5) 则 t t t t ecm x y εγβ++?=?-10 (5-6) 称模型(5-6)为“误差修正模型”,简称ECM 。 二、误差修正模型的含义 如果y t ~ I(1),x t ~ I(1),则模型(5-6)左端)0(~I y t ?,右端)0(~I x t ?,所以只有当y t 和x t 协整、即y t 和x t 之间存在长期均衡关系时,式(5-5)中的ecm~I(0),模型(5-6)两端的平稳性才会相同。 当y t 和x t 协整时,设协整回归方程为: t t t x y εαα++=10 它反映了y t 与x t 的长期均衡关系,所以称式(5-5)中的ecm t -1

是前一期的“非均衡误差”,称误差修正模型(5-6)中的1-t ecm γ是误差修正项,12-=βγ是修正系数,由于通常1||2<β,这样 0<γ; 当ecm t -1 >0时(即出现正误差),误差修正项1-t ecm γ< 0,而ecm t -1 < 0时(即出现负误差),1-t ecm γ> 0,两者的方向恰 好相反,所以,误差修正是一个反向调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: t t t x y εαα++=10 短期波动模型: t t t t ecm x y εγβ++?=?-10 三、误差修正模型的估计 建立ECM 的具体步骤为: 1.检验被解释变量y 与解释变量x (可以是多个变量)之间的协整性; 2.如果y 与x 存在协整关系,估计协整回归方程,计算残差序列e t : t t t x y εβα++=0 t t t x y e 0??βα--= 3.将e t-1作为一个解释变量,估计误差修正模型: t t t t v e x y ++?=?-10γβ 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: t i t i i t i t y x y εβαα∑∑+++=-- 此时,长期参数为: ∑∑-=)1(i i βαθ 协整回归方程和残差也相应取成:

雷达数据处理

雷达数据处理-雷达数据处理 雷达数据处理-正文 *从一系列雷达测量值中,利用参数估值理论估计目标的位置、速度、加速度等运动参数;进行目标航迹处理;选择、跟踪目标;形成各种变换、校正、显示、报告或控制等数据;估计某些与目标形体、表面物理特性有关的参数等。早期的一些雷达,采用模拟式解算装置进行数据处理。现代雷达已采用数字计算机完成这些任务。 数据格式化雷达数据的原始形式是一些电的和非电的模拟量,经接收系统处理后在计算机的输入端已变成数字量。数字化的雷达数据以一定格式组成雷达数据字。雷达数据字可编成若干个字段,每一个字段指定接纳某个时刻测量到的雷达数据。雷达数据字是各种数据处理作业的原始量,编好后即送入计算机存储器内的指定位置。 校正雷达系统的失调会造成设备的非线性和不一致性,使雷达数据产生系统误差,影响目标参数的无偏估计。为保证高质量的雷达数据,预先把一批校正补偿数据存储于计算机中。雷达工作时,根据测量值或系统的状态用某种查表公式确定校正量的存储地址,再用插值法对测量值进行校正和补偿,以清除或减少雷达数据的系统误差。 坐标变换雷达数据是在以雷达天线为原点的球坐标系中测出的,如距离、方位角、仰角等。为了综合比较由不同雷达或测量设备得到的目标数据,往往需要先把这些球坐标数据变换到某个参考坐标系中。常用直角坐标系作为参考坐标系。另外,在球坐标系中观察到的目标速度、加速度等状态参数是一些视在几何分量的合成,不能代表目标在惯性空间的运动特征。若数据处理也在雷达球坐标系中进行,会由于视在角加速度和更高阶导数的存在使数据处理复杂化,或者产生较大的误差。适当选择坐标系,可以简化目标运动方程,提高处理效率或数据质量。 跟踪滤波器跟踪滤波器是雷达数据处理系统的核心。它根据雷达测量值实时估计当前的目标位置、速度等运动参数并推算出下一次观察时目标位置的预报值。这种预报值在跟踪雷达中用来检验下一次观测值的合理性;在搜索雷达中用于航迹相关处理。常用的跟踪滤波器有α-β滤波器、卡尔曼滤波器和维纳滤波器,可根据拥有的计算资源、被处理的目标数、目标的动态特性、雷达参数和处理系统的精度要求等条件选用。α-β滤波器的优点是算法简单,容易实现,对于非机动飞行的等速运动目标,位置估值和速度估值的平方误差最小,故可对等速运动目标进行最佳滤波。对于机动飞行的目标,由于α-β滤波器描述的目标运动模型与实际情况存在差异,会产生较大的误差。为此,广泛采用一种称为机动检测器的检测装置,以便在发现目标作机动飞行时能自动调整测量周期或修改α值和β值,使跟踪误差保持在允许的范围内。同α-β滤波器不同,卡尔曼滤波器中除装有稳态的目标轨迹模型外,还设有测量误差模型和目标轨迹的随机抖动模型。因此,它对时变和非时变的目标动态系统能作出最佳线性、最小方差的无偏估计。除目标状态的估计外,卡尔曼滤波器还能估计状态估值的误差协方差矩阵。利用误差协方差矩阵可以检测目标机动,调整滤波系数,实现对机动目标的自适应滤波。 目标航迹处理早期的搜索雷达由操作员从显示器上判定目标的存在,并逐次报出目标的位置。标图员根据报告的目标数据进行标图,并把图上的点顺序连接,形成目标航迹。这个过程称为目标航迹处理。现代雷达系统的航迹处理已无需人工处理,而主要由计算机来完成。利用计算机进行数据处理的搜索雷达,称为边跟踪边扫描雷达系统。雷达测量到的离散

