文档库 最新最全的文档下载
当前位置:文档库 › 越南光伏和太阳能电力的发展

越南光伏和太阳能电力的发展

越南光伏和太阳能电力的发展
越南光伏和太阳能电力的发展

TECH MONITOR z Nov-Dec 2009

29

Photovoltaic technology and solar energy

development in Viet Nam

Trinh Qung Dung

Viet Nam has potential solar energy for sustainable development. The year-round high solar radiation of 5.2 kWh/m 2 per day is a basic factor to develop solar electricity on an industrial scale for Viet Nam. New technologies not only allow solar electricity produced to be fed to the grid, but also guarantee sustainable local power supply at low prices. In the face of increasing demand and market for power, exploitation of Viet Nam’ renewable energy sources is very urgent. A mega solar programme for long-term sustainable energy development is under preparation, and it will be submitted for the government’s approval,after discussion in a Joint Ministerial Meeting.

Solar radiation in Viet Nam

olar radiation is a very important natural resource in Viet Nam. At an average total solar radiation of about 5 kW/h/m 2/day in most of the middle and the southern provinces and about 4 kW/h/m 2/day in the north-ern provinces, solar radiation is better in Viet Nam than in most other parts of the world (Dung, 2005). Below the 17th parallel, the radiation is not only plentiful but also steady for most part of the year, reducing about 20 per cent from dry season to rainy season.1 The solar energy potential is estimated at 43.9 billon tonnes of oil equivalent

(TOE) per year. Figure 1 shows the average total solar radiation in Hanoi,Danang and Ho Chi Minh (HCM) city,which are typical for the northern, mid-dle and southern regions of Viet Nam.The average solar radiation is better in the middle and southern regions.The northern provinces receive poor sunshine in the first quarter of the year;there are only two hours or less of sun-shine during January, February and March and the average solar radiation is 50-60 per cent less. The average sunshine hours per year in the North-eastern zone range between 1,500and 1,700 hours, while the Southern and Central Viet Nam clocks between 2,000 and 2,600 sunshine hours per year. These data, measured over a period of 10 years, were taken from the weather station at HCM City.

1

In North Viet Nam, the solar radiation is not continuous in winter and autumn.

S

Mr. Trinh Qung Dung Director, Solarlab-Institute of

Physics, HCM City

Vietnamese Academy of Science

and Technology

01 Mac Dinh Chi Street, 01 District,

HCM City, Viet Nam Tel: +84 (8) 3822 2028Fax: +84 (8) 3829 5905

E-mails:trinhqdungvn@https://www.wendangku.net/doc/5215077196.html,

solarlab@https://www.wendangku.net/doc/5215077196.html,nam.vn

30

TECH MONITOR z Nov-Dec 2009

Renewable energy status and development need

Present situation

A general view of the development of photovoltaic (PV) installations in Viet Nam in the last decade can be seen in Figure 2 and Table 1. PV develop-ment has been realized in applications such as battery charging centre, com-munity centre, telecommunications,satellite receiver-transmitter, naviga-tion beacons, etc.

Following several national and in-ternational projects, most of the civil use of PV is in solar villages, which have in solar home systems (SHS),covered community centres, battery charging centres (BCC), cultural halls,schools, medical centres, etc. Almost all models of PV applications – such

as SHS, BCC, medical and commu-nity centres, solar ambulance, satel-lite receiver-transmitter, etc. – have been designed and developed in Viet Nam. During 20 years of development,about 70 solar villages, 30 BCCs,thousands of navigation beacons,several telecommunication stations and more than 4,000 SHS have been installed across the country.Among civil applications, SHS is the most basic; it started in 1990 and gradually developed. Its growth is spurred by government-sponsored PV projects as well as private installa-tions (Dung, 2008). The demand for SHS is very large, covering over 5million farming families, which could not be connected to the grid for a long time. An SHS project was the first 100per cent electrified village in Viet Nam,in Buon Cham, wherein 180 families

were provided solar electricity at their homes (Dung, 2003). The cultural-cum-battery charging centre (CBCC)is a typical Vietnamese innovation,which has shown 20 per cent more efficiency than other similar installa-tions in the region. Each CBCC is de-signed to produce 300-1,500 Wp per station, and a 1,000 Wp CBCC can provide electricity for 40-50 houses.From 1990 up to the present, more than 1,000 families have started using solar electricity from the CBCC. In the night, a CBCC doubles as a local cultural centre for viewing television programmes and video movies, and for Karaoke singing. This is a new and highly effective model of PV use invented by Viet Nam’s Solarlab (Dung and others, 2003).

In 1999, thanks to the cooperation between New Energy and Industrial Technology Development Organiza-tion (NEDO) of Japan and the Ministry of Science, Technology and Environ-ment (MOSTE) of Viet Nam, the first solar power plant was installed at the Muang Giang district of Gialai pro-vince in Central Viet Nam. The plant is a hybrid renewable energy model,with 100 kWp of solar power and 25kW of micro hydropower. It is the first solar plant in Viet Nam and South-East Asia working for a local grid. The big-gest solar installation is the National Conference Hall, with 154 kWp of solar power using grid-connected technol-ogy, financed by Germany’s official development assistance (ODA). Red Sun, the first factory to manufacture PV modules, was opened in March 2009 at Long An province. Its annual capacity is about 3-5 MWp. Only five companies in Viet Nam are doing busi-ness in the PV field: too meagre a number considering the solar energy potential of the country.

The main Vietnamese partners for international collaboration until now are Solarlab, Institute of Energy (IE),Renewable Energy Research Centre (RERC) and Women’s Union. Coop-eration has been established with NEDO of Japan, Fondation Energies pour le Monde (FONDEM) of France,Swedish International Development Cooperation Agency (SIDA), Nord-rhein-Westfalen (NRW) of Germany,Solar Electric Light Fund (SELF) of

Figure 1: Solar radiation in the north, middle and south of Viet Nam

10

234567

12345

6789101112

Months

S o l a r r a d i a t i o n (k W h /m 2/d a y )

Ho Chi Minh city Hanoi Danang

Figure 2: Development of photovoltaics in Viet Nam (1989-2008)

P h o t o v o l t a i c c a p a c i t y (k W p )

40801201602401989

2001991

1993

1995

1997

1999

2001

2003

2005

2007

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

Years

TECH MONITOR z Nov-Dec 2009

31

the United States, Korea Institute of Energy Research (KIER) of the Repub-lic of Korea, Atersa of Spain, and some other institutions from the European Union countries. Total international investment on PV in Viet Nam was about US$50 million (Table 2). Inter-national cooperation has been a major catalyst, spurring renewable energy development, promoting local technol-ogy and building up human resource skills in Viet Nam. The Government of Viet Nam has always provided budg-etary support of up to 30 per cent for such cooperation activities.

