文档库 最新最全的文档下载
当前位置:文档库 › 自适应滤波算法的研究

自适应滤波算法的研究

自适应滤波算法的研究
自适应滤波算法的研究

自适应滤波算法的研究

第1章绪论

1.1课题背景

伴随着移动通信事业的飞速发展,自适应滤波技术应用的范围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器己成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。

在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。

Widrow B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。[1]

自适应滤波是一种最佳滤波方法。它是在维纳滤波,Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。

自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。

任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。[2]这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。

可见,自适应滤波算法的研究与实际状况有着密不可分的关系,具有重要的意义。

1.2国内外目前的研究状况

最早人们根据生物能以各种有效的方式适应生存环境从而使生命力变强的特性引伸出自适应这个概念。自适应滤波器属于现代滤波器的范畴,它是40年代发展起来的自适应信号处理领域的一个重要应用。60年代,美国B.Windrow和Hoff首先提出了主要应用于随机信号处理的自适应滤波器算法,从而奠定自适应滤波器的发展。所谓自适应滤波器,即利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号与噪声未知的或随时间变化的统计特性,从而实现最优滤波。

自适应信号处理主要是研究结构可变或可调整的系统,它可以通过自身与外界环境的接触来改善自身对信号处理的性能。通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细知道信号的结构和实际知识,无须精确设计处理系统本身。自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。自适应信号处理的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等。[3]

自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。其中LMS滤波器和RLS滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。将作为本文研究的重点。

自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。

自适应滤波器是以最小均方误差为准则,由自适应算法通过调整滤波器系数,以达到最优滤波的时变最佳滤波器。设计自适应滤波器时,可以不必预先知道信号与噪声的自相关函数,在滤波过程中,即使噪声与信号的自相关函数随时间缓慢变化,滤波器也能自动适应,自动调节到满足均方误差最小的要求。自适应滤波器主要由参数可调的数字滤波器和调整滤波器系数的自适应算法两部分构成自适应滤波器的一般结构。实际上,自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要实现知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。[4]

第2章自适应滤波的原理及应用

2.1引言

在对随机信号处理过程中经常用到的是维纳滤波器和卡尔曼滤波器两种滤波器。维纳(Weiner)滤波,它根据平稳随机信号的全部过去和当前的观察数据来估计信号的当前值,在最小均方差的条件下得到系统的传递函数或

者冲击响应,它是一种最优线性滤波方法,参数是固定的,适用于平稳随机信号。卡尔曼滤波,它是依据当前时刻数据的观测值和前一时刻对该时刻的预测值进行递推数据处理的滤波算法。它自动调节本身的冲击响应特性,或者说,自动的调节数字滤波器的系数,以适应信号变化的特性,从而达到最优化滤波。它的参数是时变的,适用于非平稳随机信号。然而,只有对信号噪声的统计特性先验已知的情况下,这两种滤波器才能获得最优滤波。可是,在实际应用中,常常无法得到这些统计特性的先验知识;或者,统计特性是随时间变化的。因此,用维纳或卡尔曼滤波器实现不了最优滤波。在这种情况下,自适应能够提供卓越的滤波性能。[5]

2.2自适应滤波器的基本原理

所谓自适应滤波,就是利用前一时刻己获得的滤波器参数等结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优化的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。

由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。

自适应滤波器是以最小均方误差为准则,由自适应算法通过调整滤波器系数,以达到最优滤波的时变最佳滤波器。设计自适应滤波器时,可以不必预先知道信号与噪声的自相关函数,在滤波过程中,即使噪声与信号的自相关函数随时间缓慢变化,滤波器也能自动适应,自动调节到满足均方误差最小的要求。自适应滤波器主要由参数可调的数字滤波器和调整滤波器系数的自适应算法两部分构成自适应滤波器。参数可调数字滤波器可以是FIR滤波器或IIR数字滤波器,也可以是格形滤波器[6]

图2-1示出了自适应滤波器的一般结构。

图2-1 自适应滤波原理图

图中,()x n 为输入信号,()y n 为输出信号,()d n 为参考信号或期望信号,()e n 则是()d n 和()y n 的误差信号。自适应滤波器的滤波器系数受误差信号()e n 控制,根据()e n 的值和自适应算法自动调整。

一个自适应滤波器的完整规范是由如下三项所组成的:

(1)应用 在过去十年中,自适应技术在更多的应用场合(比如回波消除、色散信道的均衡、系统辨识、信号增强、自适应波束形成、噪声消除一级控制领域等)取得了成功。研究自适应滤波器的各种应用本文会简单考虑一些应用例子。

