文档库 最新最全的文档下载
当前位置:文档库 › 关于显式调用DLL、隐式调用DLL和查看DLL输出函数

关于显式调用DLL、隐式调用DLL和查看DLL输出函数

关于显式调用DLL、隐式调用DLL和查看DLL输出函数
关于显式调用DLL、隐式调用DLL和查看DLL输出函数

DLL的优点

简单的说,dll有以下几个优点:

1) 节省内存。同一个软件模块,若是以源代码的形式重用,则会被编译到不同的可执行程序中,同时运行这些exe时这些模块的二进制码会被重复加载到内存中。如果使用dll,则只在内存中加载一次,所有使用该dll的进程会共享此块内存(当然,像dll中的全局变量这种东西是会被每个进程复制一份的)。

2) 不需编译的软件系统升级,若一个软件系统使用了dll,则该dll被改变(函数名不变)时,系统升级只需要更换此dll即可,不需要重新编译整个系统。事实上,很多软件都是以这种方式升级的。例如我们经常玩的星际、魔兽等游戏也是这样进行版本升级的。

3) Dll库可以供多种编程语言使用,例如用c编写的dll可以在vb中调用。这一点上DLL还做得很不够,因此在dll的基础上发明了COM技术,更好的解决了一系列问题。

最简单的dll

开始写dll之前,你需要一个c/c++编译器和链接器,并关闭你的IDE。是的,把你的VC和C++ BUILDER之类的东东都关掉,并打开你以往只用来记电话的记事本程序。不这样做的话,你可能一辈子也不明白dll的真谛。我使用了VC自带的cl编译器和link链接器,它们一般都在vc的bin目录下。(若你没有在安装vc的时候选择注册环境变量,那么就立刻将它们的路径加入path吧)如果你还是因为离开了IDE而害怕到哭泣的话,你可以关闭这个页面并继续去看《VC++技术内幕》之类无聊的书了。

最简单的dll并不比c的helloworld难,只要一个DllMain函数即可,包含objbase.h头文件(支持COM技术的一个头文件)。若你觉得这个头文件名字难记,那么用windows.H也可以。源代码如下:dll_nolib.cpp

#include

#include

BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, void* lpReserved)

{

HANDLE g_hModule;

switch(dwReason)

{

case DLL_PROCESS_ATTACH:

cout<<"Dll is attached!"<

g_hModule = (HINSTANCE)hModule;

break;

case DLL_PROCESS_DETACH:

cout<<"Dll is detached!"<

g_hModule=NULL;

break;

}

return true;

}

其中DllMain是每个dll的入口函数,如同c的main函数一样。DllMain带有三个参数,hModule表示本dll的实例句柄(听不懂就不理它,写过windows程序的自然懂),dwReason 表示dll当前所处的状态,例如DLL_PROCESS_ATTACH表示dll刚刚被加载到一个进程中,DLL_PROCESS_DETACH表示dll刚刚从一个进程中卸载。当然还有表示加载到线程中和从线程中卸载的状态,这里省略。最后一个参数是一个保留参数(目前和dll的一些状态相关,但是很少使用)。

从上面的程序可以看出,当dll被加载到一个进程中时,dll打印"Dll is attached!"语句;当dll从进程中卸载时,打印"Dll is detached!"语句。

编译dll需要以下两条命令:

cl /c dll_nolib.cpp

这条命令会将cpp编译为obj文件,若不使用/c参数则cl还会试图继续将obj链接为exe,但是这里是一个dll,没有main函数,因此会报错。不要紧,继续使用链接命令。

Link /dll dll_nolib.obj

这条命令会生成dll_nolib.dll。

注意,因为编译命令比较简单,所以本文不讨论nmake,有兴趣的可以使用nmake,或者写个bat批处理来编译链接dll。

加载DLL(显式调用)

使用dll大体上有两种方式,显式调用和隐式调用。这里首先介绍显式调用。编写一个客户端程序:dll_nolib_client.cpp

#include

#include

int main(void)

{

//加载我们的dll

HINSTANCE hinst=::LoadLibrary("dll_nolib.dll");

if (NULL != hinst)

{

cout<<"dll loaded!"<

}

return 0;

}

注意,调用dll使用LoadLibrary函数,它的参数就是dll的路径和名称,返回值是dll的句柄。使用如下命令编译链接客户端:

Cl dll_nolib_client.cpp

并执行dll_nolib_client.exe,得到如下结果:

Dll is attached!

dll loaded!

Dll is detached!

以上结果表明dll已经被客户端加载过。但是这样仅仅能够将dll加载到内存,不能找到dll 中的函数。

使用dumpbin命令查看DLL中的函数

Dumpbin命令可以查看一个dll中的输出函数符号名,键入如下命令:

Dumpbin –exports dll_nolib.dll

通过查看,发现dll_nolib.dll并没有输出任何函数。

如何在dll中定义输出函数

总体来说有两种方法,一种是添加一个def定义文件,在此文件中定义dll中要输出的函数;第二种是在源代码中待输出的函数前加上__declspec(dllexport)关键字。

Def文件

首先写一个带有输出函数的dll,源代码如下:dll_def.cpp

#include

#include

void FuncInDll (void)

{

cout<<"FuncInDll is called!"<

}

BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, void* lpReserved)

{

HANDLE g_hModule;

switch(dwReason)

{

case DLL_PROCESS_ATTACH:

g_hModule = (HINSTANCE)hModule;

break;

case DLL_PROCESS_DETACH:

g_hModule=NULL;

break;

}

return TRUE;

}

这个dll的def文件如下:dll_def.def

;

; dll_def module-definition file

;

LIBRARY dll_def.dll

DESCRIPTION '(c)2007-2009 Wang Xuebin'

EXPORTS

FuncInDll @1 PRIVATE

你会发现def的语法很简单,首先是LIBRARY关键字,指定dll的名字;然后一个可选的关键字DESCRIPTION,后面写上版权等信息(不写也可以);最后是EXPORTS关键字,后

