文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线中的热点问题

圆锥曲线中的热点问题

圆锥曲线中的热点问题

圆锥曲线中的热点问题

2015高考数学一轮题组训练:9-9圆锥曲线的热点问题

第9讲 圆锥曲线的热点问题 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(2014·南京模拟)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0),F (2,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________. 解析 由题意,得????? c =2, b 2 a =1, a 2= b 2+ c 2, 解得??? a =2, b =2,∴椭圆C 的方程为x 24+y 2 2=1. 答案 x 24+y 2 2=1 2.直线y =k x +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________. 解析 由??? y =k x +2,y 2=8x ,得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,若k ≠0, 若Δ=0,即64-64k =0,解得k =1,因此直线y =k x +2与抛物线y 2=8x 有且只有一个公共点,则k =0或1. 答案 1或0 3.(2014·济南模拟)若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围是________. 解析 因为双曲线的渐近线为y =± b a x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有b a ≤3,即 b ≤3a ,所以b 2≤3a 2, c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1

4.已知双曲线方程是x 2 -y 2 2=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点, 并使P (2,1)为P 1P 2的中点,则此直线方程是________. 解析 设点P 1(x 1,y 1),P 2(x 2,y 2),则由 x 21-y 212=1,x 22-y 22 2 =1,得 k = y 2-y 1x 2-x 1 =2(x 2+x 1)y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线 方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件. 答案 4x -y -7=0 5.(2014·烟台期末考试)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2 =1相交于A ,B 两点,则|AB |的最小值为________. 解析 由题意可设直线l 的方程为y =m ,代入x 24-y 2 =1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2,所以|AB |=41+m 2≥4,即当m =0时,|AB |有最小值4. 答案 4 6.(2014·西安模拟)已知双曲线x 2 -y 23=1的左顶点为A 1,右焦点为F 2,P 为双 曲线右支上一点,则P A 1→·PF 2 →的最小值为________. 解析 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2 -1,y 2=3(x 2-1),P A 1→·PF 2→=(-1-x , -y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2 -x -5=4? ?? ??x -182-8116,其中x ≥1.因此,当x =1时,P A 1→·PF 2 →取得最小值-2. 答案 -2 7.(2014·宁波十校联考)设双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2=________.

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线中的轨迹问题(含解析)

圆锥曲线中的轨迹问题 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A .3 B .32 C . 32 D .1 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 二、填空题 4.已知分别过点(1,0)A -和点(1,0)B 的两条直线相交于点P ,若直线PA 与PB 的斜率之积为-1,则动点P 的轨迹方程是________. 5.动圆经过点(3,0)A ,且与直线:3l x =-相切,求动圆圆心M 的轨迹方程是____________. 三、解答题 6.圆C 过点()60A , ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;

(2)P 为圆C 上的任意一点,定点()8,0Q ,求线段PQ 中点M 的轨迹方程. 7.若平面内两定点(0,0)O ,(3,0)A ,动点P 满足||1 ||2 PO PA =. (1)求点P 的轨迹方程; 8.点(,)M x y 与定点(3,0)F 的距离和它到直线25:3 l x = 的距离之比是常数3 5,求点 M 的轨迹方程. 9.在圆:C 223x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当P 在 圆上运动时,线段PD 上有一点M ,使得DM =, (1)求M 的轨迹的方程; 10.已知点()1,0F ,点P 到点F 的距离比点P 到y 轴的距离多1,且点P 的横坐标非负,点()1,M m (0m <); (1)求点P 的轨迹C 的方程;. (2)过点M 作C 的两条切线,切点为A ,B ,设AB 的中点为N ,求直线MN 的斜率.