Government policy and Master Plan VI

A government policy on renewable energy is taking shape in Viet Nam at present. The government plans to increase budget for renewable energy projects in rural areas and establish a renewable energy fund for invest-ment support. It is already supporting

PV research at the Semiconductor-Nano Laboratory in the high-tech park at HCM city (US$11 million) and the semiconductor laboratory of the Na-tional University (US$5 million). The government supports transfer of the latest PV technologies to Viet Nam,and encourages foreign investment for local PV manufacture.

At the present, import is duty-free for solar modules and for all solar pro-jects. The government is encouraging banks to provide investment capital for PV industries. On other hand, the government has decided to use ODA fund for developing grid-connected solar plant and large solar power projects. During 2009-2012 about 3-5 MWp of PV power will be added using ODA from Japan. In July 2007,the Vietnamese government approved Master Plan VI, which envisages rural electrification using renewable energy.Viet Nam generates 68,699 GWh of electricity and consumes 57,366

Year Photovoltaic application

Number

Installed Total capacity

capacity (Wp)

(KWp)

1989-2008Solar home system 4,00022-100314,0101989-2008Public systems 152100-30030,3941989-2008Medical centre

24150-3003,4501990-2008Telecommunication systems 2,000

500-3,0001,000,000

1996-2000Radio telephone 275-1000,1751995-2008Forest guard station

90100-1,00032,0001989-2008Cultural & battery charging centre 80300-3,20052,0001990-2008Navigation beacon 1,300

50-15045,0001995-2008Satellite receiver 50500-4,000100,0002000-2003Solar boat 2250-6400,8902002-2006Solar power plant 2100-154254,0002005-2008Solar villa/house roof 71,000-4,00011,2001999-2008Solar school 23200-1,00012,2501989-2008Street lamps 20050-16050,0002001Solar ambulance 15000,5001990-2008Water pumping 3100-5001,9001989-2008National park 12200-1,0005,0001989-2008Solar lantern 4210-2003,3.562004-2008

Public lighting 100

50-2008,000TOTAL

8,090

2,407,175

Table 1: Development of photovoltaic applications in Viet Nam

Source: Dung, 2009a

Cultural-cum-battery charging centre

Solar ambulance

32

TECH MONITOR z Nov-Dec 2009

GWh annually. The growth in the rate of consumption is about 15-20 per cent per year and the country will need to import energy beyond 2010(Figure 3). The energy sharing pat-tern is: industry 49.9 per cent; civil and services 41.0 per cent; agricul-ture 0.97 per cent; and others 9.0 per cent.

According the Master Plan VI, re-newable energy in Viet Nam is envi-sioned to develop in two stages to reach the total of 4,050 MW by 2025:2015 MW during the period 2006-2015; and 2026 MW during the period 2015-2020. Rural households are expected to be electrified by 2020using renewable energy sources.

Photovoltaic project Sponsor Implementing Budget (US$)Years organization Energy solidarity Fondem, France &Solarlab 1,000,0001989-2000Vietnam - France

Dostes, Viet Nam Solar lighting for Women by SHS SELF, United States Wu - Solarlab 150,0001995-1998RET’s PV Project

SIDA, Sweden Solarlab 170,0001997-2004RET’s Biomass Briquetting SIDA, Sweden IE

170,0001997-2004Solar Hybrid Plant NEDO, Japan &Fuji Electric 3,500,0001999-2002MOST, Viet Nam Decentralized Energy for Fondem, France &Solarlab 1,200,0002000-2003Rural Development DI, Viet Nam Solar Electricity NRW, Germany &Solarlab, RERC 200,0002001-2002Viet Nam-Germany

MOSTE, Viet Nam Solar Village

KIER, Rep. of Korea Solarlab 80,0002002-2005Viet Nam-Republic of Korea & Solarlab, Viet Nam National Conference Hall Viet Nam & Germany Lilama

2,000,000 -2006Rural electrification SIDA, Sweden &Ha giang, Quang Nam unknown 2005-2008MOIT, Viet Nam provinces Semiconductor Lab National University,University of 5,000,0002004-2006HCM City Natural Science Semiconductor Nano-Lab HCM City High Tech Park 11,000,0002006-2008Rural electrification

Atersa, Spain &Solarlab-VAST 200,0002006-2009MOST, Viet Nam PV plant 28 KWp at Cham island SIDA, Sweden &DOIT,

600,0002008-2010MOIT, Viet Nam Quang Nam province Grid-connected PV Japan’s ODA Japanese companies 15,000,0002009-2010Others CDG, CORE,Solarlab, IE, RERC,3,200,0001995-2010World Bank, etc.

CODEV, etc.

TOTAL

50,000,000

1989-2010

Collected by Solarlab from different sources (2009)

Table 2: International projects and total investments on PV in Viet Nam

Figure 3: The structure of energy balance of Viet Nam by 2015

28.5%

32.0%31.6%

4.9% 3.0%

Hydro power

Thermal power

Gas power

Renewable energy

Imported electricity

Photovoltaic technology in Viet Nam

Since 1975, PV has been studied at the Centre of Physics, HCM City, of the Viet Nam Academy of Science. The first solar cell was made in 1976 on monosilicon crystal of 5 cm diameter. During 20 years of research, different types of solar cells – such as thin film solar cell, mono-silicon solar cell (η=13 per cent), polysilicon solar cell (η = 12 per cent) and amorphous sili-con solar cell (η = 7 per cent) – have been developed at Solarlab, the Viet Nam Academy of Science & Technol-ogy. In 2000, the first prototype solar module has been developed to inter-national quality standard (Dung, 2005). PV energy saving technology A photovoltaic energy saving technol-ogy (PVEST) has been researched and developed for improving the ef-ficiency of PV systems (Dung, 2008). All kinds of PV equipment – such as solar regulator, true sine inverter and DC compact energy-saving lamps –have been manufactured in Viet Nam. Except for the solar module, 80 per cent of PV equipment are provided by local manufacturers. Most of them still follow analog technology, with only a small part utilizing digital tech-nology for monitoring and manage-ment systems.

True sine inverters up to 10 kVA and solar chargers with 10-12 chan-nels have been developed. In a joint venture with SPI GmbH of Germany,

solar generators have been manu-

factured under the brand of ‘Smart

Green Power’ and exported to Africa,

Europe, Iran, etc. In general, the PV

equipment technology is well devel-

oped in Viet Nam, and it can well serve

the domestic market with competitive

price and quality. Three years ago,

Solarlab had successfully designed

Madicub, an integrated solar-local grid

managing system suitable for expand-

ing PV power anywhere, any time. This

mode is being further developed for

rural electrification, as a “mini solar

power plant”, in the range of a few

kWp up to little less than 100 kWp.

Figure 4 shows the block diagram.