面写上dll中所有要输出的函数名或变量名,然后接上@以及依次编号的数字(从1到N),最后接上修饰符。

用如下命令编译链接带有def文件的dll:

Cl /c dll_def.cpp

Link /dll dll_def.obj /def:dll_def.def

再调用dumpbin查看生成的dll_def.dll:

Dumpbin –exports dll_def.dll

得到如下结果:

Dump of file dll_def.dll

File Type: DLL

Section contains the following exports for dll_def.dll

0 characteristics

46E4EE98 time date stamp Mon Sep 10 15:13:28 2007

0.00 version

1 ordinal base

1 number of functions

1 number of names

ordinal hint RVA name

1 0 00001000 FuncInDll

Summary

2000 .data

1000 .rdata

1000 .reloc

6000 .text

观察这一行

1 0 00001000 FuncInDll

会发现该dll输出了函数FuncInDll。

显式调用DLL中的函数

写一个dll_def.dll的客户端程序:dll_def_client.cpp

#include

#include

int main(void)

{

//定义一个函数指针

typedef void (* DLLWITHLIB )(void);

//定义一个函数指针变量

DLLWITHLIB pfFuncInDll = NULL;

//加载我们的dll

HINSTANCE hinst=::LoadLibrary("dll_def.dll");

if (NULL != hinst)

{

cout<<"dll loaded!"<

}

//找到dll的FuncInDll函数

pfFuncInDll = (DLLWITHLIB)GetProcAddress(hinst, "FuncInDll");

//调用dll里的函数

if (NULL != pfFuncInDll)

{

(*pfFuncInDll)();

}

return 0;

}

有两个地方值得注意,第一是函数指针的定义和使用,不懂的随便找本c++书看看;第二是GetProcAddress的使用,这个API是用来查找dll中的函数地址的,第一个参数是DLL的句柄,即LoadLibrary返回的句柄,第二个参数是dll中的函数名称,即dumpbin中输出的函数名(注意,这里的函数名称指的是编译后的函数名,不一定等于dll源代码中的函数名)。

编译链接这个客户端程序,并执行会得到:

dll loaded!

FuncInDll is called!

这表明客户端成功调用了dll中的函数FuncInDll。

__declspec(dllexport)

为每个dll写def显得很繁杂,目前def使用已经比较少了,更多的是使用__declspec(dllexport)在源代码中定义dll的输出函数。

Dll写法同上,去掉def文件,并在每个要输出的函数前面加上声明__declspec(dllexport),例如:

__declspec(dllexport) void FuncInDll (void)

这里提供一个dll源程序dll_withlib.cpp,然后编译链接。链接时不需要指定/DEF:参数,直接加/DLL参数即可,

Cl /c dll_withlib.cpp

Link /dll dll_withlib.obj

然后使用dumpbin命令查看,得到:

1 0 00001000 ?FuncInDll@@YAXXZ

可知编译后的函数名为?FuncInDll@@YAXXZ,而并不是FuncInDll,这是因为c++编译器基于函数重载的考虑,会更改函数名,这样使用显式调用的时候,也必须使用这个更改后的函数名,这显然给客户带来麻烦。为了避免这种现象,可以使用extern “C”指令来命令c++编译器以c编译器的方式来命名该函数。修改后的函数声明为:

extern "C" __declspec(dllexport) void FuncInDll (void)

dumpbin命令结果:

1 0 00001000 FuncInDll

这样,显式调用时只需查找函数名为FuncInDll的函数即可成功。

extern “C”

使用extern “C”关键字实际上相当于一个编译器的开关,它可以将c++语言的函数编译为c语言的函数名称。即保持编译后的函数符号名等于源代码中的函数名称。

隐式调用DLL

显式调用显得非常复杂,每次都要LoadLibrary,并且每个函数都必须使用GetProcAddress 来得到函数指针,这对于大量使用dll函数的客户是一种困扰。而隐式调用能够像使用c函数库一样使用dll中的函数,非常方便快捷。

下面是一个隐式调用的例子:dll包含两个文件dll_withlibAndH.cpp和

dll_withlibAndH.h。

代码如下:dll_withlibAndH.h

extern "C" __declspec(dllexport) void FuncInDll (void);

dll_withlibAndH.cpp

#include

#include

#include "dll_withLibAndH.h"//看到没有,这就是我们增加的头文件

extern "C" __declspec(dllexport) void FuncInDll (void)

{

cout<<"FuncInDll is called!"<

}

BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, void* lpReserved)

{

HANDLE g_hModule;

switch(dwReason)

{

case DLL_PROCESS_ATTACH:

g_hModule = (HINSTANCE)hModule;

break;

case DLL_PROCESS_DETACH:

g_hModule=NULL;

break;

}

return TRUE;

}

编译链接命令:

Cl /c dll_withlibAndH.cpp

Link /dll dll_withlibAndH.obj

在进行隐式调用的时候需要在客户端引入头文件,并在链接时指明dll对应的lib文件(dll 只要有函数输出,则链接的时候会产生一个与dll同名的lib文件)位置和名称。然后如同调用api函数库中的函数一样调用dll中的函数,不需要显式的LoadLibrary和GetProcAddress。使用最为方便。客户端代码如下:dll_withlibAndH_client.cpp

#include "dll_withLibAndH.h"

//注意路径,加载dll的另一种方法是Project | setting | link 设置里

#pragma comment(lib,"dll_withLibAndH.lib")

int main(void)

{

FuncInDll();//只要这样我们就可以调用dll里的函数了

return 0;

}

__declspec(dllexport)和__declspec(dllimport)配对使用

上面一种隐式调用的方法很不错,但是在调用DLL中的对象和重载函数时会出现问题。因为使用extern “C”修饰了输出函数,因此重载函数肯定是会出问题的,因为它们都将被编译为同一个输出符号串(c语言是不支持重载的)。