(2)自适应滤波器结构 自适应滤波器可以用许多不同结构来实现。结构的选取会营销到处理的计算复杂度(即每次迭代的算数操作数目),还会对达到期望性能标准所需要的迭代次数产生影响。从根本上讲主要有两类自适应数字滤波器结构(这是根据其冲激响应的形式来划分的),即有限长冲击响应(FIR)滤波器和无限长冲激响应(IIR)滤波器。FIR 滤波器通常利用非递归结构来实现,而IIR 滤波器则利用递归结构来实现。自适应FIR 滤波器结构:应用最广泛的自适应FIR 滤波器结构是横向滤波器,也成为抽头延迟线,它利用正规直接形式实现全零点传输函数,二不采用反馈环节。对于这种结构,输出信号()y n 是滤波器洗漱的线性组合,它产生具有惟一最优解的二次均方

误差函数。为了得到相对于横向滤波器结构来说更好的性能(这些性能是用计算复杂度、收敛速度和有限字长特征等来描述的)自适应IIR滤波器结构:自适应IIR滤波器采用得最多的结构是标准直接形式结构,因为它的实现和分析都很简单。然而,采用递归自适应滤波会存在一些内在的问题(这些问题是由结构决定的,比如要求对极点的稳定性进行监视),而且收敛速度很慢。为了克服这些问题,人们提出了不同的结构形式。

(3)算法其中算法是为了使某个预先确定的准则达到最小化,而自适应地调整滤波器系数的方法。算法是通过定义搜索方法(或者最小化算法)、目标函数和无偿信号的特性来确定的。算法的选择据定了整个自适应过程的几个重要因素,比如优解的存在性、有偏最优解和计算复杂度等。[7]

2.3自适应IIR滤波器

自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。其中RLS滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。

实际情况中,由于信号和噪声的统计特性常常未知或无法获知,这就为自适应滤波器提供广阔的应用空间、系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。

自适应有限冲激响应(FIR)滤波器由于其收敛性和稳定性十分简单,现已有相当完善的自适应算法,在信号处理领域,获得了广泛应用。但由于它是非递归结构,冲激响应为有限长,当用于较高精度匹配的实际物理系统时,所需阶次可能相当大,因而导致结构复杂,运算量大。自适应IIR滤波器是一个具有无限冲激响应的递归滤波器,它的一个最重要的优点是,与相同系数个数的自适应FIR滤波器相比有更好的性能,这是因为输出的反馈使有限数量的系数产生了无限冲激响应,使得零点与极点模型滤波器的输出比起仅有零点的滤波器的输出能更有效地逼近期望响应信号。例如,一个有足够高

阶数的自适应IIR滤波器可以精确地逼近一未知的零点与极点系数阔,而一个自适应FIR滤波器只能近似逼近这一系统。反之,要达到相同性能,IIR滤波器所需要的系数个数一般比FIR滤波器少得多,正是由于这一潜在的计算量的优势,近十年来,自适应IIR滤波器的研究一直非常活跃,出现了一批比较成熟的算法。可以预测,在许多应用中,自适应IIR滤波器将取代正被广泛使用的自适应FIR滤波器。[8]

应该指出的是,与自适应FIR滤波器相比,自适应IIR滤波器在减少计算量的同时也付出了一定的代价。由于反馈的存在,算法的收敛时间加大,其收敛性和稳定性分析都十分复杂,这是需要注意继续研究的问题。目前,在相同滤波性能条件下,自适应IIR滤波器的收敛性己可优于自适应FIR滤波器。

根据误差的不同表示,自适应IIR滤波器又可分为两种形式:方程误差(Equation-Error)形式和输出误差(Output-Error)形式。

在很大程度上方程误差自适应IIR滤波器在很像一个自适应FIR滤波器,他们之间的主要区别在与方程误差自适应IIR滤波器就是一个零点一极点模型,而自适应FIR滤波器是一个严格全零点模型。而输出误差形式的自适应IIR滤波器的算法比方程误差IIR滤波器的算法要复杂的多。输出误差方法中的滤波器输出仅由观测输入来产生期望响应。

2.4自适应滤波器的应用

近十几年来,自适应滤波理论和方法得到了迅速的发展,究其原因是因为自适应滤波器相比于其他一般的滤波器在滤波性能、设计实现的难易程度、对外部环境的复杂程度的适应能力和对系统先验统计知识的依赖程度等方面都显现出强大的优势。自适应滤波器具有很强的自学习、自跟踪能力和算法的简单易实现性,它在噪化信号的检测增强,噪声干扰的抵消,通信系统的自适应均衡,图象的自适应增强复原以及未知系统的自适应参数辩识等方面都有广泛的应用。在本节中,我们将讨论输入信号和期望信号的一些可能选择,并讨论这些选择是如何与应用联系在一起的。

2.4.1 信号增强器

自适应滤波器的一个简单应用就是信号增强器,它被用来检测或增强淹没在宽度噪声中的窄带随机信号。对于信号增强的情况,信号()x k 受噪声1()n k 的污染,而且与噪声相关的信号2()n k 是可以得到的(即可测量的)。如果2()n k 作为自适应滤波器的输入,而将受到噪声污染的信号作为期望信号,则当滤波收敛以后,其输出误差就是信号的增强形式。图2-2说明了一种信号增强的典型配置。[9]