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

圆锥曲线的双切线问题初探

圆锥曲线的双切线问题初探 蓝 婷 深圳市第二高级中学; 广东深圳 518055 【摘要】:本文以高考题为载体,在一个引理的基础上给出了一个关于圆锥曲线双切线问题的定理,并总结出了解决圆锥曲线的双切线问题的一套统一的简洁方法,充分体现定理的妙处。 【关键词】:圆锥曲线 ; 双切线 ; 切点弦方程 一、研究背景 圆锥曲线是高考数学中的必考问题,圆锥曲线以切线为背景与导数相结合的问题长期被高考命题者所青睐。我们发现,这类问题的标准答案使用的传统方法解答过程一般较为复杂,并且在高强度的高考环境下,考生不得不将有限的时间浪费在繁杂的运算中。笔者在这个问题的研究中试图寻求一种简单统一的方法,将此类问题的运算量降低,从而达到简化解题过程的目的。 二、定理证明 为了简捷且更具一般性和代表性,我们将圆锥曲线(包含圆)统一写成最一般的形式:220Ax By Cx Dy Exy F +++++=,下面给出定理的证明。 引理:设()00,P x y 是圆锥曲线220Ax By Cx Dy Exy F +++++=上一点,则与该圆锥曲线切于点P 的直线方程为:000000( )()()0222 x x y y y x x y Ax x By y C D E F ++++++++=。 证明:在圆锥曲线方程2 2 0Ax By Cx Dy Exy F +++++=两边求导,可得: 220Ax Byy C Dy Ey Exy '''+++++=,所以:22Ax Ey C y Ex By D ++'=- ++ 则切线方程为:0000002()2Ax Ey C y y x x Ex By D ++-=- -++ 得:000000()(2)(2)()y y Ex By D Ax Ey C x x -++=-++- 化简:220000000000002222222Ax By Cx Dy Ex y Ax x By y Cx Dy Cx Dy Ex y Exy ++++=+++++++ 因为()00,P x y 在圆锥曲线上,所以:220000002222220Ax By Cx Dy Ex y F +++++=

高中数学-圆锥曲线专题

高三数学-圆锥曲线知识点 圆锥曲线的统一定义: 平面内的动点P(x,y)到一个定点F(c,O)的距离与到不通过这个定点的一条定直线I的距离之比是一个常数e(e >0),则动点的轨迹叫 做圆锥曲线。其中定点F(c,0)称为焦点,定直线I称为准线,正常数e称为离心率。当0v e< 1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e> 1时,轨迹为双曲线。

两点,则MFL NF. 1、点P 处的切线PT 平分△ PFF 2在点P 处的内角. 2、PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3、以焦点半径PF 为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 1 (a >o,b > o )上,则过F O 的双曲线的切线方程是 ^2 a b 2 2 2 t — (1)等轴双曲线:双曲线 x y a 称为等轴双曲线,其渐近线方程为 y x ,离心率e , 2 . (2)共轭双曲线:以已知双曲线的虚轴为实轴, 2 实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.笃 a 2 2 y_ 互为共轭双曲线,它们具有共同的渐近线: 2 L o . b 2 (3)共渐近线的双曲线系方程: 2 y b 2 2 0)的渐近线方程为笃 a 2 y o 如果双曲线的渐近线为 b 2 0时,它的双曲 2 线方程可设为二 2 a 0). 1. 点P 处的切线PT 平分△ PF1F2在点P 处的外角. 2. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切 3. P o (X o ,y o )在椭圆 2 y 2 1上,则 过 P o 的椭圆的切线方程是 2 a x °x y o y 1 b 2 4. P 0( x o , y 0) 在椭圆 2 y 2 1夕卜, 则过 P 0 作椭圆的两条切线切点为 P 、 P 2,则切点弦P 1P 2的直线方程是 辱 ^2 1. a b 5. 2 再 1 (a > b > 0)的焦半径公式 b 2 | MF i | a ex o , | MF 2 | ex o ( F i ( c,0) , F 2(C ,0) M(X o ,y 。)). 6. 设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M N 7. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 1、A 为椭圆长轴上的顶点, AiP 和AQ 交于点 M AP 和AQ 交于点N,贝U MF 丄NF. 8. 2 x AB 是椭圆— 2 a 2 y_ b 2 1的不平行于对称轴的弦, M (x o , y o )为AB 的中点,贝U k OM k AB b 2 二,即 K AB a b 2X o 2 a y o 9. 若P o (x o ,y o )在椭圆 -H-* 2 y x )x y o y 2 1内,则被Po 所平分的中点弦的方程是 与 乎 2 X 。 __2 a y 。2 b 2 2 2 x y 4、若P o (X o ,y 。)在双曲线r 2 a b 1. 【备注1】双曲线:

圆锥曲线中的热点问题真题与解析

圆锥曲线中的热点问题 A 级 基础 一、选择题 1.(2017·全国卷Ⅰ改编)椭圆C :x 23+y 2 m =1的焦点在x 轴上,点 A , B 是长轴的两端点,若曲线 C 上存在点M 满足∠AMB =120°,则实数m 的取值范围是( ) A .(3,+∞) B .[1,3) C .(0,3) D .(0,1] 2.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-3 2 B .2- 3 C.3-12 D.3-1 3.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2 B.1 2 C.14 D.18 4.(2019·天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线分别交于点A 和点B , 且|AB |=4|OF |(O 为原点),则双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 5.(2019·安徽六安一中模拟)点P 在椭圆C 1:x 24+y 2 3=1上,C 1 的右焦点为F 2,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF 2|的最小值为( )

A .42-4 B .4-4 2 C .6-2 5 D .25-6 二、填空题 6.(2019·广东六校联考)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、 右焦点为F 1、F 2,在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→ |,则此双曲线的离心率e 的取值范围是________. 7.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________. 8.(2019·浙江卷)已知椭圆x 29+y 2 5=1的左焦点为F ,点P 在椭圆 上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________. 三、解答题 9.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点. (1)若OA →·OB →=-4,求证:直线l 恒过定点; (2)若直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. 10.(2019·惠州调研)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率

圆锥曲线专题复习.doc

锥曲线专题训练 一、定义 【焦点三角形】 1、已知椭圆一 +八=1的左右焦点为E、F2, P为椭圆上一点, 9 4 (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求的面积 2 2 2、已知双曲线土-匕=1的左右焦点为E、F2, P为双曲线上一点, (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求Z^PF?的面积 2 2 3、鸟,氏是椭圆二+七=1(〃>。>0)的两个焦点,以鸟为圆心且过椭圆中心的 a~ b~ 圆与椭圆的一个交点为M。若直线&M与圆鸟相切,求该椭圆的离心率。 Y2 v2 4、椭圆瓦+ *_ = 1的焦点为与、「2。点P为其上的动点,当PF2为钝角时。点P横坐标的取值范围为多少? V-2 V2V-2 V2 5、椭圆—+ J(。>。>0)和双曲线、- —(m, n> 0)有公共的焦点F】(- 。,0)、 a~ b~〃广 F2(C,0),P为这两曲线的交点,求|商|?|户尸2|的值. 二、方程 已知圆亍+y2=9,从圆上任意一点P向X轴作垂线段PPL点M在PP,上,并且两=2布,求点M的轨迹。 2.3【定义法】(与两个定圆相切的圆心轨迹方程) :—动圆与两圆:『+ ,,2 =]和尤2 * ,2 _8x+]2 = 0都外切,#1勃圆的圆心 的轨迹方程是什么?AA