事实上不使用extern “C”是可行的,这时函数会被编译为c++符号串,例如

(?FuncInDll@@YAXH@Z、?FuncInDll@@YAXXZ),当客户端也是c++时,也能正确的隐式调用。

这时要考虑一个情况:若DLL1.CPP是源,DLL2.CPP使用了DLL1中的函数,但同时DLL2也是一个DLL,也要输出一些函数供Client.CPP使用。那么在DLL2中如何声明所有的函数,其中包含了从DLL1中引入的函数,还包括自己要输出的函数。这个时候就需要同时使用

__declspec(dllexport)和__declspec(dllimport)了。前者用来修饰本dll中的输出函数,后者用来修饰从其它dll中引入的函数。

所有的源代码包括DLL1.H,DLL1.CPP,DLL2.H,DLL2.CPP,Client.cpp。源代码可以在下载的包中找到。你可以编译链接并运行试试。

值得关注的是DLL1和DLL2中都使用的一个编码方法,见DLL2.H

#ifdef DLL_DLL2_EXPORTS

#define DLL_DLL2_API __declspec(dllexport)

#else

#define DLL_DLL2_API __declspec(dllimport)

#endif

DLL_DLL2_API void FuncInDll2(void);

DLL_DLL2_API void FuncInDll2(int);

在头文件中以这种方式定义宏DLL_DLL2_EXPORTS和DLL_DLL2_API,可以确保DLL 端的函数用__declspec(dllexport)修饰,而客户端的函数用__declspec(dllimport)修饰。当然,记得在编译dll时加上参数/D “DLL_DLL2_EXPORTS”,或者干脆就在dll的cpp文件第一行加上#define DLL_DLL2_EXPORTS。

VC生成的代码也是这样的!事实证明,我是抄袭它的,hoho!

DLL中的全局变量和对象

解决了重载函数的问题,那么dll中的全局变量和对象都不是问题了,只是有一点语法需要注意。如源代码所示:dll_object.h

#ifdef DLL_OBJECT_EXPORTS

#define DLL_OBJECT_API __declspec(dllexport)

#else

#define DLL_OBJECT_API __declspec(dllimport)

#endif

DLL_OBJECT_API void FuncInDll(void);

extern DLL_OBJECT_API int g_nDll;

class DLL_OBJECT_API CDll_Object {

public:

CDll_Object(void);

show(void);

// TODO: add your methods here.

};

Cpp文件dll_object.cpp如下:

#define DLL_OBJECT_EXPORTS

#include

#include

#include "dll_object.h"

DLL_OBJECT_API void FuncInDll(void)

{

cout<<"FuncInDll is called!"<

}

DLL_OBJECT_API int g_nDll = 9;

CDll_Object::CDll_Object()

{

cout<<"ctor of CDll_Object"<

}

CDll_Object::show()

{

cout<<"function show in class CDll_Object"<

BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, void* lpReserved)

{

HANDLE g_hModule;

switch(dwReason)

{

case DLL_PROCESS_ATTACH:

g_hModule = (HINSTANCE)hModule;

break;

case DLL_PROCESS_DETACH:

g_hModule=NULL;

break;

}

return TRUE;

}

编译链接完后Dumpbin一下,可以看到输出了5个符号:

1 0 00001040 ??0CDll_Object@@QAE@XZ

2 1 00001000 ??4CDll_Object@@QAEAAV0@ABV0@@Z

3 2 00001020 ?FuncInDll@@YAXXZ

4 3 00008040 ?g_nDll@@3HA

5 4 00001069 ?show@CDll_Object@@QAEHXZ

它们分别代表类CDll_Object,类的构造函数,FuncInDll函数,全局变量g_nDll和类的成员函数show。下面是客户端代码:dll_object_client.cpp

#include "dll_object.h"

#include

//注意路径,加载dll的另一种方法是Project | setting | link 设置里

#pragma comment(lib,"dll_object.lib")

int main(void)

{

cout<<"call dll"<

cout<<"call function in dll"<

FuncInDll();//只要这样我们就可以调用dll里的函数了

cout<<"global var in dll g_nDll ="<

cout<<"call member function of class CDll_Object in dll"<

CDll_Object obj;

obj.show();

return 0;

}

运行这个客户端可以看到:

call dll

call function in dll

FuncInDll is called!

global var in dll g_nDll =9

call member function of class CDll_Object in dll

ctor of CDll_Object

function show in class CDll_Object

可知,在客户端成功的访问了dll中的全局变量,并创建了dll中定义的C++对象,还调用了该对象的成员函数。

中间的小结

牢记一点,说到底,DLL是对应C语言的动态链接技术,在输出C函数和变量时显得方便快捷;而在输出C++类、函数时需要通过各种手段,而且也并没有完美的解决方案,除非客户端也是c++。

记住,只有COM是对应C++语言的技术。

下面开始对各各问题一一小结。

显式调用和隐式调用

何时使用显式调用?何时使用隐式调用?我认为,只有一个时候使用显式调用是合理的,就是当客户端不是C/C++的时候。这时是无法隐式调用的。例如用VB调用C++写的dll。(VB我不会,所以没有例子)

Def和__declspec(dllexport)

其实def的功能相当于extern “C” __declspec(dllexport),所以它也仅能处理C函数,而不能处理重载函数。而__declspec(dllexport)和__declspec(dllimport)配合使用能够适应任何情况,因此__declspec(dllexport)是更为先进的方法。所以,目前普遍的看法是不使用def 文件,我也同意这个看法。

从其它语言调用DLL

从其它编程语言中调用DLL,有两个最大的问题,第一个就是函数符号的问题,前面已经多次提过了。这里有个两难选择,若使用extern “C”,则函数名称保持不变,调用较方便,但是不支持函数重载等一系列c++功能;若不使用extern “C”,则调用前要查看编译后的符号,非常不方便。

第二个问题就是函数调用压栈顺序的问题,即__cdecl和__stdcall的问题。__cdecl是常规的C/C++调用约定,这种调用约定下,函数调用后栈的清理工作是由调用者完成的。