图2-2 信号增强。其中1()n k 和2()n k 是彼此相关的噪声函数

2.4.2 系统辨识器

在系统辨识应用中,期望信号是未知系统受某个宽带信号激励时产生的输出,在大多数情况下,输入是白噪声信号。宽带信号同时也被用来作为图2-3所示的自适应滤波器的输入。当输出MSE 达到最小时,自适应滤波器就代表了未知系统的模型。

2.4.3 信道均衡器

信道均衡器的作用是在信道通带内形成一个信道传输函数的逆,而在通带之外它的增益则很小或者为零。因而,由信道和均衡器级联组成的系统在

通带内有基本均匀的振幅特性,而带外基本为零,相位响应在带内是频率的线性函数。如果条件满足,联合的冲激响应就是辛格函数,故符号间干扰可被消除。自适应调整也解决了信道本身未知、时变的特性所带来的困难。

在信道均衡应用中,将发送的受信道失真影响的原始信号作为自适应滤波器的输入信号,而期望信号是原始信号的时延形式,如图2-4所示。通常

情况下,输入信号的时延形式在接收端是可以得到的,采用形式是标准的训练信号。当MSE达到最小时,就表明自适应滤波器代表了信道的逆模型(均衡器)。

图2-3 系统辨识器

图2-4 信道均衡器

2.4.4信号预测器

最后,对于预测情形,期望信号是自适应滤波器输入信号的前向(有时可能是后向)形式,如图2-5所示。当滤波器收敛以后,自适应滤波器就代表了输入信号的模型,而且可以用来作为输入信号的预测器模型。

图2-5 信号预测器 第3章 LMS 自适应滤波算法分析

3.1 引言

LMS 算法是1960年由Widrow 和Hoff 提出的最小均方误差(LMS )算法,LMS 算法是基于估计梯度的最速下降算法的,由于采用粗糙的梯度估计值得到的,从而其算法性能欠佳,应用范围受限,但是因为其具有计算量小、易于实现等优点而在实践中被广泛采用。典型的应用领域有系统识别、信号处理和自适应控制。LMS 算法的基本原理是基于最速下降法,即沿着权值的梯度估值的负方向进行搜索,达到权值最优,实现均方误差最小意义下的自适应滤波。初始收敛速度、时变系统跟踪能力及稳态失调是衡量自适应滤波算法优劣的三个重要的技术指标。由于主输入端不可避免地存在干扰噪声,自适应滤波算法将产生参数失调噪声。干扰噪声越大,则引起的失调噪声就越大。减小步长因子产可降低自适应滤波算法的稳态失调,提高算法的收敛精度。[15]

3.2 最小均方差(LMS )算法

LMS 算法的判据是最小均方误差,即理想信号)(n d 与滤波器输出)(n y 之差)(n e 的平方值的期望值最小,并且根据这个判据来修改权系数)(n w i 由此产生的算法称为最小均方算法(LMS)。绝大多数对自适应滤波器的研究是基于由Widrow 提出的LMS 算法。这是因为LMS 算法的设计和实现都比较

简单,在很多应用场合都非常适用。[16]

令N 阶FIR 滤波器的抽头系数为)(n w i ,滤波器的输入和输出分别为)(n x 和)(n y ,则FIR 横向滤波器方程可表示为:

(3-1)

令)(n d 代表“所期望的响应”,并定义误差信号:

)()()()()()(1i n x n w n d n y n d n e N

i i --=-=∑= (3-2)

采用向量形式表示权系数及输入w 和)(n X ,可以将误差信号)(n e 写作

W n X n d n X W n d n e T T )()()()()(-=-= (3-3)

误差的平方为:

W n X n X W W n X n d n d n e T T T )()()()(2)()(22+-= (3-4)

上式两边取数学期望后,得均方误差:

W n X n X E W W n X n d E n d E n e E T T T )}()({)}()({2)}({)}({22+-= (3-5)

定义互相关函数向量:

{}()()T T Xd R Ed n X n = (3-6)

和自相关函数矩阵:

)}()({n X n X E R T XX = (3-7)

所以均方误差可表述为:

W R W W R n d E n e E XX T T Xd +-=2)}({)}({22 (3-8)

这表明均方误差是权系数向量W 的二次函数,它是一个凹的抛物形曲面,是具有唯一最小值的函数。调节权系数使均方误差为最小,相当于沿抛物形曲面下降找最小值。可以用梯度法来求该最小值。

将式(3-8)对权系数W 求导数,得到均方误差函数的梯度:

(3-9)

令)(n ?=0,即可以求出最佳权系数向量:

Xd XX opt R R W 1-= (3-10) 将opt W 代入式(3-8),得最小均方误差:

W R R W n e E W n e E n e E n XX Xd T N 22)}({,...,)}({)}({)(2122+-=??????????=?=?)