污染物扩散模型-深圳数学建模

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): C 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名):温州医科大学 参赛队员 (打印并签名) :1. 章成俊 2. 杨超 3. 谢锦 指导教师或指导教师组负责人 (打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 送全国评阅统一编号(由赛区组委会填写): 全国评阅随机编号(由全国组委会填写):

对垃圾处理厂污染的动态监控及居民补偿 摘要 城市垃圾处理问题是一个世界性难题。目前垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。本论文构根据题目设置的垃圾处理厂规模,建立了环境动态监控体系,并根据潜在污染风险对周围居民进行了合理经济补偿的设计。 对于问题(1),为了实现对垃圾焚烧厂烟气排放及相关环境影响状况的动态监控,本论文在高斯烟羽模型的基础上进行改进,引入温度、降雨对污染物扩散的影响,建立了新的污染物扩散模型。本论文创新性的提出了风雨影响指数M,用来衡量风向、降雨对颗粒物扩散的影响。本论文将抽象的污染物含量形象化,利用空气污染指数API描述具体的污染程度及其给周围居民带来的影响。并且从不同角度给出了模型检验,验证了所建模型的准确性。 对于问题(1)具体赔偿方案的制定,在综合考虑了不同方位风向频率、受污染时间、受污染程度的基础上,本论文使用了层次分析法,并且进行了一致性检验,使得赔偿方案具有说服力。通过MATLAB编程,计算出当政府和垃圾处理厂共支付风险赔偿金为N时,得出居住地的每位居民应得的赔偿金额计算公式。对于监测点的设置,经计算共需21个,具体布置情况见后文。 对于问题(2),在题目所述的发生事故的情况下,对污染物的具体含量进行了合理的预测与假设。模拟出酸性物质与颗粒物的影响范围,并根据具体的污染程度设置不同的污染区。对每个污染区的不同情况设置更改监测点的设置,并且在问题(1)的基础上对居民的经济补偿进行合理修改。 关键词:高斯烟羽模型,层次分析法,空气污染指数,烟气抬升公式 一、问题重述 “垃圾围城”是世界性难题,在今天的中国显得尤为突出。数据显示,目前全国三分之二以上的城市面临“垃圾围城”问题,垃圾堆放累计侵占土地75万亩。因此,垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。然而,由于政府监管不力、投资者目光短浅等多方面的原因,致使前些年各地建设的垃圾焚烧电厂在运营中出现了环境污染问题,给垃圾焚烧技术在我国的推广造成了很大阻力,许多城市的新建垃圾焚烧厂选址都出现因居民反对而难以落地的局面。在垃圾焚烧厂运行监管方面,目前主要是在垃圾焚烧厂内进行测量监控,缺少从周边环境视角出发的外围动态监控,因而难以形成为民众所信服的全方位垃圾焚烧厂环境监控体系。 深圳市某地点计划建立一个中型的垃圾焚烧厂,计划处理垃圾量1950吨/天(设置三台可处理垃圾650吨/天的焚烧炉,排烟口高度80米,每天24小时运转)。从构建环境动态监控体系、并根据潜在污染风险对周围居民进行合理经济补偿的需求出发,有关部门希望能综合考虑垃圾焚烧厂对周围带来环境污染以及其他危害的多种因素(例如,焚烧炉的污染物排放量、居住点离开垃圾焚烧厂的距离、风力和风向及降雨等气象条件、地形地貌以及建筑物的遮挡程度等等),在进行科学定量分析的基础