The integrated system is designed

on the basis of hybrid technology,

which is flexible and easily modified

to meet local conditions in different

configurations, as follows:

For mountainous area: Solar energy

+ micro-hydro energy/Madicub

For coastal and island area: Solar

energy + wind energy/Madicub

For inland area: Solar energy + Diesel

generator or biomass energy/Madicub

For towns and cities: Solar energy +

power grid/Madicub

Madicub is available from 1 kVA to

10 kVA – basic for a solar array of a

variable power range between 500 Wp

and 10 kWp.

The development of DC compact

energy saving lamp (CESL) was been

in 2000. While the cost of this lamp

is slightly higher than the traditional

fluorescent lamp, the advantages it

offers are enormous. It has about 10

times higher lifetime, bright and soft

light, and consumes much less power

than traditional lamps. The last fea-

ture allows the use of more CESLs

than the fluorescent lamps with a

similar PV system. CESL lamps are

also aesthetically pleasing. It is a very

popular accessory for PV develop-

ment. The 12 Vdc CESL saves 70 per

cent energy, helping to reduce the

cost of an SHS by 5-10 per cent in Viet

Nam. Adaptive research on CESL was

completed under the RET project and

pilot manufacturing is in the offing.

However, as CESLs are less energy-

saving than LEDs and harmful to the

environment, they are being gradu-

ally limited. The popularity of LED

lighting is growing fast in Viet Nam,

and it features in CDM project, solar

street lamps and “fish luring LED”.

Smart Integrating

PV Technology (SIPV)

The Smart Integrating PV Technology

(SIPV) is a complete solution for grid-

connected renewable energy sources

and does not waste any electricity

generated from renewable energy

sources (Dung, 2009b). It is very

efficient in its usage of PV and other

renewable energy sources, and is

useful against black out and during

erratic grid power supply as well. The

block scheme of SIPV is presented

in Figure 5. All local renewable energy

sources, mainly a PV array, could be

used to feed the local network with

electricity. The shortfall in the energy Figure 4: The block diagram for Madicub

Rural electricity

Energy security

Wind

Grid

Diesel generator

Hydroelectric

Standby equipment

Support grid

Continuous source

Cheap grid power price

TECH MONITOR z Nov-Dec 200933

supply will be drawn from the grid auto-matically. When the power from PV array is inadequate, a battery bank will kick in to prevent black out. Similarly, when the grid is off and solar power is insufficient, Madicub will switch over (switching time 30 ms) to battery mode and supply power to the local network. This operation will also commence when the battery bank is too full and needs to be partially discharged.

When the solar electricity load is above 10 per cent of the set value, the PV Madicub (true sine; standard fre-quency ±1 per cent) will automatically switch off partly to regulate power supply to the local network. The addi-tional solar electricity generated will be used to charge the battery bank for energy storage.

The system helps reduce expense towards power purchase by tapping grid electricity only from 22:00 PM to 04:00 AM.2 The grid-charger is pro-grammed to jump in to buy power for charging battery bank for storage, and use that power in peak times when grid power is at the highest price. SIPV works in fully automatic mode and all operations are monitored and man-aged. The SIPV technology won the Gold Cup at the Asia Tech-Mart Plus

3 (Asian countries plus Japan, China

and the Republic of Korea) in 2009.

The first solar roof (12.6 kWp) using

SIPV technology has been displayed

by Solarlab and Tuan An Group at

Tuan An headquarters in HCM City.

Mega Solar Programme

2010-2025

Solar electricity industry is expanding

around the world. It has several ad-

vantages over other energy sources:

it is endless and clean, and has no

waste, noise or negative environmen-

tal impact. It is expected to be the

number one energy source by 2100,

meeting up to 75 per cent of the global

energy demand (Dung, 2009c).

Objectives

The demand and market for renew-

able energy exploitation in Viet Nam

is very high and urgent, as reflected

in Master Plan VI. In recognition of

this, a Mega Solar Programme (MSP)

is under preparation for discussion

in a Joint Ministerial Meeting before

submission for government approval.

MSP has the following main goals:

z Increase the competitiveness of

Viet Nam’s solar electricity indus-

try to world level by 2025;

z Raise the country’s position in the

region to the top in PV technology

development and PV production

capacity;

z Effectively exploit solar electricity

to secure national energy supply,

and national socio-economic dev-

elopment in general, by providing

the country 250 MWp, which is

equivalent to 1.25 billion kWh/day

or 456.25 billion kWh/year by 2025;

z Decrease the price of solar elec-

tricity by 30 per cent by 2015, and

to the level of the price of tradition-

al electricity by 2040; and

z Ensure that the national grid, in-

cluding solar electricity, will fully

electrify the entire country by 2025.

Programme content

MSP will be implemented with the co-

operation of both public and private

sectors. Three groups of projects are

planned as the following:

A. Public welfare projects: This group

of projects will play a crucial role in

pushing the development of solar

electricity in Viet Nam. It will establish

solar electricity projects and collect

reliable data on the development pro-

cesses and for proof of solar energy

potential. The data will be submitted

to the government in order to improve

the legal foundation – by way of poli-

cies, regulations and legislations –

to promote research, investment and

manufacture of solar energy.

B. Core technologies projects: This

group of projects aims to develop Viet

Nam’s photovoltaic industry to world

level.

C. Fiscal stimulus projects: This group

of projects, which will be tied to the

output of the core technologies pro-

jects, are investment projects for the

construction of establishments that

use solar electricity.

Kim Dinh International Group Joint

Stock Company, Tuan An Group Joint

Stock Company and many other local

companies in the energy business

are very interested in participating in

the development of solar electricity.

The private sector is looking forward

to a long-term, comprehensive nation-

al solar energy programme. Four big

projects have been already planned

and are awaiting macro policy support

Figure 5: The block scheme of SIPV 2 Electricity Viet Nam’s tariff is the lowest

from 22:00 PM to 04:00 AM.

34TECH MONITOR z Nov-Dec 2009

TECH MONITOR z Nov-Dec 2009

35

from the government: 10,000 solar roof project (Tuan An Group); 2 MWp local,grid-connected solar plant project (Tuan An Group); 10,000 solar and renewable energy public lighting pro-jects (Kim Dinh International Group);and renewable energy demonstration park project. Besides these, two core technologies projects have also been planned: project for building a factory to produce 15 MW/year of solar cells and solar modules (Tan Hiep Phuc Joint Stock Company), project for building a factory to produce 10 kW and 25 kW solar thermal parabolic dishes using Stirling technology [co-operation between Germany’s Stirling Sun Power International GmbH (SSPI)and three Viet Nam companies].

Solar roof project

Potential investors: Tuan An Group Joint Stock company and Viglacera Group.