()()(1i n x n w n y N i i -=∑=

opt T Xd W R n d E n e E -=)}({)}({2min 2 (3-11)

利用式(3-11)求最佳权系数向量的精确解需要知道xx R 和xd R 的先验统计知识,而且还需要进行矩阵求逆等运算。Widrow 和Hoff 提出了一种在这些先验统计知识未知时求opt W 的近似值的方法,习惯上称之为Widrow-Hoff LMS 算法。这种算法的根据是最优化方法中的最速下降法。根据这个最速下降法,“下一时刻” 权系数向量)1(+n W 应该等于“现时刻”权系数向量)(n W 加上一个负均方误差梯度)(n ?-的比例项,即

)()()1(n n W n W ?-=+μ (3-12)

式中的μ是一个控制收敛速度与稳定性的常数,称之为收敛因子。

不难看出,LMS 算法有两个关键:梯度)(n ?的计算以及收敛因子μ的选择。

精确计算梯度)(n ?是十分困难的。一种粗略的但是却十分有效的计算)(n ?的近似方法是:直接取)(2n e 作为均方误差)}({2n e E 的估计值,即 [][])()(2)(2

n e n e n e ?=?=?∧ (3-13)

式中的[])(n e ?为: [][]

)()()()()(n X n X n W n d n e T -=-?=? (3-14)

将(4-14)代入式(4-13)中,得到梯度估值: )()(2)(n X n e n -=?∧

(3-15)

于是,Widrow-Hoff LMS 算法最终为:

)()(2)()1(n X n e n W n W μ+=+ (3-16) 3.3 最小均方差(LMS )算法的性能分析

LMS 算法的性能准则是采用瞬时平方误差性能函数|e(k)|2代替均方误差性能函数E{|e(k)|2},其实质是以当前输出误差、当前参考信号和当前权系数求得下个时刻的权系数。

其输出信号()y k 、输出误差()e k 及权系数()W k 的计算公式为:[17]

)

()()()

()(2)()1()

()()()

()()(k n k x k d k X k n W k W k y k d k e k X k W k y e T +=+=+-==μ (3-17) k 为迭代次数,M 为滤波器的阶数。()d k 表示第k 时刻的输入信号矢量式中,式中,)(k X 表示参考信号的信号矢量:

)]1()1(),([)(+--=M k n k n k n k X (3-18)

()y k 、()e k 分别表示第k 时刻的输出信号与输出误差,W(k)表示k 时刻权系数矢量:

[]()(,0),(,1)......(,1)W k W k W k W k M =- (3-19)

μ表示LMS 算法步长收敛因子。自适应滤波器收敛的条件是:

max

10λμ≤≤ (3-20) 其中max λ是输入信号的自相关矩阵R 的最大特征值。

μ的选取必须在收敛速度和失调之间取得较好的折中,既要具有较快的收敛速度,又要使稳态误差最小。它控制了算法稳定性和自适应速度,如果μ很小,算法的自适应速度会很慢;如果μ很大,算法会变得不稳定。由于LMS 算法结构简单、计算量小、稳定性好,因此被广泛应用于系统辨识、信号增强、自适应波束形成、噪声消除以及控制领域等。

在最小均方差(LMS )算法中,步长因子μ的取值对算法的性能有着非常重要的影响,这些影响包括:算法的稳定性、算法的收敛速度、算法的扰动和失调。以下我们针对μ在这三方面的影响分别进行讨论。为减小失调,需要设置较小的步长因子,这会使算法的收敛速度降低,这构成了一对矛盾。因此在考虑算法的总体性能时,必须在这两个性能之间加以折中。从收敛速度的角度考虑,步长因子μ应该尽可能大,但较大的μ取值却会加重算法的失调。LMS 算法采用瞬时的采样值对梯度进行估计,由于噪声的影响,总会是会伴随着估计的误差,这将对算法带来直接的影响。这些影响主要表现为算法的失调,而失调的严重程度,则和μ的取值存在直接关系。失调是指由于梯度估计偏差的存在,在算法收敛后,均方误差并不无穷趋近于最小值,

而是呈现出在最小值附近随机的波动特性,而权值亦不无穷趋近于最优权值,而是在最优权值附近呈现随机的波动。

关于LMS算法的收敛速度,将讨论两点:第一,对一个特定的信号环境,收敛速度和步长因子μ有何关系。第二,信号环境本身的特性,对收敛速度有何影响。从收敛速度的角度考虑,步长因子μ应该尽可能大,再看信号环境,即

R的特性对算法收敛性能的影响如果当特征值的分布范围较大,xx

即最大特征值和最小特征值之比较大时,公比的取值幅度也将比较大,算法的总的收敛速度将会变得比较慢。

传统的LMS算法确实结构简单、计算量小且稳定性好,因此被广泛地应用于自适应控制、雷达、系统辨识及信号处理等领域。但是固定步长的LMS 自适应算法在收敛速率、跟踪速率及权失调噪声之间的要求是相互矛盾的,为了克服这一缺点,人们研究出了各种各样的变步长LMS的改进算法。尽管各种改进算法的原理不同,但变步长LMS自适应算法基本上遵循如下调整原则:即在初始收敛阶段或未知系统参数发生变化时,步长应比较大,以便有较快的收敛速度或对时变系统的跟踪速度;而在算法收敛后,不管主输人端干扰信号有多大,都应保持很小的调整步长以达到很小的稳态失调噪声。