误差修正模型实例(精)

一、误差修正模型的构造 对于yt的(1,1阶自回归分布滞后模型: 在模型两端同时减yt-1,在模型右端,得: 其中,,,。 记(5-5) 则(5-6) 称模型(5-6)为“误差修正模型”,简称ECM。 二、误差修正模型的含义 如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。 当yt和x t协整时,设协整回归方程为:

它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6) 中的是误差修正项,是 修正系数,由于通常 ,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差), > 0,两者的方向恰好相反,所以,误差修正是一个反向 调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: 短期波动模型: 三、误差修正模型的估计 建立ECM的具体步骤为: 1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性; 2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:

3.将e t-1作为一个解释变量,估计误差修正模型: 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: 此时,长期参数为: 协整回归方程和残差也相应取成: , (3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。如果存在长期趋势,则在ECM中加入趋势变量。如果存在自相关性,则在ECM的右端加入 误差修正项的滞后期一般也要作相应 调整。 如取成以下形式:

雷达基本理论与基本原理

雷达基本理论与基本原理 一、雷达的基本理论 1、雷达工作的基本过程 发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。 2、雷达工作的基本原理 一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。该频率的漂移与目标相对于雷达的速度成正比,根据2r d v f λ =,即可得到目 标的速度。 3、雷达的主要性能参数和技术参数 3.1雷达的主要性能参数 3.1.1雷达的探测范围 雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。 3.1.2测量目标参数的精确度和误差 精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。 3.1.3分辨力 指雷达对两个相邻目标的分辨能力。可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2 c R τ ?=。因此,脉宽越小,距离分辨力越好

3.1.4数据率 雷达对整个威力范围完成一次探测所需时间的倒数。 3.1.5 抗干扰能力 指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。 3.1.6 雷达可靠性 分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。 3.1.7 体积和重量 体积和重量决定于雷达的任务要求、所用的器件和材料。 3.1.8 功耗及展开时间 功耗指雷达的电源消耗总功率。展开时间指雷达在机动中的架设和撤收时间。 3.1.9 测量目标坐标或参数的数目 目标坐标是指目标的方位、斜距和仰角,此外,还指目标的速度和性质(机型、架数、敌我)。对于边扫描边跟踪雷达,还指跟踪目标批数,航迹建立的正确率。 3.2 雷达的主要技术参数 3.2.1 工作频率和工作带宽 雷达工作频率主要根据目标的特性、电波传播条件、天线尺寸、高频器件的性能以及雷达的测量精确度和功能等要求来决定 3.2.2 发射功率 分为脉冲功率和平均功率,雷达在发射脉冲信号期间所输出的功率称为脉冲功率,平均功率指一个重复周期内,发射机输出功率的平均值。 3.2.3 调制波形、脉冲宽度和重复频率 现代雷达则采用多种调制波形以供选择。脉冲宽度指发射脉冲信号的持续时间。脉冲重复频率指雷达每秒发射的射频脉冲个数,其倒数叫脉冲重复周期。 3.2.4 天线的波束形状、增益和扫描方式 天线的波束形状一般用水平和垂直面内的波束宽度来表示。天线增益用 24/G A πλ=表示。天线的主瓣在雷达的探测空域内以一定的规律运动,叫做扫