题型1:求轨迹方程例1. (1) 一动圆与圆J + y2+6x+5 = 0外切,同时与圆x2 + r-6x-91 = 0内切,

求动圆圆心M的轨迹方程,并说明它是什么样的曲线。. (2)双曲线y-/ =1有动点、P,月,%是曲线的两个焦点,求APgE的重心M的轨迹方程。 3、给出含参数的方程,说明表示什么曲线。 已知定圆G: x2 + y2 =9,圆C2:x2+6x+y2 =0 三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)(结合向量)直线与圆锥曲线相交的弦长计算(1)要熟练利用方程的根与系数关系来计算弦 长.弦长公式: (2)对焦点弦要懂得用焦半径公式处理;对中点弦问题,还要掌握“点差法”. 3. 圆锥曲线方程的求法有两种类型:一种是已知曲线形状,可以用待定系数法求解;另一种是根据动点的几何性质,通过建立适当的坐标系来求解,一般是曲线的类型未知.主要方法有: ?直接法、定义法、相关点法、参数法、几何法、交轨法等.在求轨迹方程中要仔细检查“遗漏”和“多余”. 4. 圆锥曲线是用代数方法来研究几何问题,也就是说,它是处于代数与几何的交汇处,因此要处理好其综合问题,不仅要理解和掌握圆锥曲线的有关概念、定理、公式,达到灵活、综合运用,还要善于综合运用代数的知识和方法来解决问题,并注意解析法、数形结合和等价化归的数学思想的应用. 1、已知椭圆= i,过左焦点k倾斜角为£的直9 6 线交椭圆于A、8两点。求:弦48的长,左焦点K到48 中点〃的长。 2、椭圆以2+如2=1与直线对尸住0相交于爪8两点,C是线段花的中点.若

二轮复习:圆锥曲线中的探索性问题(教师版)

内部资料仅供学习严禁外传违者必究

引发成长动力 个性化教学辅导教案 学生姓名 年 级学 科授课老师日 期上课时间 课 题圆锥曲线中的探索性问题 教学目标1、定值、定点问题; 2、定直线问题; 3、定圆问题; 4、探索性问题复习检查 问题定位 题型一 定值、定点问题 例1 已知椭圆C : 经过点(0,),离心率为,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点. (1)求椭圆C 的方程; (2)若直线l 交y 轴于点M ,且 ,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由. 答案 解答破题切入点 (1)待定系数法. (2) 通过直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式.把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值. 1

知人善教 激发兴趣 塑造能力 题型二 定直线问题 2 例2 在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x=2py(p>0)相交于A,B 两点.Array (1)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值; (2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程; 若不存在,请说明理由. 答案 解答破题切入点 假设符合条件的直线存在,求出弦长;利用变量的系数恒为零求解.解 方法一 (1)依题意,点N的坐标为N(0,-p), 可设A(x,y),B(x,y), 1122 直线AB的方程为y=kx+p, 2

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

圆锥曲线中的热点问题(总结的非常好)

第3讲圆锥曲线中的热点问题 【高考考情解读】1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中. 1.直线与圆锥曲线的位置关系 (1)直线与椭圆的位置关系的判定方法: 将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离. (2)直线与双曲线的位置关系的判定方法: 将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时, 直线与双曲线相离. ②若a=0时,直线与渐近线平行,与双曲线有一个交点. (3)直线与抛物线的位置关系的判定方法: 将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①当a≠0时,用Δ判定,方法同上. ②当a=0时,直线与抛物线的对称轴平行,只有一个交点. 2.有关弦长问题 有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. (1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2 |x2-x1|或|P1P2|=1+1 k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形: |x2-x1|=(x1+x2)2-4x1x2, |y2-y1|=(y1+y2)2-4y1y2.

高三数学解答题难题突破 圆锥曲线的切线问题

高三数学解答题难题突破 圆锥曲线的切线问题 【题型综述】 圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数)(x f y =,利用导数法求出函数)(x f y =在点),(00y x 处的切线方程,特别是焦点在y 轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x (或y )的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式0=?,即可解出切线方程,注意关于x (或y )的一元二次方程的二次项系数不为0这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 【典例指引】 类型一 导数法求抛物线切线 例1 【2017课表1,文20】设A ,B 为曲线C :y =2 4 x 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率; (2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 类型二 椭圆的切线问题 例2(2014广东20)(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为. (1)求椭圆C 的标准方程;

(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 类型三 直线与椭圆的一个交点 例3.【2013年高考安徽卷】已知椭圆22 22:1(0)x y C a b a b +=>>的焦距为4,且过点P . (Ⅰ)求椭圆C 的方程; (Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点P ∴ 22 231a b += 且222 a b c =+ ∴ 2 8a = 2 4b = 2 4c = 椭圆C 的方程是22 184 x y + = (2)

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

相关文档
相关文档 最新文档