第4章RLS自适应滤波算法分析

4.1引言

最小二乘(LS,Least-square)算法旨在期望信号与模型滤波器输出之差的平方和达到最小。当每次迭代中接受到输入好的新采样值时,可以采用递归形式求解最小二乘问题,得到递归最小二乘(RLS,recursive least-square)算法。RLS算法能实现快速收敛,即使是在输入信号相关矩阵的特征值扩展比较大的情况下。当工作与变换环境中时,这类算法具有极好的性能,但其实现都以增加计算复杂度和稳定问题为代价。

4.2递归最小二乘(RLS)算法

这一节主要介绍递归最小二乘法(RLS)算法是一种快速收敛的算法,该算法判决依据是直接处理接受数据,使其二次性能指数函数最小,而前面所

述的LMS 算法则是使平方误差的期望值最小。

设计出的自适应滤波器,通过调节滤波器参数i W ,使得基于过去的观测样本而得到的观测信号)(n s ∧

在某种意义上最逼近原信号)(n s 。此时,一方面,恢复误差: )()()(n X W n s n T -=η (4-1)

另一方面,可以将)(n X W T 视作为)(n x 的预测。因此可定义预测误差:

)()()(n X W n x n e T -= (4-2)

设计自适应滤波器的目的自然是希望使恢复误差)(n η最小。但是由于真实信号)(n s 未知,故)(n η是不可观测的或无法计算的。与此相反,预测误差)(n e 却是可观测的,它与恢复误差的关系为:

)()()(n n n n e +=η (4-3)

而噪声序列)(n n 是独立的,因此不可观测的恢复误差)(n η的最小化等价于可观测的预测误差)(n e 的最小化。

具体的,考虑到

∑=-=n i i n i e W n 12

)(),(λε (4-4)

的最小化。式中,λ为遗忘因子,通常取10≤≤λ。由

[][]0)()()(2)()(),(1

12=--=-??=??∑∑=-=-i X i X W i x i X W i x W W W n n i T i n n i T i n λλε (4-5) 可得到等价关系式:

∑∑==--=n i n

i i n T i n i X i x W i X i X 11

)()()()(λλ

(4-6) 若令: ∑=-=n i T i n i X i X n R 1)()()(λ (4-7)

∑=-=n i i n i X i x n U 1)()()(λ (4-8)

则式(4-6)可简写为:

)()()(n U n W n R = (4-9)

假定)(n R 是非奇异的,则:

)()()(1n U n R n W -= (4-10)

这就是滤波器滤波参数的公式,之所以记作)(n W ,是因为W 随着时间而改

变。式(5-8)叫做最佳滤波器系数的Yule-Walker 方程。依据式(5-10)来调整滤波器参数有两处不便。第一,需要矩阵求逆及矩阵乘法等运算,因而计算量大。第二,)(n W 与预测误差)(n e 之间也未建立任何关系,不能达到根据预测误差)(n e 来调整滤波器参数的要求。

(非平稳或时变)预测误差)(n e 由

)()1()()(n X n W n x n e T --= (4-11)

表示。利用此公式,可以将式(5-7)的)(n U 改写作 (4-12) 注意到)1()()()()()1(-=-i W i X i X i X i X i W T T 和式(5-11),用)(1n R -式乘上式后得到:

)()()()()()1()()()()(211111n W n W i e i X n R i W i X i X n R n W n i n i T

i n T i n +=+-=∑∑==----λλ

(4-13)

为了简化第一项)(1n W 的表达,并建立)(n W 与)1(-n W 之间的关系,一种合理的想法是认为1-n 时刻及其以前时刻的滤波器参数相同,即:

==)1()0(W W ……. )1(-=n W

这样,利用式(5-7)及上述假定,就有

(4-14)

另一方面,为了简化)(2n W 的表达,一种合理的想法就是:认为遗忘因子0=λ。这相当于,只有本时刻的结果被记忆下来,而将以前的各时刻的结果全部遗忘。从而,有下列的简化结果:

)()()()()(0)()(111

2n e n X n R i e i X n R n W T n

i T i n -=--∑== (4-15) 将式(4-13)和(4-14)代入(4-12),则得

)()()()1()(1n e n X n R n W n W T -+-= (4-16)

式(4-15)描述了一个滤波器参数受其输入误差)(n e 控制的自适应滤波算法,被称作递归最小二乘(RLS)。

为了实现递推计算,还要解决逆矩阵)(1n R -的递推计算问题。为此,我们先引入一个著名的结果——矩阵求逆引理。

矩阵求逆引理:若A 是非奇异的,则:

)1()1()()()()(11

1-=-=∑=--n W n W i X i X n R n W n i T i n λ

111111)()(------+-=+A C B A C I B A A BC A T T T (4-17)

由)(n R 的定义式(4-7),显然有

)()()1()(n X n X n R n R T +-= (4-18) 对它应用矩阵求逆引理,得: (4-19)

综上所分析,递归最小二乘法自适应滤波(RLS)算法如下所示

算法初始化:[18]

0)0(=W

I R =)0(

For k=1 to n final do :

)()1()()(n X n W n x n e T --=

(4-20)

)()()()1()(1n e n X n R n W n W T -+-= 4.3 递归最小二乘(RLS )算法的性能分析

RLS(递推最小二乘法)算法的关键是用二乘方的时间平均的最小化锯带最小均方准则,并按时间进行迭代计算。对于非平稳信号的自适应处理,最合适的方法是采用最小二乘自适应滤波器。它使误差的总能量最小。RLS 算法的优点是收敛速度快,其收敛性能与输入信号的频谱特性无关,但其缺点是计算复杂度很高,对于N 阶的滤波器,RLS 算法的计算量为O(N2)[1,2]为了对非平稳信号进行跟踪,RLS 算法引入了数加权遗忘因子λ。该遗忘因子的引入,使RLS 算法能够对非平稳信号进行跟踪。[19]

由于设计简单、性能最佳,其中RLS 滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。

这里讨论RLS 算法收敛特性两个方面的问题:一是从均值的意义上讨论)(?n W

的收敛性;二是从均方值的意义上讨论误差()e n 的收敛性。为了讨论进行这样的讨论,必须对输入过程的类别作出规定。

考虑随即机回归模型:

(4-21)

)()1()(1)1()()()()1()(11111n X n R n X n R n X n X n R n R n R T T -+---=-----)()1()(1)1()()()()1()(11111n X n R n X n R n X n X n R n R n R T T -+---=-----∑=++-=M i n V i n x w n d 10)

()1()(

其中()x n 是零均值过程)(n V 是均值为零,方差为N 2σ的高斯白噪声序列。

其中)](?[n W

E 的收敛性 对公式)()()(0n V W n X n d T +=,其中T M w w W ][0010 =。而可以写出: ∑=-+=n

i T i n i V W i X i X n q 10)]()()[()(λ (4-22)

当)(n ε,)(?n W

满足: ())()()()()()()()()(11n q n R n b n n A n A n n A n W X T T --∧=ΛΛ= (4-23)

将其写成如下形式:

I n r n R n x x δλ+=)()( (4-24)

其中

∑=-=n

i T i n x n X i X n r 1)()()(λ (4-25)

将式(4-22)和式(4-24)带入式(4-23)中得:

∑=--++=n

i i n x n x i V i X W n r I n r n W 10

1)]()()([])([)(?λδλ (4-26) 故

1)(])([)](?[W n r I n r n W E x n x -+=δλ 01

11)()]()()([W n r n Ir n r n r x x n x x ----=δλ

010)(W n r W n x δλ--= (4-27)

假定输入过程呈各态历经的平稳随机过程,对于λ=1的情况,当n 很大时,有 ∑==≈n

i x T n

n r i X i X n Rx 1)()()(1 (4-28) 其中Rx 表示输入矢量)(i X 的M M ?组合平相关矩阵,所以

010)](?[W R n

W n W E x --=δ (4-29) 由此可见,当+∞→n 时,0

)](?[W n W E =,故滤波器的权矢量个估计是无偏的。

还有)]([2n e E 的收敛性

)()](?[)()())(?()()()()(?)()(0

00n X n W W n V n X n W

W n X W n d n X n W

n d n e T T T T -+=-+-=-= 考虑到)(n X 与)(n V 的不相关性,所以

))](?)(()())(?[()]([0

022n W W n X n X n W W E n e E T T V --+=δ 根据矩阵迹的性质,加权矢量的均方误差又可写成

})](?)(?[{)]([22x

T V R n C n C E tr n e E =-δ (4-30) 其中。)]()([),(?)(?0n X n X E R n W W n C T x

=-= 由)(?n W

=(A T (n)Λ(n )A(n))-1A T (n)Λ(n )b(n) 现令T n v v n V )]()1([)( =,则:

0)()()(W n A n b n V -= (4-31) 将式(5-31)带入式(5-30)中得

])()()[()()]()()([)(01W n A n V n n A n A n n A n W T T +ΛΛ=-

)()()()]()()([)(?)(?10

n V n n A n A n n A n W W n C T T ΛΛ-=-=- 因此

[][]})()()()()()()()()()()()({)()(11--∧∧ΛΛΛΛ=??????n A n n A n A n n V n V n n A n A n n A E n C n C E T T T T T