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

论雷达系统误差产生的原因及减小方法

论雷达系统误差产生的原因及减小方法 发表时间:2019-03-12T16:05:08.947Z 来源:《电力设备》2018年第27期作者:董鲜锋蒋富强秦林林 [导读] 摘要:雷达其基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。 (陕西黄河集团陕西西安 710043) 摘要:雷达其基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达是集中了现代电子科学技术各种成就的高科技系统。众所周知,雷达已成功的应用于地面车载、舰载、机载等方面。雷达己经在执行各种军事和民用任务。为了使雷达更好的服务于人类,使测量的数据更加准确,即使测量的再准确,雷达测量出的目标位置还是存在一定误差,这就是雷达系统误差。我们就来探讨雷达系统误差产生的原因及减小方法。希望能对我们雷达系统的调试起到有价值的参考。 关键词:雷达系统;发射机;接收机;天线 雷达系统利用电磁波发现并测定目标的位置、速度和其它特性的电子系统。通常由发射机、接收机、天线、信号处理、伺服糸统、定时器、显示器、电源等部分组成。雷达系统的实验鉴定,首先要逐个的测量主要的雷达参数,并对照技术规范中规定的数值加以核对。因为在许多情况下,所规定的雷达各部分特性可能难以与系统的性能联系起来。所以就要求我们对各个系统的参数进行调整满足系统的要求。下面我就各系统对雷达系统的影响分别进行讨论。 1发射机参数 雷达工作时要求发射一种特定的大功率无线电信号,发射机在雷达中就是起这一作用的。也就是说它为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关再由天线辐射出去。对于系统鉴定来说,发射机以下参数是重要的:峰值输出功率、脉冲宽度、重复频率、平均功率、功率频谱分布、频率调谐范围和稳定性、脉冲输出相位和幅度稳定性、寄生辐射、功率的内部损失等。为了测量其中的某些参数,一般雷达发射机都含有内部测试设备和监测设备,还可以利用定向耦合器和波形监视器及频率计,还有附加的外部实验设备也能够连到发射机上,以便实现其他参数测量。测量发射机功率时最好选择量热计作为测量输出功率的工具,因为它要求在发射机输出和测量仪器之间有较少的固定衰减,测量的数据更加准确。如果利用热敏电阻或者热辐射计,通常必须在这些仪表上加入衰减可能会引起一定的测量误差。另外还应提供测量寄生的和谐波输出的某些装置。在测量脉冲宽度时为保证观察到的脉冲宽度更加准确,应当选用和他匹配的仪器仪表和测试线。一般我们选择50%的幅度电平作为脉冲宽度的测量点。在大多数情况下,脉冲宽度接近于梯形。我们通常还要检测它的上升沿和下降沿时间及脉冲的前沿抖动情况及顶部的抖动情况。上升沿和下降沿的时间尽量的小,前沿和顶部的抖动应该也是最小。如果超出指标要求范围,应该对发射机进行检查找出原因。其次还要检查发热机输出信号的频率稳定度及相位的稳定度及信号的频谱分布,如果不符合技术规范要求,应该检查是自身工作不稳定产生的还是外部输入信号不稳定产生的。发射机输出功率的大小会引起发现目标的距离。而发射机发射出来信号的品质会影响到测距和测角的准确度。所以在检查发射器参数时,应全部符合技术规范指标要求。 2接收机参数 雷达接收机的好坏在雷达系统误差表现尤为突出,雷达接收机通常由它的噪声系数和带宽来表征。雷达接收机接收微弱信号的能力,通常用最小门限信号功率来描述。它与接收机噪声系数,接收机通频带及识别系数有关。当然还与脉冲积累、视频带宽等有关。宽频带噪声源已普遍用于接收机的鉴定。因为它对中频放大器的滤波特性不灵敏。通过调整噪声源和接收机之间的衰减直至总的噪声输出为没有噪声源时接收机噪声输出的两倍,能够以零点几分贝的准确度确定接收机的噪声系数。接收机通频带的确定对于非脉冲压缩雷达接收机最佳带宽常为脉冲宽度的倒数。所以在检查接收机参数时,我们要测量它的噪声系数和它的带宽,首先要检查噪声系数,只有噪声系数满足要求后才能检查下面的项目。带宽调整时不但满足宽度要求,还要关注对称性、顶部的切平度、增益等参数,这些参装订的好坏直接影响接收信号的质量。如果是多通道接收机,还要关注这几个接收通道的增益和相位一致性。 3天馈线系统 在分析测试雷达系统性能时,天线的增益方向图和噪声温度是相当重要的。所有这些参数都可以根据标准方向图的试验近似的决定。天线增益的测量能通过与标准喇叭天线的增益进行比较的方法来测量。这个标准喇叭天线与被测天线放置在同一场中,通过在大天线输出端插入定标衰减器,使两者的输出达到相等衰减器的衰减加上标准喇叭增益的总和,就是等于大天线的增益。而天线方向图可以从水平波束垂直波束宽度和旁瓣电平几个方面来考虑。为了提高角度分辨率和减小测角误差,提高天线增益,减小干扰强度,希望波束选择的窄一些。但是为了提高目标发现概率,要求天线没扫描一周能接收到足够多的回波脉冲数。则希望水平波束选择的宽一些。在雷达系统误差变大时,怀疑到天线时,应当检查天线的增益和波束的宽度是否发生变形,还有天线旁瓣电平是否发生变化。这些我们可以在远处发送点频信号,慢慢转动天线,同时在天线接收端进行测试信号幅度,用接收的幅度画出天线的方向图,用来判断天线是否工作正常和波束宽度及主副瓣电平比等参数是否正常。 4伺服系统 伺服系统的误差应该也调到最小。使整个雷达系统运转起来比较平稳,伺服系统不能出现震荡及收敛慢状态。伺服系统调整的不好会引起天线波束指向不准确,也会引起雷达系统超前或者滞后,严重时有可能产生目标跟踪不稳而丢失目标的情况。调整伺服系统误差时误差尽量的小,同时收敛还要快,震荡要小。最好是让伺服系统的实时位置超前装订位置。 5其它系统 其它系统包括定时器、显示器、电源等也会对雷达系统误差有一定的贡献。但是这些部分对系统影响比较小,影响小并不是我们就不去关注它,像定时器我们要关注同步脉冲的宽度、幅度及脉冲的连续性,不能有漏脉冲及同步脉冲前沿抖动太大的情况出现,如果出现这种情况就是定时器有故障,要及时排除。电源纹波也是我们关注的重点,纹波的大小会影响信号质量,对于模拟信号会使底部噪声变大,影响检测小信号能力,对于数字信号会产生数据错乱现象,也就是有误码出现,所以在调试开始就要检查电源的纹波。显示画面虽然不会引起系统误差,但是会干扰操作员对目标的判断。所以我们对这些辅助设备也要检查。 6总结 综上所述,为了使雷达指示目标更加的准确,我们要将雷达的主要的战术参数和技术参数都要装订到最佳状态。即雷达的工作频率、工作带宽、调制脉冲宽度、天线的波束形状增益和扫描方式、接收机的灵敏度、发射机功率等指标都要调整到设计的规定范围内。有些重要参数可能要不定期检查,摸索其随环境温度的变化规律,在参数装订时也要将这些因素考虑进去,始终使雷达工作在最佳状态,这样才