Details: 10,000 solar roofs from 1 kWp to 100 kWp, using SIPV technology with total capacity of 10 MWp will be built across the country. The project aims to effectively use solar electricity to balance the national grid supply in urban areas and to electrify remote inland/island/border areas. This pro-ject will lay a foundation for the devel-opment of solar electricity in Viet Nam.Technologies and human resource for solar industry will be also devel-oped through the project.

Renewable energy public lighting project

Potential investors: Kim Dinh Interna-tional Group Joint Stock Company Details: Public lighting shares a big portion in the national energy balance.However, the existing public lighting systems in Viet Nam are obsolete, and cause enormous energy loss. The

new public lighting project goal is to produce and install 10,000 efficient lighting systems using light emitting diode (LED) and high intensity dis-charge (HID) technologies, which may save up to 70 per cent of energy, to replace the existing high voltage light bulb systems, and employ renewable electricity source instead of grid for public lighting. Besides supplying for the local market, the project also looks forward to exporting to international market. Kim Dinh International Group has plans to build a high-tech factory for manufacturing lighting devices.With 10,000 new public light systems to be installed across the country, the initiative will be a full-scale demon-stration project for renewable energy.Local grid-connected solar plant project

Potential investors: Tuan An Group Joint Stock company, ODA capital from Spain and others

Details: This project will build the first local grid-connected solar plant on a remote island of Viet Nam. It will lay the foundation for exploiting solar energy to support coastal and remote island communities, and in supporting na-tional security and defence capability.Manufacturing accessory devices project

Potential investors: Tuan An Group Joint Stock company

Details: With technology transferred from Germany, Tuan An Group will con-struct a factory in Long An province for manufacturing smart PV devices.The factory will produce devices and equipment for solar industry such as

solar chargers and solar inverters. At the first step, this factory will provide devices for a 2 MW grid-connected local solar plant. In the long run, the factory is expected to produce high quality PV devices for local market and gradually extend to international market.

Manufacturing solar cells and solar modules project

Potential investors: The General De-partment of Defence Industry, Tan Hiep Phuc Joint Stock company

Details: Tan Hiep Phuc has brought out a feasibility study report for a pro-ject to build a factory with capacity of 15 MW per year solar cells and solar modules. The project is seeking for cooperation with Taiwanese compa-nies and other local companies.Renewable energy demonstration park project

Potential investors: RCEE

Details: This project will build a dem-onstration park to demonstrate all kind of renewable energies in the “World Biosphere” area Can Gio, HCM city. In the park, the most advanced technol-ogies in renewable energy industry will be demonstrated. Besides a 200kWp solar farm, wind, biogas and bio-mass farms are also planned to be built.

Electric and solar taxi project Potential investors: Mai Linh Energy Joint Stock Company

Details: Mai Linh has brought out a feasibility study report about using electric taxies in Lao Bao Special Eco-nomic Zone of Quang Tri province. The company is working to transfer the technology into Viet Nam. The success of this project will be a starting point for using electric cars in ecotourism zones, export processing zones, in-dustrial zones, etc.

Manufacturing solar thermal para-bolic dishes project

Potential investors: SSPI, Germany,and 3 local companies

Details: The project is about building a factory to produce 10 kW and 25 kW solar thermal parabolic dishes in Tay Ninh Industrial Zone. The planned

capital investment is US$20 million.

Solar roof on a villa

Solar street lights

Solar fishing boats project Potential investors: Kim Dinh Interna-tional Group Joint Stock Company Details: Solar power will provide elec-tricity for modern facilities aboard the boat as well as promote the living standards of fisherfolk. GPS systems and fish sensor on the boats would be solar-powered. HID lamps and CESL lighting will be used during fishing. Programme management

and operation

This programme, a pioneering effort in Viet Nam, would face many man-agement and technological obstacles. It urges strong cooperation among policy-makers, researchers, enter-prises and the government to orient towards a sustainable development of the solar industry of Viet Nam. The Ministry of Industry and Trade, the Ministry of Planning and Investment, the Ministry of Science and Technol-ogy, and the Ministry of Natural Re-source and Environment, as well as the Academy of Science and Tech-nology are involved in managing the programme. The Academy is respon-sible for establishing the programme. The Ministry of Industry and Trade and the Academy will directly manage MSP.

MSP will have two stages. Stage 1 (2010-2015) will establish and dev-elop the national solar industry. The Institute of Science and Technology will manage this stage, building the bridge between enterprises and gov-ernment. Stage 2 (2015-2025), which involves mass production and com-petitive trading in domestic and the world markets, will be managed by the Ministry of Industry and Trade. The 200 MWp solar electricity project to support the national grid and rural electrification will be in this stage. Programme structure Government bodies:

z Representatives of the Ministry of Industry and Trade, the Ministry of Natural Resource and Environ-ment, the Ministry of Science and Technology, the Ministry of Finance; z Representatives of the Academy of Science and Technology and the General Department of Defence Industry; and z Representatives of the community

of HCM city, the Centre of Science

and Technology of HCM city.

Enterprises:

z Representative of EVN, PetroVN;

z Kim Dinh Group International Joint

Stock Co, Tuan An Group Joint

Stock Co., Mai Linh Corporation

and Viglacera Group; and

z Tan Hiep Phuc Joint Stock Co.,

Tan Ky Nguyen Ltd. and Selco-

Viet Nam Ltd.

Finance:

z Viet Nam Environment Protection

Fund;

z HCM city Technology Development

Supporting Fund;

z The National Bank;

z Dragon Capital Investment;

z Indo-China Investment; and

z Other joint stock banks and other

funds.

Financial mechanism of the

programme

z Estimated total capital of the pro-

gramme: US$1.5 billion

z Average annual capital investment:

US$100 million/year

z Share proportions in the capital

investment:

?National budget: 20 per cent;

?Enterprise: 40 per cent; and

?FDI and ODA: 40 per cent.

National budget: This is the budget

from the ministries, government of-

fices and National Science Fund. It

will be used mainly for public welfare

projects, technology transfer and hu-

man resource training. Besides, when

suitable, this budget can also be used

to partially support other non-welfare

projects.

Enterprise investment: The potential

capital source for Core Technologies

Projects and Fiscal Stimulus Projects.

However, this capital source is looking

for encouragement from government

policies and support from the banks.

Foreign ODA fund and foreign direct

investment: The government should

have detailed policies to allow Core

Technology Projects and Fiscal Sti-

mulus Projects to use ODA funds. This

source of capital is mainly used for

Fiscal Stimulus Projects. The govern-

ment should have detailed policies

to encourage foreign investments, as

well as to encourage local enterprises

to join in projects supported by for-

eign investment and non-government

organizations’ funds to attract more

international support.

Conclusion

Viet Nam is a very potential country for

renewable energy development and

for establishing PV technology and

industry. The most important factor

that can boost PV energy in Viet Nam

is good government policies.