__stdcall是标准的调用约定,即这些函数将在返回到调用者之前将参数从栈中删除。

这两个问题DLL都不能很好的解决,只能说凑合着用。但是在COM中,都得到了完美的解决。所以,要在Windows平台实现语言无关性,还是只有使用COM中间件。

总而言之,除非客户端也使用C++,否则dll是不便于支持函数重载、类等c++特性的。DLL对c函数的支持很好,我想这也是为什么windows的函数库使用C加dll实现的理由之一。

在VC中编写DLL

在VC中创建、编译、链接dll是非常方便的,点击fileàNewàProjectàWin32 Dynamic-Link Library,输入dll名称dll_InVC然后点击确定。然后选择A DLL that export some symbols,点击Finish。即可得到一个完整的DLL。

Linux多线程编程的基本的函数

Posix线程编程指南(一) 线程创建与取消 这是一个关于Posix线程编程的专栏。作者在阐明概念的基础上,将向您详细讲述Posix线程库API。本文是第一篇将向您讲述线程的创建与取消。 线程创建 1.1 线程与进程 相对进程而言,线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。在串行程序基础上引入线程和进程是为了提高程序的并发度,从而提高程序运行效率和响应时间。 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。同时,线程适合于在SMP机器上运行,而进程则可以跨机器迁移。 1.2 创建线程 POSIX通过pthread_create()函数创建线程,API定义如下: 与fork()调用创建一个进程的方法不同,pthread_create()创建的线程并不具备与主线程(即调用pthread_create()的线程)同样的执行序列,而是使其运行 start_routine(arg)函数。thread返回创建的线程ID,而attr是创建线程时设置的线程属性(见下)。pthread_create()的返回值表示线程创建是否成功。尽管arg是void *类型的变量,但它同样可以作为任意类型的参数传给start_routine()函数;同时,start_routine()可以返回一个void *类型的返回值,而这个返回值也可以是其他类型,并由pthread_join()获取。 1.3 线程创建属性 pthread_create()中的attr参数是一个结构指针,结构中的元素分别对应着新线程的运行属性,主要包括以下几项: __detachstate,表示新线程是否与进程中其他线程脱离同步,如果置位则新线程不能用pthread_join()来同步,且在退出时自行释放所占用的资源。缺省为 PTHREAD_CREATE_JOINABLE状态。这个属性也可以在线程创建并运行以后用pthread_detach()来设置,而一旦设置为PTHREAD_CREATE_DETACH状态(不论是创建时设置还是运行时设置)则不能再恢复到PTHREAD_CREATE_JOINABLE状态。

_stdcall介绍

stdcall调用约定: stdcall很多时候被称为pascal调用约定,因为pascal是早期很常见的一种教学用计算机程序设计语言,其语法严谨,使用的函数调用约定就是stdcall。在Microsoft C++系列的C/C++编译器中,常常用PASCAL宏来声明这个调用约定,类似的宏还有WINAPI和CALLBACK。 stdcall调用约定声明的语法为(以前文的那个函数为例): int __stdcall function(int a,int b) stdcall的调用约定意味着:1)参数从右向左压入堆栈,2)函数自身修改堆栈 3)函数名自动加前导的下划线,后面紧跟一个@符号,其后紧跟着参数的尺寸。 以上述这个函数为例,参数b首先被压栈,然后是参数a,函数调用function(1,2)调用处 翻译成汇编语言将变成: push 2 第二个参数入栈 push 1 第一个参数入栈 call function 调用参数,注意此时自动把cs:eip入栈 而对于函数自身,则可以翻译为: push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出时恢复mov ebp,esp 保存堆栈指针mov eax,[ebp + 8H] 堆栈中ebp指向位置之前依次保存有ebp,cs:eip,a,b,ebp +8指向a add eax,[ebp + 0CH] 堆栈中ebp + 12处保存了b mov esp,ebp 恢复esp pop ebp ret 8 而在编译时,这个函数的名字被翻译成_function@8 注意不同编译器会插入自己的汇编代码以提供编译的通用性,但是大体代码如此。其中在函数开始处保留esp到ebp中,在函数结束恢复是编译器常用的方法。 从函数调用看,2和1依次被push进堆栈,而在函数中又通过相对于ebp(即刚进函数时的堆栈指针)的偏移量存取参数。函数结束后,ret 8表示清理8个字节的堆栈,函数自己恢复了堆栈。 cdecl调用约定:

多线程编程实例---pthread_join函数详解1

多线程编程实例---pthread_join函数详解1 单处理器上的linux多线程,是通过分时操作完成的; 此时互斥锁的作用,只有在时间足够的情况下才能体现出来,即有时线程内需要延时; 否则只有第一个线程不断解锁和获锁,别的线程在第一个线程执行完前无法获得互斥锁。三pthread_join pthread_exit 函数pthread_join用来等待一个线程的结束。函数原型为: extern int pthread_join __P ((pthread_t __th, void **__thread_return)); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为: extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__)); 唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。 在这一节里,我们编写了一个最简单的线程,并掌握了最常用的三个函数pthread_create,pthread_join和pthread_exit。下面,我们来了解线程的一些常用属性以及如何设置这些属性。 /////////////////////////////////////////////////////////////////////////// 源程序: /*thread_example.c : c multiple thread programming in linux */ #include

回调函数与回调机制

回调函数与回调机制 1. 什么是回调函数 回调函数(callback Function),顾名思义,用于回调的函数。回调函数只是一个功能片段,由用户按照回调函数调用约定来实现的一个函数。回调函数是一个工作流的一部分,由工作流来决定函数的调用(回调)时机。回调函数包含下面几个特性: ?属于工作流的一个部分; ?必须按照工作流指定的调用约定来申明(定义); ?他的调用时机由工作流决定,回调函数的实现者不能直接调用回调函数来实现工作流的功能; 2. 回调机制 回调机制是一种常见的设计模型,他把工作流内的某个功能,按照约定的接口暴露给外部使用者,为外部使用者提供数据,或要求外部使用者提供数据。 如上图所示,工作流提供了两个对外接口(获取参数、显示结果),以回调函数的形式实现。 ?“获取参数”回调函数,需要工作流使用者设定工作流计算需要的参数。 ?“显示结果”回调函数,提供计算结果给工作流使用者。