GPS卫星定位误差习题

GPS卫星定位误差习题 〈习题1〉 试述GPS测量定位中误差的种类,并说明产生的原因。 〈习题2〉 试述GPS定位误差来源。并详细说明各类误差来源影响特征与对策。 〈习题3〉 什么是星历误差?它是怎样产生的?如何削弱或消除其对GPS定位所带来影 响? 〈习题4〉 电离层误差、对流层误差是怎样产生的?你认为采用何种方法对削弱GPS测量定位所带来的影响最为有效。为什么? 〈习题5〉 在GPS测量定位中,多路径效应是怎样产生的?如何削弱多路径效应对GPS测量定位所带来的影响? 〈习题6〉 与接收机有关的误差包括哪几种?怎样削弱其影响?

第五章GPS卫星定位误差答案 习题一参考答案: GPS定位误差分类 1.按误差来源分类 (1)与卫星有关误差 星历误差 卫星钟差 相对论效应影响 (2)与卫星信号有关误差 电离层延迟影响 对流层延迟影响 多路径效应影响 (3)与接收机有关误差 接收机钟差 天线相位中心变化影响 位置误差 2.按误差性质分类 系统误差:钟差、星历误差、电离层延迟影响、对流层延迟影响 偶然误差:多路径效应影响、位置误差、天线相位中心变化影响 习题二参考答案: GPS定位误差来源有三个构成量: (1)卫星误差:GPS信号的自身误差及人为的SA误差; (2)GPS信号从卫星传播到用户接收天线的传播误差; (3)接收误差:GPS信号接收机所产生的GPS信号测量误差。 按误差产生内容分: A 卫星误差:(1)星历误差:用星历误差计算出的GPS卫星在轨位置与其真实位置之差的精度损失;(2)星钟误差:星钟A系数代表性误差的精度损失。 B 传播误差:电离层时延改正误差;对流层时延改正误差;多路径误差;相对论效应误差,即频率常数补偿导致的补偿残差。