References

1.Dung, T.Q. (2003). Electrification

of the high-land village by solar

power: an effective cooperation

between Vietnam and Germany.

Paper presented at the 3rd World

Conference on Photovoltaic Energy

Conversion, Osaka, Japan. Insti-

tute of Electrical and Electronics

Engineers, Kurokawa, Japan.

2.Dung, T.Q., Anisuzzaman, M.,

Kumar, S., Bhattacharya, S.C.

(2003). Demonstration of multi-

purpose battery charging station

for rural electrification. Renewable

Energy, 28, December 2003, 2367-

2378.

3.Dung, T.Q. (2005). Development

of Solar Electricity in Viet Nam.

Science & Technology Publishing

House, HCM City, Viet Nam.

4.Dung, T.Q. (2008). PV research

and effective exploitation of solar

electricity in Viet Nam. Paper pre-

sented at APEC Photovoltaic Con-

ference, October 2008, Taiwan.

5.Than, H.H. (2008). Replacing

energy sources in the period of

growing oil prices. Paper pre-

sented at the 5th Workshop, 11

August 2008, HCM City, Viet Nam.

6.Dung, T.Q. (2009a). The 2nd

Greater Mekong Sub-region Con-

ference, 8-9 September 2009,

Thailand.

7.Dung, T.Q. (2009b). Workshop on

Scientific Cooperation between

Viet Nam and the United States of

America, 24 September 2009,

HCM City, Viet Nam

8.Dung. T.Q. (2009c). CDM Projects

Forum, 27 August 2009, Saigon,

Viet Nam.

36TECH MONITOR z Nov-Dec 2009

2012年全球太阳能光伏产业发展报告

1111 2011年中国及海外太阳能光伏产业发展报告11111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111111111111111111111111111111

目录 第一章太阳能光伏简介 .................................................. - 4 - 第一节太阳能简介 (4) 一、什么是太阳能............................................................ - 4 - 二、太阳能光热转换.......................................................... - 4 - 三、太阳能光电转换.......................................................... - 5 - 第二节太阳能光伏简介. (5) 一、太阳能光伏概况.......................................................... - 5 - 二、太阳能电池的原理........................................................ - 6 - 三、太阳能电池的分类........................................................ - 7 - 四、太阳能光伏系统分类...................................................... - 9 - 五、太阳能光伏系统设备..................................................... - 10 - 第三节太阳能的利弊分析. (11) 第二章世界光伏市场概况 ................................................ - 12 - 第一节光伏产业背景 (12) 第二节世界光伏市场 (12) 一、历史概况............................................................... - 12 - 二、世界各国中长期规划..................................................... - 13 - 三、世界各国光伏发展政策................................................... - 14 - 第三节世界各国光伏市场分析 (15) 一、德国光伏市场回顾与展望................................................. - 15 - 二、美国光伏市场回顾与展望................................................. - 16 - 三、意大利光伏市场回顾与展望............................................... - 17 - 四、日本光伏市场回顾与展望................................................. - 17 - 五、西班牙市场回顾与展望................................................... - 18 - 六、法国光伏市场回顾与展望................................................. - 19 - 七、韩国光伏市场回顾与展望................................................. - 20 - 八、希腊光伏市场回顾与展望................................................. - 20 - 九、葡萄牙光伏市场回顾与展望............................................... - 21 - 第三章光伏产业链...................................................... - 22 - 第一节晶硅太阳能电池产业链 (22) 一、产业链构成............................................................. - 22 - 二、光伏产业价值链分析.................................................... - 22 - 三、全球厂商总体分析...................................................... - 23 - 四、光伏产业链各环节目前技术现状.......................................... - 24 - 第二节晶体硅原料. (24) 一、多晶硅产能扩张后等待需求复苏........................................... - 24 - 二、多晶硅生产工艺......................................................... - 25 - 三、硅片................................................................... - 26 - 第三节电池、组件生产 (27) 一、电池分类............................................................... - 27 -

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1xx 太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2xx 太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3xx 太阳能光伏组件生产工序及工艺流程 第4xx 电池片的分选、检测和切割工序 第5xx 电池片的焊接工序 第6xx 叠层铺设工序 第7xx 层压工序 第8 章装边框及清洗工序

第9xx 光伏组件的检验测试 第10xx 光伏组件的包装 第11xx 常用设备及操作、维护要点 第12xx 光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件 12.2 光伏组件的板型设计 12.3光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录 1 常用光伏组件规格尺寸及技术参数 附录2 IEC61215质量检测标准 附录3 ............. 第1xx 太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。 使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚图1-1 太阳能光伏电池发电原理

太阳能发电产业发展前景

太阳能发电产业发展前景 能源是现代社会存在和发展的基石。随着全球经济社会的不断发展,能源消费也相应的持续增长。随着时间的推移,化石能源的稀缺性越来越突显,且这种稀缺性也逐渐在能源商品的价格上反应出来。在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。 太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。 我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。太阳能电池是光伏发电系统中的关键部分,包括硅系太阳电池(单晶硅、多晶硅、非晶硅电池)和非硅系太阳能电池等。多晶硅薄膜电池由于所使用的硅材料较少,又无效率衰退问题,并且可以在廉价衬底材料上制备,其成本远低于单晶硅电池,经济效益较好。此外,非多晶硅薄膜电池也具有极大的发展潜力。 在晶体硅太阳能电池的产业链上分布着晶硅制备、硅片生产、电池制造、组件封装四个环节。上游环节的企业掌握技术优势,具有较强的议价能力,可以通过提高产品价格将成本压力向下游传导,从而保证自身获得较高的盈利能力。非多晶硅薄膜电池可以用IC废料作为原料,成本低廉。 在各国政府的扶持下,世界太阳能电池产量快速增长,1995-2005年间,全球太阳能电池产量增长了17倍。我们预计,2010年全球太阳能电池的年产量有望较2005年的年产量增长倍,整个行业的销售收入有望增长倍。 我国太阳能资源非常丰富,开发利用的潜力非常大。我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。 2005年后,我国太阳能发电产业有了突飞猛进的发展,无锡尚德、天威英利、新光硅业、浙江中意、赛维LDK、新疆新能源、常州天合、天津京瓷等公司纷纷进入成长期,生产规模不断扩大,技术水平不断提高,企业竞争力不断增强。