再以Windows的枚举顶级窗体为例。函数EnumWindows用于枚举当前系统中的所有顶级窗口,其函数原型为: BOOL EnumWindows( WNDENUMPROC lpEnumFunc, // callback function LPARAM lParam // application-defined value ); 其中lpEnumFunc是一个回调函数,他用于返回枚举过程中的获得的窗口的句柄。其定义约定为: BOOL CALLBACK EnumWindowsProc( HWND hwnd, // handle to parent window LPARAM lParam // application-defined value ); 在这个例子中,EnumWindows 是一个工作流,这个工作流用于遍历windows的所有窗口并获得其句柄。用户使用EnumWindows工作流的目的是想通过工作流来来获取窗口的句柄以便针对特定的一个或多个窗口进行相关处理。于是EnumWindows就扩展出接口lpEnumFunc,用于返回遍历的窗口句柄。 EnumWindows工作流的结束有两个方式:1,用户在回调函数中返回FALSE;2,再也找不到顶级窗口。我们可以推测EnumWindows的实现机制如下: 注:下列代码中的FindFirstTopWindows(), FindNextTopWindow()为假设的,Windows API 没有此函数,只是为了表明Enumwindows的内部流程。 BOOL EnumWindows( WNDENUMPROC lpEnumFunc, // callback function LPARAM lParam // application-defined value ) { BOOL bRet = TRUE; HWND hWnd = ::FindFirstTopWindows(); // 此函数是假设的,查找第一个顶级窗口 // 当hWnd为0时表示再也找不到顶级窗口 while( hWnd ) { bRet = (*lpEnumFunc)( hWnd, value ); if( !bRet) break; // 终止EnumWindows工作流; hWnd = ::FindNextWindow(); // 此函数是假设的,查找下一个顶级窗口 } } 在EnumWindows(...)函数中,实现了窗口枚举的工作流,他通过回调机制把用户关心(顶级窗口句柄)的和枚举工作流分开,用户不需要知道EnumWindows的具体实现,用户只要知道,设定了lpEnumFunc函数,然后把函数指针传给EnumWindwos就可以获得想要的窗口句柄。

实验二线程的创建

实验二创建线程 一、实验目的 1. 通过创建线程、观察正在运行的线程和终止线程的程序设计和调试操作,进一步熟悉操作系统的线程概念,理解进程与线程之间的关系。 2. 通过阅读和分析实验程序,学习创建线程、观察线程和终止线程的程序设计方法。 二、实验内容 1. 创建线程 创建线程并因而成就一个多线程程序,是以CreateThread()作为一切行动的开始.此函数的原型如下: HANDLE CreateThread{ LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId}; 如果CreateThread()成功,返回一个新创建的线程的handle。 如果CreateThread()失败,返回一个NULL。可以调用GetLastError()获知原因。

2. 终止线程 线程结束代码可以依靠调用GetExitCodeThread()完成。 BOOL GetExitCodeThread{ HANDLE hThread, /*由CreateThread()传回的线程handle*/ LPDWORD lpExitCode /*指向一个DWORD,用于接受结束代码*/ }; 如果成功,GetExitCodeThread()传回TRUE,否则传回FALSE.如果线程已结束,那么线程的结束代码会被放在lpExitCode参数中带回来.如果线程尚未结束,lpExitCode带回来的值是STILL_ACTIVE。 如果需要用更强制性的手法结束一个线程,可以使用ExitThread()。 三、实验步骤 (1)开启五个线程,设计一个基于Win32多线程应用程序。 (2)基于Win32多线程应用程序,启动两个线程,当用户按下任意键时,试图退出。 (3)验证Thread 使用自己的 Stack 存放 function 中的 local variable。四.程序设计 (1)声明线程标准函数形式,创建等待对象的句柄hThrd,创建接收新线程ID的DWORD变量。进行for循环,执行线程内容ThreadFunc并返回每个核心对象hThrd。之后等待线程全部完成,结束程序。 (2)声明线程标准函数形式,创建等待对象的句柄hThrd1、hThrd2,创建获取线程退出代码的exitCode1、exitCode2,创建接收新线程ID的DWORD变量。执行线程内容ThreadFunc并返回每个核心对象hThrd并输出相关提示信息。进行for循环,接收用户按下的任意键信息,调用GetExitCodeThread等待一个线程的结束,使用GetExitCodeThread传回线程函数ThreadFunc的返回值。函数中用一个死循环,保证两个线程能够完整的运行完成,getch()函数接收用户输入,尝试打断线程,但后面代码保护了线程的继续执行,直至两个线程都执行完成,输出各自的返回值并退出。 (3)验证性程序。

C++中DLL函数的导出和导入

1.使用DEF 文件从DLL 导出 模块定义(.def) 文件是包含一个或多个描述DLL 各种属性的Module 语句的文本文件。如果不使用__declspec(dllexport)关键字导出DLL 的函数,则DLL 需要 .def 文件。 .def 文件必须至少包含下列模块定义语句: 文件中的第一个语句必须是LIBRARY 语句。此语句将 .def 文件标识为属于DLL。LIBRARY 语句的后面是DLL 的名称。链接器将此名称放到DLL 的导入库中。 EXPORTS 语句列出名称,可能的话还会列出DLL 导出函数的序号值。通过在函数名的后面加上@ 符和一个数字,给函数分配序号值。当指定序号值时,序号值的范围必须是从1 到N,其中N 是DLL 导出函数的个数。如果希望按序号导出函数,请参见按序号而不是按名称从DLL 导出函数以及本主题。 例如,包含实现二进制搜索树的代码的DLL 看上去可能像下面这样: LIBRARY BTREE EXPORTS Insert @1 Delete @2 Member @3 Min @4 如果使用MFC DLL 向导创建MFC DLL,则向导将为您创建主干 .def 文件并将其自动添加到项目中。添加要导出到此文件的函数名。对于非MFC DLL,必须亲自创建 .def 文件并将其添加到项目中。 如果导出C++ 文件中的函数,必须将修饰名放到 .def 文件中,或者通过使用外部“C”定义具有标准C 链接的导出函数。如果需要将修饰名放到 .def