污染空气的扩散模型

放射性气体扩散的预估模型 摘要:由于放射性气体泄漏造成惨重损失的报道在国际屡见不鲜,近日日本福岛核电站的放射性气体的泄漏事件更让我们关注放射性气体泄漏时在环境中的浓度问题,为了今后事故发生后提供积极的补救措施, 所以对放射性气体的扩散作深入的研究是很有必要的。本文结合高斯烟羽模型、线性拟合,以及微分方程模型,运用MA TLAB软件,分析了泄漏源强度、风速、大气稳定度参数、地面粗糙度参数和计算精确度等的因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中的数据可以根据不同的实际情况而加以改变,因而使本文的应用范围大大增加,可以适用于具有较强的应用性。文章首先在第一问中利用MA TLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最终放射性物质的浓度越来越小,趋近于零,即当L趋向无穷是,C(x,y,z,t)趋向于零;当时间趋于无穷时,C(x,y,z,t)也趋于无穷。问题二,问题三中,建立以核电站周边不同地区得距离以及风速为因变量,设置各个主要因素的参考数据,同时,利用高斯烟羽模型对核电站周边地区的浓度进行预测,然后,利用MATLAB软件,将相关数据代入程序,我们得到核电站周边地区的浓度分布的等高曲线。问题四中,通过实际收集数据,集合核电站周边地区的浓度等高曲线,可以直观的看出日本福岛核电站对我国东海岸以及美国西海岸的影响。 一.问题的提出 1.1背景的介绍 目前,核电的发展给国家带来了巨大的经济效益和社会效益,但核电正常运行以及发生泄露时不可避免的会有气载放射性核素排出,这样就给周围的环境产生了一定的影响,因此,正确的测出大气中放射性物质的浓度在环境检测以及安全评估中具有重要意义。 1.2需要解决的问题 的放射性气体以匀速排出,设有一座核电站遇自然灾害发生泄漏,浓度为p 速度为m kg/s,在无风的情况下,匀速在大气中向四周扩散, 速度为s m/s. (1)请你建立一个描述核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。 (2)当风速为k m/s时,给出核电站周边放射性物质浓度的变化情况。 (3)当风速为k m/s时,分别给出上风和下风L公里处,放射性物质浓度的预测模型。

雷达方位误差的调节方法

雷达方位误差的调节方法 众所周知,在许多的船舶导航设备中,雷达占有举足轻重的地位,尤其航行在能见度不良的情况下,通过系统的雷达了望,可以有助于我们及早地采取合理的避碰措施。工作中,你也许曾遇到过这样尴尬的问题:明明位于船首偏右的物标,在雷达上却显示在船首偏左,更有甚者,位于船首的物标却显示在船尾方向,令人真假难辨,这给船舶避让带来极大的安全隐患,严重危及船舶安全。诸如此类情况,笔者曾遇到过两次。第一次因为值班水手未经驾驶员同意擅自动用雷达,出现以上情况;另一次在修船过程中因为船厂工人的疏忽,导致雷达出现方位误差,后来公司在新加坡安排专业人员上船维修才将故障修复。出现上述情况后,要对雷达进行修正,方法其实很简单,只是大多数产品说明书中都不曾介绍,只有专业人员精通此道,笔者有幸受到该专业人员的指导,现将解决方案介绍如下,以期在遇到类似情况 时可自行解决,避免失误。 首先确定误差大小(见步骤1-3),然后再进行调节(见步骤4-5)。具体步骤分述如下: (1)按下“AZI MODE”键,打开“相对运动首向上”显示模式。 (2)在确定罗经无误差的情况下,用罗经观测某岸标(诸如锚泊船、防波堤或灯塔),假定该物标位于本轮右舷10°,同时用雷达观测该岸标,假定该物标位于本轮右舷15°。 (3)比较两舷角,得知雷达测得的舷角比罗经测得的舷角大5°,也就是说,雷达指示的 船首向比实际船首向小5°。 (4)在雷达面板右上方的小键盘中按下“MENU”键,打开位于雷达荧光屏左侧中部的菜单界面;接着依次按下“#”和“0”键,出现如图界面;选择菜单中第二项(2 BEARING), 再次展开下一级子菜单。 (5)按下“EBL”键,在雷达荧光屏将电子方位线移至此时荧光屏所显示的船首线右侧5°处,连续两次按下“SEL”键,你会发现船首线已与电子方位线重合了,表明大功告成。 (6)重复步骤(1)、(2)和(3),验证一下你的结果,如果仍然存在误差,证明你在观测物标方位的过程中出现了失误。为了避免因船首偏荡引起观测误差,建议选择在锚泊或靠泊时进行,另外应尽可能同时观测罗经方位和雷达方位。 怎么样,你学会了吗?最后提醒大家不要轻易模仿操作,以免弄巧成拙,造成不必要的麻烦。

相关文档