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

光伏行业背景及发展 报告

光伏行业背景及发展报告 —陕西北人光伏背板首条涂布生产线5周年记 能源是整个世界发展和经济增长的最基本的驱动力,是人类赖以生存的基础。自工业革命以来,能源安全问题就开始出现。1913年,英国海军开始用石油取代煤炭作为动力时,时任海军上将的丘吉尔就提出了“绝不能仅仅依赖一种石油、一种工艺、一个国家和一个油田”这一迄今仍未过时的能源多样化原则。随着人类社会对能源需求的增加,能源安全逐渐与政治、经济安全紧密联系在一起。但是,人类在享受能源带来的经济发展、科技进步等利益的同时,也遇到一系列无法避免的能源安全挑战,能源短缺、资源争夺以及过度使用能源造成的环境污染等问题直接威胁着人类的生存和发展。 然而地球上化石燃料的蕴藏量是有限的,根据已探明的储量,全球石油可开采约45年,天然气约61年,煤炭约230年,铀约71年。据世界卫生组织估计,到2060年全球人口将达到100―110亿,如果到时所有人的能源消费量都达到今天发达国家的人均水平,则地球上主要的35种矿物中,将有1∕3在40年内消耗殆尽,包括所有的石油、天然气、煤炭(假设为2万亿吨)和铀。所以,世界石化燃料的供应正面临严重短缺的危机局面。 太阳能是用之不尽,取之不竭的能源,如果从太阳能获得电力,将造福人类,人们通过光伏效应制造太阳能太阳电池进行光电变换来实现。它同以往其它电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净(无公害); ③不受资源分布的地域限制;④可在用电处就近发电;⑤能源质量高;⑥使用者在感情上容易接受;⑦获得能源花费的时间短。不足之处是:①照射的能量分布密度小,即要占用巨大的面积;②获得的能源同四季、昼夜及阴晴等气象

太阳能发展前景及利用

太阳能发展前景及利用 选题背景 目前能源危机已成为影响人类继续发展的一项重要因素,太阳能作为一种新型的清洁能源,被人类给予了厚望,太阳能的能否有效利用关系着人类的未来。 项目条件 太阳光线太阳能 研究目的 太阳能已逐渐走进我们的生活,对于太阳能或许我们还有一点陌生,借此机会我们 来讨论一下“太阳能”。 主要研究方法 上网查阅资料查阅相关书籍请教相关人士 研究的基本思路 在本次研究中,通过各种渠道获得相关知识,并加以分析,从中获取自己需要的,加入自己的认识,再编写论文。 研究的先进性 广泛获取信息,具有科学性,真实性。 研究的基本过程 先选取题材,制定学习过程,再通过各种渠道获取相关信息,最后编写论文。论文分为以下步骤:背景及目的,研究过程,研究心得,中英文摘要,太阳能的认识,太阳能的利用范围,太阳能在国内外的利用程度,太阳能的前景,总结。 研究心得 通过此次研究学习我对太阳能有了进一步认识,对资源节约及开发也有了新的理解。通过本次学习提高了我的综合能力,拓宽了我的知识面。

中文摘要 太阳是一个巨大、久远、无尽的能源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约为3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。下图是地球上的能流图。从图上可以看出,地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。 英文摘要 Thesolarenergyisanenergy,andiscanrenewableenergy.Itsresourcesisabund ant,freetouse,anddidn'tneedtobetransported,totheenvironmentiswithoutthep ollution.Butthesolarenergyalsohastwomainweakness:Oneisflowdensitylow;Two isitsstrengthundertheinfluenceofvariousfactor(season,location,andweather ...etc.)cannotmaintainquantityoften.Thesetwogreatestweaknessesconsumedly limitedsolarenergyeffectivelytomakeuseof. 关键词 太阳能环境资源清洁 太阳能的认识 太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367kw/m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h 的年平均辐射强度为0.20kw/m2,相当于有102,000TW的能量,人类依赖这些能量维

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

太阳能电池的发展历史

龙源期刊网 https://www.wendangku.net/doc/5215077196.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

太阳能发展前景及利用结题报告ppt

太阳能发展前景及利用结题报告ppt 篇一:XX年太阳能利用现状研究及发展趋势 中国太阳能利用行业发展现状分析与市场 前景预测报告(XX-2020年) 报告编号:1657503 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.wendangku.net/doc/5215077196.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。 一、基本信息 报告名称:中国太阳能利用行业发展现状分析与市场前景预测报告(XX-2020年)报告编号: 1657503←咨询时,

请说明此编号。优惠价:¥7380 元可开具增值税专用发票 网上阅读: XuQiuFenXiYuFaZhanQuShiYuCe.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 中国太阳能利用行业发展现状分析与市场前景预测报告(XX-2020年)对我国太阳能利用行业现状、发展变化、竞争格局等情况进行深入的调研分析,并对未来太阳能利用市场发展动向作了详尽阐述,还根据太阳能利用行业的发展轨迹对太阳能利用行业未来发展前景作了审慎的判断,为太阳能利用产业投资者寻找新的投资亮点。中国太阳能利用行业发展现状分析与市场前景预测报告(XX-2020年)最后阐明太阳能利用行业的投资空间,指明投资方向,提出研究者的战略建议,以供投资决策者参考。 中国产业调研网发布的《中国太阳能利用行业发展现状分析与市场前景预测报告(XX-2020年)》是相关太阳能利用企业、研究单位、政府等准确、全面、迅速了解太阳能利用行业发展动向、制定发展战略不可或缺的专业性报告。正文目录