文件中,则可以通过使用DUMPBIN 工具或/MAP 链接器选项来获取修饰名。请注意,编译器产生的修饰名是编译器特定的。如果将Visual C++ 编译器产生的修饰名放到 .def 文件中,则链接到DLL 的应用程序必须也是用相同版本的Visual C++ 生成的,这样调用应用程序中的修饰名才能与DLL 的 .def 文件中的导出名相匹配。 如果生成扩展DLL 并使用 .def 文件导出,则将下列代码放在包含导出类的头文件的开头和结尾: #undef AFX_DATA #define AFX_DATA AFX_EXT_DATA // #undef AFX_DATA #define AFX_DATA 这些代码行确保内部使用的MFC 变量或添加到类的变量是从扩展DLL 导出(或导入)的。例如,当使用DECLARE_DYNAMIC派生类时,该宏扩展以将CRuntimeClass成员变量添加到类。省去这四行代码可能会导致不能正确编译或链接DLL,或在客户端应用程序链接到DLL 时导致错误。 当生成DLL 时,链接器使用 .def 文件创建导出(.exp) 文件和导入库(.lib) 文件。然后,链接器使用导出文件生成DLL 文件。隐式链接到DLL 的可执行文件在生成时链接到导入库。 请注意,MFC 本身使用 .def 文件从MFCx0.dll 导出函数和类。 2.使用_declspec(dllexport) 从DLL 导出 Microsoft 在Visual C++ 的16 位编译器版本中引入了_export,使编译器得以自动生成导出名并将它们放到一个 .lib 文件中。然后,此 .lib 文件就可以像静态 .lib 那样用于与DLL 链接。

多线程编程

Linux操作系统实验报告 填写时间:2012年6月6日课程名称Linux操作系统实验教程 实验名称多线程编程 姓名邱爽学号2009221104210047 专业年级09计一 一、实验目的:(1)掌握Linux操作系统中进程和线程的概念 (2)掌握Linux操作系统中多线程编程的基本原理和方法 (3)学会利用创建多线程并实现简单的功能 二、实验设备: 装有Linux操作系统(Ubuntu或Deepin)的PC机一台 三、实验原理: 1、进程与线程的概念 进程与线程都是现代操作系统中程序运行的基本单位,多用户、多任务操作系统利用进程和线程来实现对应用任务的并发性。通俗地讲,进程是一个具有独立功能的程序关于某个数据集合上的一次并发执行的运行活动,是一种有生命周期的动态实体,是支持程序执行的一种系统机制。在单线成结构进程中,进程作为构成系统的基本实体,及时内部独立的执行单元,又是独立竞争资源的基本单元。在多线程进程中,进程是系统进行资源分配和保护的基本大院,而线程是进程内独立的执行单元,即一条执行路径。线程包含独立的堆栈和处理器及寄存器状态,每个线程共享器所附属进程的所有资源。 线程与进程的关系主要包括以下几个方面: (1)进程是资源分配和管理的基本单位,线程是程序执行的独立单位; (2)进程在执行过程汇总拥有独立的主存空间,而线程不能够独立存在,必须运行在所属进程的地址空间内。 (3)线程属于进程的组成部分,进程课包含多个线程。当进程被撤销是,改进程所产生的线程都会被强制撤销。 2、多线程编程 线程在进程的基础上作进一步抽象,也就是说一个进程分为两个部分:线程集合和资源集合。线程是进程中的动态对象,它是一个独立的控制流,进程中的所有线程将共享进程拥有的资源。 在Linux中,可把线程分为内核线程、内核支持的用户线程和线程库支持的用户线程等3种类型。其中,内核编程负责实现一个指定系统功能;内核支持的用户线程实质上是特殊的进程,能被单独调度和运行;用户进程是通过线程库实现的,内核不参与调度,线程库提供同步和调度方法。 我们做实验所用到的正是多线程编程里的用户线程。每个用户线程都可以有自己的用户栈,即用来保存用户级寄存器上下文以及信号屏蔽等状态信息的主存区。线程库支持的用户线程不是真正的调度实体,内核对他们一无所知,而只是调度用户线程所属的线程,这些进程再通过线程库函数来调度进程内的用户线程。 3、线程控制 (1)线程创建

线程创建与通信实验报告

实验报告 课程名称:现代软件技术实验名称:线程创建与通信实验人: 专业: 实验时间:

目录 一、实验目的 (3) 二、实验内容 (3) 1、基本要求 (3) 2、提高要求 (3) 三、需求分析 (3) 1、功能分析........................................................................................... 错误!未定义书签。 2、其它分析........................................................................................... 错误!未定义书签。 四、总体设计 (3) 1、数据结构设计(或类设计:数据成员设计、成员函数设计) (3) 2、软件总体结构设计 (3) 3、主程序流程设计 (3) 4、界面设计 (4) 五、详细设计 (5) 1、循环链表基本操作:....................................................................... 错误!未定义书签。 六、编码实现 (5) 1、循环链表基本操作........................................................................... 错误!未定义书签。 七、测试及分析 (7) 1、测试用例列表 (7) 2、出现的错误、解决方法与回归测试 (7) 八、实验总结 (8)