因为)(n X 与)(n V 的不相关,则上式变为: (5-32)

对于+∞→n 时有采用这些近似则式(5-33)可划简为:

∑∑=-=-≈Λ≈Λ≈n

j j n x T

n j j n x T

x

T R n A n n A R n A n n A nR n A n A 121)()()(2)()()()(0()(λλ (4-33)

由式(4-30)可知

1212121??[()()][()()]{[()()()]

()()()[()()()]}{[()()()]()()()[()()()]}

V T T T T T T T T E C n C n E V n V n E A n n A n A n n A n A n n A n E A n n A n A n n A n A n n A n σ----=ΛΛΛ=ΛΛΛ

??????????????==-∑∑=-=-I tr R n C n C E tr n e E n j j n n j j n V x

T V 2

112222)()(})](?)(?[{)]([λλσδ (4-34)

根据自适应滤波器失调量μ的定义

2101022

112222)()()()]([∑∑∑∑-=-==-=-=???

???????????=-=n j j n J j n j j n n j j n V V M I tr n e E λλλλσσψ (4-35) 在不加权的情况下,

n

M ==ψλ,1 (4-36) 在加权情况下, (4-37)

由此可见,在不加权情况下,失调量随时间增加而趋于0,这意味着输

出的均方误差随时间的增长而趋于理论最小值2V δ,在指数加权的情况下,

失调量μ渐进于

(4-38)

显然λ值越小,失调量越大。从而收敛性变差。

在最小二乘法(RLS )算法引入了λ的意义。统计量的计算是从零时刻开始的,如果不引入遗忘因子,所有采样点数据对当前估计量估计的贡献是相等的,在时变条件下,这显然不合理,因为离当前时刻比较远的数据,其信道与当前信道时域相关度越低,而通过引入0到1之间的取值λ,可以令离当前时刻越远的采样数据对统计量估计的贡献越小,由此可以实现对时变信

121122)()()](?)(?[-==∑∑--=x n j n j V T R j n l n n C n C E λλσλλψ+-=11M

自适应均衡算法研究

自适应均衡算法LMS研究 一、自适应滤波原理与应用 所谓自适应滤波器,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。根据环境的改变,使用自适应算法来改变滤波器的参数和结构。 1.1均衡器的发展及概况 均衡是减少码间串扰的有效措施。均衡器的发展有史已久,二十世纪60年代前,电话信道均衡器的出现克服了数据传输过程中的码间串扰带来的失真影响。但是均衡器要么是固定的,要么其参数的调整是手工进行。1965年,Lucky在均衡问题上提出了迫零准则,自动调整横向滤波器的权系数。1969年,Gerhso和Porkasi,Milier分别独立的提出采用均方误差准则(MSE)。1972年,ungeboekc将LMS算法应用于自适应均衡。1974年,Gedard 在kalmna滤波理论上推导出递推最小均方算法RLS(Recursive least-squares)。LMS类算法和RLS类算法是自适应滤波算法的两个大类。自适应滤波在信道均衡、回波抵消、谱线增强、噪声抑制、天线自适应旁瓣抑制、雷达杂波抵消、相参检测、谱估计、窄带干扰抑制、系统辨识、系统建模、语音信号处理、生物医学、电子学等方面获得广泛的应用。 1.2均衡器种类 均衡技术可分为两类:线性均衡和非线性均衡。这两类的差别主要在于自适应均衡器的输出被用于反馈控制的方法。如果判决输出没有被用于均衡器的反馈逻辑中,那么均衡器是线性的;如果判决输出被用于反馈逻辑中并帮助改变了均衡器的后续输出,那么均衡器是非线性的。

LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 算法图1.1 均衡器的分类 1.3自适应算法LMS算法 LMS算法是由widrow和Hoff于1960年提出来的,是统计梯度算法类的很重 要的成员之一。它具有运算量小,简单,易于实现等优点。 LMS算法是建立在Wiener滤波的基础上发展而来的。Wiener解是在最小均方误差(MMSE)意义下使用均方误差作为代价函数而得到的在最小误差准则下的最优解。因其结构简单、稳定性好,一直是自适应滤波经典有效的算法之一,被广泛应用于雷达、通信、声纳、系统辨识及信号处理等领域。 1.3.1 MSE的含义 LMS 算法的推导以估计误差平方的集平均或时平均(即均方误差,MSE)为基础。下面先介绍MSE的概念。 设计一个均衡系统如下图所示:

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

介绍了噪声抵消的原理和从强噪声背景中自适应滤波提取有用信号的

LMS与RLS自适应滤波算法性能比较 马文民 【摘要】:介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS 算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。 【关键词】:自适应滤波;原理;算法;仿真 引言: 自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。"不确定"是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。 在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。 在工程实际中,经常会遇到强噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。 1自适应滤波器的基本原理 所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。 由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。 自适应噪声抵消系统的核心是自适应滤波器,自适应算法对其参数进行控制,以实现最佳滤波。不同的自适应滤波器算法,具有不同的收敛速度、稳态失调和算法复杂度。根据自