太阳能光伏发电的现状与前景

太阳能光伏发电的现状与前景.txt心脏是一座有两间卧室的房子,一间住着痛苦,一间住着快乐。人不能笑得太响,否则会吵醒隔壁的痛苦。本文由haitaohuahua贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏发电研究现状与发展前景探讨 可再生能源,包括太阳能、风能、生物质能、水能、地热能、海洋能等,是取之不尽、用之不竭、清洁环保、免费使用的能源,也是世界上最终可依赖的初级 [1] 能源。太阳能是一种清洁的可再生能源。太阳能开发利用的巨大潜力推动着太阳能光伏发电技术不断向前发展。 1893 年,法国科学家贝克勒尔发现“光生伏打效应” , 即“光伏效应”。1930 年,朗格首次提出用“光伏效应”制造“太阳能电池”,使太阳能变成电能。1954 年,恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶太阳能电池。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第 1 块薄膜太阳能电池。随着世界经济的不断发展,全球能源短缺、环境污染等问题日益严重,可再生能源的应用受到了各国的普遍关注。太阳能光伏发电作为可再生能源利用的重要组成部分,得到了众多国家政府的大力扶持。20 世纪 70 年代以来,美国、德国、日本等国政府陆续出台相关政策,加大太阳能光伏发电产业的发展力度,使得世界光伏发电产业高速发展。 1997—2007 年,太阳能电池的产量由 125.8MW(该功率为峰值功率,下同)增加到 4 000. 05MW,年平均增长率高达 41.3%。根据欧盟联合研究中心的预测,到 2030 年太阳能光伏发电在世界总电力供应中将达到 10%以上, 到 2040 年这一比例将达到 20%以上,在不远的未来将成为世界能源供应的主体。 [2] 1 太阳能光伏产业的发展现状 在技术进步和相关鼓励政策的双重推动下,太阳能光伏产业自 20 世纪 90 年代后期进入了快速发展时期。截止 2007 年底,世界累计生产了 12. 64GW 太阳能 [3] 电池,由此推断,光伏发电的实际总装机应该接近 12GW 。欧洲光伏市场是世界最大的光伏市场,而且在持续增长。其中,德国光伏市场份额全球最大, 2006 年占 51. 0%, 2007 年占 46. 99%。亚洲光伏市场近几年有所萎缩(主要由于亚洲拥有最大光伏市场的日本结束了光伏补贴政策,导致市场发展滞后),我国光伏市场份额更小。2006 年、2007 年亚洲太阳能电池产量约占世界电池产量的 65%。由此可见,亚洲是太阳能电池的主要生产和输出地区。亚洲的太阳电池生产主要集中在中国大陆、中国台湾和日本。2007 年中国大陆太阳能电池产量达到 1 088MW,占全世界太阳能电池产量的 27. 2%。从产量看,我国已经成为太阳能电池的第一生产国。 2 太阳能光伏发电的原理 光伏发电的基本原理如图 l 所示。半导体材料组成的 PN 结两侧因多数载流子(N 区中的电子和 P 区中的空穴)向对方的扩散而形成宽度很窄的空间电荷区 w, 建立自建电场 Ei。它对两边多数载流子是势垒,阻挡其继续向对方扩散,但它对两边的少数载流子(N 区中的空穴和 P 区中的电子)却有牵引作用,能把它们迅速拉到对方区域。稳定平衡时,少数载流子极少,难以构成电流和输出电能。但是, 当太阳光照射到 PN 结时,如图 l(a)、(b)所示,以光子的形式与组成 PN 结的原子价电子碰撞,产生大量处于非平衡状态的电子-空穴对,其中的光生非平衡少数载流子在内建电场Ei 的作用下,将 P 区中的非平衡电子驱向 N 区,N 区中的非平衡空穴驱向 P 区,从而使得N 区有过剩的电子,P 区有过剩的空穴。这样在 PN 结附近就形成与内建电场方向相反的光生电场 Eph。光生电场除一部分抵消内建电场外,还使 P 型层带正电,N 型层带负电,在 N 区和 P 区之间的薄层产生光生电动势。当接通外部电路时,就会产生电流,输出电能。当把众多这样小的太阳能光伏电池单元通过串并联的方式组合在一起构成光伏阵列,就会在太阳能作用下输出足够 [4] 大的电能。 3 太阳能光伏发电的几个关键问题

太阳能的应用现状及发展前景

太阳能的应用现状及发展前景 .txt13 母爱是迷惘时苦口婆心的规劝;母爱是远行时一声殷切 的叮咛;母爱是孤苦无助时慈祥的微笑。本文由 wq3826368 贡献 pdf 文档可能在 WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 科技信息 基础理论研讨 太阳能的应用现状及发展前景 中北大学化工与环境学院环境工程系吴红山 [ 摘要 ] 太阳能的利用技术已是当今世界各国探索新能源、利用新能源 , 进行节能、 环保的重要研究项目之一。本文介绍了太阳能资源的特点, 国内外研究现状。论述了太阳 能利用存在的问题, 并提出了解决方案。最后预测了太阳能的应用前景。 [ 关键词 ] 太 阳能应用现状问题前景 1.太阳能资源的特点太阳能不同于石油、煤炭等燃料 , 不会导致“温室效应”也 , 不会造成环境污染, 而且, 每年到达地球表面的太阳辐射能约相当于 130 万亿吨标准 煤 , 其总量属现今世界上可以开发利用的最大能源 , 所以 , 太阳能是一种非常清洁的 能源, 它 的应用已经受到世界各国的重 视。太阳能是指在太阳内部进行的由 “氢” 聚变成 “氦” 的原子核反应 , 不停地释放出巨大的并不断的向 宇宙空间辐射的能量。地球所接收到的太 阳能只占太阳表面所发出的全部能量的二十亿分之一左 右 , 而这些能量相当于全球所 需能 量的 34 万倍。~虽然 , 到达地球表面的太阳辐射能的总量 很大, 但是能流 密度很低。 平均来说 , 北回归线附 近 , 夏季天气较为晴朗 时 , 正午时太阳辐射幅照度最大 , 在垂直 于 太阳光方 向1m 2 面积上接受到的太阳能平均有1000 左 右 , 若按全年日夜平均计算, 只 有 W 200 左右。冬季大致只有一 半, 阴天一般只有1 5 左右。因此 , W 在利用太阳能 时, 想 要得到一定的转化功率 , 需要面积相当大的一套收集和转换设 备, 造价较高。并且 , 由于 受到昼夜、季节、地理纬度和海拔高度等自然条件的限 制,以及晴、 雨、阴、云等 因 素的影响, 到达某一地面的太阳辐射照度既是间断的又是极不 稳 定的。而 且 , 目前太阳能 利用的发展水平 , 有些方面理论上与 技术上都是可行的 , 但有一部分太阳能利用装 置, 因 为效率太低 , 成本过高 , 其经济性还不能与常规能源相竞 争。这给太阳能的大规模应用增 加了难度。 2 、太阳能利用的国内外现状在太阳能热利用方 面, 太阳热水器技术日趋成 熟, 应用领域已从生活热水扩大到泵水、采暖、制冷空调、海水淡 化、工业加热、热发电 等。清华大学潍坊太阳能基地为山东省潍坊地区高 密市电业局办公楼设计的主动太阳能系 统, 该办公楼建筑面积 400m 2 , 采用楼顶横排式热管集热 器, 加设一台电锅炉作为辅助热 源, 室内完全可以达到满意的舒适 度 [1 ] 。利用太阳能提供采暖和生活热水的技术已经 相 当成熟。美国、德 国、日本等国都相继建立起了不同规模的太阳能空调示范系统。国 内专家、学者研制出新一代环 保、节能高科技产品车用温控宝 (TOYA),TOYA 以太 阳能为能 源 , 采用国际上先进的单晶硅太阳能芯 片 , 根据天气变化灵活的调节车内温 度。 法国一家船舶公司的科学家研制出了太阳能冰 箱, 这种太阳能自动制冰机仅靠一个太阳能 接收器 , 在接收器里装活性炭 , 向这些活性炭“灌进”甲醇。夜晚因气温下活