一、实验目的 掌握线程创建方法,实现线程间数据通信。 二、实验内容 1、基本要求:创建多个线程,实现线程间数据通信。 2、提高要求: (1)通过信号量机制实现线程的并发执行; (2)通过信号量机制控制屏幕输出; (3)生产者消费者问题; (4)创建多个进程,实现进程间通信。 三、需求分析 完成如下程序框图的程序: 图1 所需完成程序的程序框图 四、总体设计 1、数据结构设计 主线程和子线程之间的数据传递通过简单的int类型变量对同一个文件进行读入写出完成。 2、软件总体结构设计 通过设计两个线程函数:主线程函数main()和EventFunction()构成 3、主程序流程设计 程序流程图见图2。

C#调用API函数详细说明

C#:[DllImport("kernel32.dll")]是什么意思?? 这叫引入kernel32.dll这个动态连接库。 这个动态连接库里面包含了很多WindowsAPI函数,如果你想使用这面的函数,就需要这么引入。举个例子: [DllImport("kernel32.dll")] private static extern void 函数名(参数,[参数]); 函数名就是一个属于kernel32.dll里的一个函数。完了你就可以用那个函数了。 kernel32.dll调用kernel32.dll这个DLL里面的API接口! 系统API 例如 [DllImport("user32.dll")]//--引入API public static extern ReturnT ype FunctionName(type arg1,type arg2,...);//--声明方法 调用该方法是和调用普通方法没区别 DLL Import 属性 现在是更深入地进行探讨的时候了。在对托管代码进行P/Invoke 调用时,DllImportAttribute 类型扮演着重要的角色。DllImportAttribute 的主要作用是给CLR 指示哪个DLL 导出您想要调用的函数。相关DLL 的名称被作为一个构造函数参数传递给DllImportAttribute。 如果您无法肯定哪个DLL 定义了您要使用的Windows API 函数,Platform SDK 文档将为您提供最好的帮助资源。在Windows API 函数主题文字临近结尾的位置,SDK 文档指定了 C 应用程序要使用该函数必须链接的.lib 文件。在几乎所有的情况下,该.lib 文件具有与定义该函数的系统DLL 文件相同的名称。例如,如果该函数需要 C 应用程序链接到Kernel32.lib,则该函数就定义在Kernel32.dll 中。您可以在MessageBeep 中找到有关MessageBeep 的Platform SDK 文档主题。在该主题结尾处,您会注意到它指出库文件是User32.lib;这表明MessageBeep 是从User32.dll 中导出的。 可选的DllImportAttribute 属性 除了指出宿主DLL 外,DllImportAttribute 还包含了一些可选属性,其中四个特别有趣:EntryPoint、CharSet、SetLastError 和CallingConvention。 EntryPoint 在不希望外部托管方法具有与DLL 导出相同的名称的情况下,可以设置该属性来指示导出的DLL 函数的入口点名称。当您定义两个调用相同非托管函数的外部方法时,这特别有用。另外,在Windows 中还可以通过它们的序号值绑定到导出的DLL 函数。如果您需要这样做,则诸如“#1”或“#129”的EntryPoint 值指示DLL 中非托管函数的序号值而不是函数名。 CharSet 对于字符集,并非所有版本的Windows 都是同样创建的。Windows 9x 系列产品缺少重要的Unicode 支持,而Windows NT 和Windows CE 系列则一开始就使用Unicode。

C++多线程编程入门及范例详解

多线程编程之一——问题提出 一、问题的提出 编写一个耗时的单线程程序: 新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG 添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为“延时6秒”,添加按钮的响应函数,代码如下: 1.void CSingleThreadDlg::OnSleepSixSecond() 2.{ 3.Sleep(6000);//延时6秒 4.} 编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种耗时的操作,我们有必要学习——多线程编程。 二、多线程概述 进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。 线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说main或WinMain函数,将程序的启动点提供给Windows 系统。主执行线程终止了,进程也就随之终止。 每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所以线程间的通讯非常方便,多线程技术的应用也较为广泛。 多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。 Win32SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。 三、Win32API对多线程编程的支持 Win32提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。

VB如何调用dll函数

VB如何调用dll函数 2008-01-10 17:17 開始習慣孤單 | 分类:VB| 浏览13089次 假如我有个DLL,名为 asdfg.dll 它里面有一个函数 zxc(参数1,参数2) 我要用这个函数,该怎么写? 请高手帮我写出脚本,有时间的话请再加上注释 谢谢!! 2008-01-10 19:50 提问者采纳 1.在工程-引用中将asdfg.dll引用过来 2.dim AAA as asdfg 'asdfg是类模块的名称 Private Sub Form_Load() dim x Set AAA = New asdfg x = AAA.zxc(参数1,参数2)'参数1,2自己写 End Sub 建议你了解一下下面dll的制作方法,理解就更透彻了。下面内容来自百度。 1.新建一个ActiveX Dll,工程名字为vbmytestdll,类模块

名字为mytestdll 2.类模块内容只有一个函数,主要返回DLL的HELLO WORLD Public Function dlltest1() As String dlltest1 = "HELLO WORLD" End Function 3.保存,生成DLL,名字为 vbmytestdll.dll 4.新建一个EXE工程,在菜单: 工程---引用---浏览里找到vbmytestdll.dll,把它引用进来 5.EXE工程代码如下: Option Explicit Dim testdll As mytestdll'类模块名字 Private Sub Form_Load() Set testdll = New mytestdll 'DLL的一个新实例 Me.Caption = testdll.dlltest1 '我的标题=返回DLL的HELLO WORLD

多线程编程实例

编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。 函数pthread_create用来创建一个线程,它的原型为:extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr, void *(*__start_routine) (void *), void *__arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。当创建线程成功时,函数返回0,若不为0则说明创建线程失败。 函数pthread_join用来等待一个线程的结束。函数原型为:extern int pthread_join __P ((pthread_t __th, void **__thread_return)); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。 一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为: extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));

最简单的线程程序: /* example.c*/ #include #include void thread(void) { int i; for(i=0;i<3;i++) printf("This is a pthread.\n"); } int main(void) { pthread_t id; int i,ret; ret=pthread_create(&id,NULL,(void *) thread,NULL); if(ret!=0){ printf ("Create pthread error!\n"); exit (1); } for(i=0;i<3;i++) printf("This is the main process.\n"); pthread_join(id,NULL); return (0); } 输出是什么样子?