自适应滤波器设计与Matlab实现

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。 数学原理编辑 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。 20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。 以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, k s为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

大学doc-实验二RLS的实验报告

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

基于RLS的语音去噪算法研究 课程名称现在数字信号处理及其应用 实验名称基于RLS的语音去噪算法研究 学院电子信息学院 专业电路与系统 班级电子2班 学号 20XXXX20XXXX0XX020XXXX7 学生姓名刘秀 指导老师何志伟

摘要:截取一段音频信号(初始信号),然后人为加入一个白噪声,然后将初始信号与白噪声混叠以后,再用RLS算法将这个白噪声信号滤除。RLS (递推最小二乘)算法是另一种基于最小二乘准则的精确方法,它具有快速收敛和稳定的滤波器特性,因而被广泛地应用于实时系统识别和快速启动的信道均衡等领域。 关键词:初始信号、白噪音、RLS算法。 Abstract:Intercept an audio signal (original signal) and add a white noise artificially, then after aliasing the initial signal and white noise , and using RLS algorithm to the white noise signal filtering.RLS (recursive least squares) algorithm is a kind of accurate method based on least squares criterion, it has a fast convergence and stability of the filter characteristics, and therefore is widely applied in the real-time system identification and fast start of equalization. Key words: Initial signal, white noise, RLS algorithm.

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

自适应滤波算法的研究分析

自适应滤波算法的研究 第1章绪论 1.1课题背景 伴随着移动通信事业的飞速发展,自适应滤波技术应用的范围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器己成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。[1] 自适应滤波是一种最佳滤波方法。它是在维纳滤波,Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。 自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。

自适应滤波算法理解与应用

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

基于RLS算法自适应滤波器要点

基于RLS算法自适应滤波器的设计 摘要 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供非自适应方法所不可能提供的新的信号处理能力。而且其性能通常远优于用常方法设计的固定滤波器。 本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。自适应滤波器的算法是整个系统的核心。对 RLS算法自适应滤波器做了详细的介绍,采用改进的RLS算法设计自适应滤波器,并采用MATLAB进行仿真,通过实验结果来体现该滤波器可以根据信号随时修改滤波参数,达到动态跟踪的效果,使滤波信号更接近于原始信号。 关键词:自适应滤波器,RLS算法,噪声消除,FIR

第1章绪论 1.1 课题研究意义和目的 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。 对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。 自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主要有最小均方(LMS)算法、递归最小二乘(RLS)算法及相应的改进算法如:归一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的一个关键内容。递归最小二乘(RLS)算法是线性自适应滤波算法中最基本的两类算法之一,由于基于LMS准则的自适应滤波算法的收敛速度通常较慢,有些在调整过程种的延时也较大。为了克服LMS的算法,我们采用在每个时刻对所有已输入信号重估的平方误差之和最小这样的准则,即RLS算法。RLS算法复数乘法正比于2k,使其自适应速度更快。目前应用最多的是系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测、自适应天线阵等诸多领域。 1.2 国内外研究发展状况 自适应滤波的基本理论通过几十年的发展已日趋成熟,近十几年来自适应滤波器的研究主要针对算法与硬件实现。算法研究主要是对算法速度和精度的改

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

ENVI实验报告

实验报告 课程名称:系部名称:测绘工程学院专业班级:遥感科学与技术 11-1班学生姓名:学号: 指导教师:田静 实验报告1 实验报告 2 篇二:envi上机报告 《遥感软件应用与开发》 实验指导书、作业 系部名称:测绘工程学院 专业班级:遥感科学与技术11-1班 学生姓名: 学号: 指导教师:田静 测绘工程学院 目录 《遥感软件应用与开发》课程实验指导书???????????错误!未定义书签。 实验一:envi软件安装与基本功能操作?????????????3 实验二:影像的地理坐标定位和校正??????????????19 实验三:图像融合、图像镶嵌、图像裁剪 ???????????25 实验四:图像分类 ?????????????????????31 实验报告: ???????????????????????37 实验报告1: ????????????????????????38 实验报告2: ????????????????????????41 实验报告3: ????????????????????????44 实验报告4: ????????????????????????47 实验一:envi软件安装与基本功能操作 一、实验目的 熟悉遥感数据图像处理软件envi的安装过程,了解envi基本信息、基本概念及其主要 特性。对envi操作界面有一个基本的熟悉,对各菜单功能有一个初步了解,为后面的实验作 好准备。 二、实验学时 2学时 三、实验类型 实践 四、实验原理及内容 (1)遥感图像处理软件envi界面总体介绍 (2)envi软件能识别的图像类型介绍 (3)各种图像文件的打开 重点: envi能识别的文件类型 学生可自行阅读帮助文件学习。 五、实验步骤 1.envi的安装 2.遥感图像处理软件envi界面介绍

相关文档
相关文档 最新文档