太阳能光伏发电技术及其发展前景

本文由午夜寒光贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 (s' 『 1 Ⅲ…节能减排 :e l { 1 l o n l na l 一 太阳能光伏发电技术及其发展前景 ●湖北十堰刘道春 1 太阳能光伏发电市场前景广阔 当煤炭 , 油等化石能源频频告急 , 源问题日益成石能为制约国际社会经济发展的瓶颈时 ,越来越多的国家开始实行" 阳光计划 " 开发太阳能资源 , 求经济发展的新 , 寻动力 .欧洲一些高水平的核研究机构也开始转向可再生能源 . 国际光伏市场巨大潜力的推动下 , 国的太阳能在各电池制造商争相投入巨资 , 大生产 , 争一席之地 . 扩以 美国推出了" 阳能路灯计划 "旨在让美国一部分城太 , 阳能发电往往指的就是太阳能光伏发电 . 太阳能发电有两种方式 : 种是光一热一电转换方式 , 一种是光一电一另 直接转换方式 . 光一热一电转换方式通过利用太阳辐射 产生的热能发电 .一般是由太阳能集热器将所吸收的热能转换成工质的蒸气 . 驱动汽轮机发电 .与普通的火力再发电一样 .太阳能热发电的缺点是效率很低而成本很高 , 估计它的投资至少要比普通火电站贵 5 1 — O倍 . 一座 l0 MW 的太阳能热电站需要投资 2 ~ 5亿美元 ,平均O0 02 lW 的投资为 2 0 ~ 5 0美元 .因此 . k 002O 目前只能小规模地市的路灯都改为由太阳能供电 , 据计划 , 盏路灯每年根每 可节电 8 0 Wh 日本也正在实施太阳能 " 0k . 7万套工程计 应用于特殊的场合 . 大规模利用在经济上很不合算 , 而还 不能与普通的火电站或核电站相竞争 .光一电直接转换 划 " 准备普及太阳能住宅发电系统 , 是装设在住宅屋 , 主要 方式是利用光电效应 , 太阳辐射能直接转换成电能 , 将它的基本装置就是太阳能电池 .太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件 ,是一 个半导体光电二极管 .当太阳光照到光电二极管上时 , 光电二极管就会把太阳的光能变成电能 , 生电流 .当多个产电池串联或并联起来就可以成为有比较大的输出功率的 顶上的太阳能电池发电设备, 家庭剩余的电量还可以卖给 电力公司 .欧洲则将研究开发太阳能电池列入著名的" 尤里卡 " 科技计划 , 出了 "O万套工程计划 " 日本 , 国高推 l . 韩以及欧洲地区总共8个国家最近决定携手合作 , 亚洲内在 陆及非洲沙漠地区建设世界上规模最大的太阳能发电站 . 他们的目标是将占全球陆地面积约 l , 4的沙漠地区的长时间日照资源有效地利用起来 ,为 3 0万用户提供 1 0万 0 太阳能电池方阵 .太阳能电池是一种大有前途的新型电源 , 有永久性 , 洁性和灵活性三大优点 . 太阳能电池具清

太阳能的利用及发展前景

太阳能的利用及发展前景 (广东工业大学机电工程学院广州) 摘要::介绍了太阳能的特点、利用的方式、利用优缺点及当前的发展状况,讨论了太阳能利用的发展趋势,及太阳能的利用及发展给人类的生产、生活和社会发展带来的意义。 关键词:太阳能资源;光电转换;利用方式;优缺点 0引言 能源是人类社会活动的物质基础。新能源的开发利用是人类的共识。随着世界经济的飞速发展,对能源需求逐年增长。而地球上以石油和煤为主的矿物资源日渐枯竭-能源已成为制约各国经济发展的瓶颈。同时,随着化石燃料的燃烧,所产生的二氧化碳在大气中的浓度急剧增加,生态环境逐渐恶化.使地球逐渐变暖.酸雨同样是由化石燃料燃烧废气中所含的So 、No 等造成的。随着人类社会的发展,改善生态环境的呼声越来越高,开发利用无污染的新能源,对促进社会文明与进步,发展经济,改善人民生活具有重大的意义。 太阳能是一种清洁的自然再生能源,取之不尽,用之不竭。开发和利用太阳能,既不会出现大气的污染,亦不会影响自然界的生态平衡,而且阳光所及的地方,都有太阳能可以利用,太阳能以其长久性、再生性、无污染等优点备受人们的青睐。 同时,在当今世界,常规能源逐渐减少,而世界人口却逐年增长,科学技术迅速发展,不久的将来.现有的能源转换系统,不可避免地会发生巨大变革,无疑,将会利用一些新能源,这里,太阳能会起重要作用。可以预见,在本世纪末,下世纪初,太阳能将会成为较为重要的动力源。开发利用太阳能是人类社会长期追求的目标。 1太阳能的利用 1.1太阳能的特点 现在,太阳能的利用还不是很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳能电池在为人造卫星提供能源方面得到了应用。太阳能是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。地球轨轨道上的平均太阳辐射强度为1369w/㎡。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102000TW 的能量。 人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外),虽然太阳能资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。 1.2太阳能的利用方式 太阳能利用主要包括光一热转换、光一电转换和光一化学转换三种方式。

太阳能电池发展前景

第二章太阳能电池的基本理论 2.1 半导体 半导体是导电性能介于金属与绝缘体之间的一种材料。在高纯度的半导体中材料中,电子和空穴的浓度相等,这样的半导体称为本征半导体。如果向其中加入某种杂质元素,若电子的浓度大于空穴的浓度,则称它为n型半导体,此时的电子成为多数载流子,空穴则为少数载流子。反之,可以形成p型半导体。 图2.1 半导体的能带图示意图 2.2 pn结及其能带结构 2.2.1 pn结 图2.2 (a)pn结简化结构图(b)理想均匀掺杂pn结的掺杂剖面如图2.2(b)所示,随着扩散运动的进行,在p区和n区的交界面p

2.2.2 pn 结的能带结构 当两块半导体结合形成pn 结时,按照费米能级的意义,电子将从费米能级高的n 区流向费米能级低的p 区,空穴从费米能级低的p 区流向费米能级高的n 区因此,E Fn 不断下降,E Fp 不断上升,直到E Fn = E Fp 为止。这时,pn 结中有统一的费米能级E F , pn 结处于平衡状态。其能带如图所示 图2.3 平衡pn 结的能带图(a)n 、p 型半导体能带(b)平衡pn 结能带图 事实上,E Fn 是随着n 区能带一起向下移动,E Fp 是随着p 区能带一起向上移动的。能带能移动的原因是pn 结空间电荷区存在内建电场的作用。随着内建电场(方向n→p )的增加,空间电荷区内电势V(x)(方向n→p )降低,而电子的势能-qV(x)由n 区向p 区升高,所以p 区的能带相对n 区上移,n 区的能带相对于p 区下移,直至费米能级处处相等时,能带才停止相对移动,pn 结达到平衡状态。 因此,pn 结中费米能级处处相等恰好标志了每一种载流子的扩散电流和漂移电流相互抵消,没有净电流通过pn 结。 这一结论也可从电流密度方程式中推出,电子电流密度和空穴电流密度分别如下: (式2-1) F n n dE J n dx =μ

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

相关文档
相关文档 最新文档