C语言函数调用规定

在C语言中,假设我们有这样的一个函数: int function(int a,int b) 调用时只要用result = function(1,2)这样的方式就可以使用这个函数。但是,当高级语言被编译成计算机可以识别的机器码时,有一个问题就凸现出来:在CPU中,计算机没有办法知道一个函数调用需要多少个、什么样的参数,也没有硬件可以保存这些参数。也就是说,计算机不知道怎么给这个函数传递参数,传递参数的工作必须由函数调用者和函数本身来协调。为此,计算机提供了一种被称为栈的数据结构来支持参数传递。 栈是一种先进后出的数据结构,栈有一个存储区、一个栈顶指针。栈顶指针指向堆栈中第一个可用的数据项(被称为栈顶)。用户可以在栈顶上方向栈中加入数据,这个操作被称为压栈(Push),压栈以后,栈顶自动变成新加入数据项的位置,栈顶指针也随之修改。用户也可以从堆栈中取走栈顶,称为弹出栈(pop),弹出栈后,栈顶下的一个元素变成栈顶,栈顶指针随之修改。 函数调用时,调用者依次把参数压栈,然后调用函数,函数被调用以后,在堆栈中取得数据,并进行计算。函数计算结束以后,或者调用者、或者函数本身修改堆栈,使堆栈恢复原装。 在参数传递中,有两个很重要的问题必须得到明确说明: 当参数个数多于一个时,按照什么顺序把参数压入堆栈 函数调用后,由谁来把堆栈恢复原装 在高级语言中,通过函数调用约定来说明这两个问题。常见的调用约定有:stdcall cdecl fastcall thiscall naked call stdcall调用约定 stdcall很多时候被称为pascal调用约定,因为pascal是早期很常见的一种教学用计算机程序设计语言,其语法严谨,使用的函数调用约定就是stdcall.在Microsoft C++系列的C/C++编译器中,常常用PASCAL宏来声明这个调用约定,类似的宏还有WINAPI和CALLBACK. stdcall调用约定声明的语法为(以前文的那个函数为例): int __stdcall function(int a,int b) stdcall的调用约定意味着:1)参数从右向左压入堆栈,2)函数自身修改堆栈3)函数名自动加前导的下划线,后面紧跟一个@符号,其后紧跟着参数的尺寸 以上述这个函数为例,参数b首先被压栈,然后是参数a,函数调用function(1,2)调用处翻译成汇编语言将变成: push 2 第二个参数入栈 push 1 第一个参数入栈 call function 调用参数,注意此时自动把cs:eip入栈 而对于函数自身,则可以翻译为: push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出时恢复 mov ebp,esp 保存堆栈指针

linux下的多线程编程常用函数

Linux下pthread的实现是通过系统调用clone()来实现的。clone()是Linux所特 有的系统调用,他的使用方式类似fork. int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr, void *(*start_rtn)(void),void *restrict arg); 返回值:若是成功建立线程返回0,否则返回错误的编号 形式参数: pthread_t *restrict tidp 要创建的线程的线程id指针 const pthread_attr_t *restrict attr 创建线程时的线程属性 void* (start_rtn)(void) 返回值是void类型的指针函数 void *restrict arg start_rtn的行参 进行编译的时候要加上-lpthread 向线程传递参数。 例程2: 功能:向新的线程传递整形值 #include #include #include void *create(void *arg) { int *num; num=(int *)arg; printf("create parameter is %d \n",*num); return (void *)0; } int main(int argc ,char *argv[]) { pthread_t tidp; int error; int test=4; int *attr=&test; error=pthread_create(&tidp,NULL,create,(void *)attr); if(error) { printf("pthread_create is created is not created ... \n"); return -1; } sleep(1); printf("pthread_create is created ...\n");

VC++深入详解 - 窗口的创建

1.4.2 窗口的创建 创建一个完整的窗口,需要经过下面几个操作步骤: *设计一个窗口类; *注册窗口类; *创建窗口; *显示及更新窗口。 下面的四个小分节将分别介绍创建窗口的过程。完整的例程请参见光盘中的例子代码Chapter1目录 下WinMain。 1.设计一个窗口类 一个完整的窗口具有许多特征,包括光标(鼠标进入该窗口时的形状)、图标、背景色等。窗口的创建过程类似于汽车的制造过程。我们在生产一个型号的汽车之前,首先要对该型号的汽车进行设计,在图纸上画出汽车的结构图,设计各个零部件,同时还要给该型号的汽车取一个响亮的名字,例如“奥 迪A6”。在完成设计后,就可以按照“奥迪A6”这个型号生产汽车了。 类似地,在创建一个窗口前,也必须对该类型的窗口进行设计,指定窗口的特征。当然,在我们设计一个窗口时,不像汽车的设计这么复杂,因为Windows已经为我们定义好了一个窗口所应具有的基本属性,我们只需要像考试时做填空题一样,将需要我们填充的部分填写完整,一种窗口就设计好了。 在Windows中,要达到作填空题的效果,只能通过结构体来完成,窗口的特征就是由WNDCLASS结构体来定义的。WNDCLASS结构体的定义如下(请读者自行参看MSDN): typedef struct _WNDCLASS { UINT style; WNDPROC lpfnWndProc; int cbClsExtra; int cbWndExtra; HANDLE hInstance; HICON hIcon; HCURSOR hCursor; HBRUSH hbrBackground;

LPCTSTR lpszMenuName; LPCTSTR lpszClassName; } WNDCLASS; 下面对该结构体的成员变量做一个说明。 第一个成员变量style指定这一类型窗口的样式,常用的样式如下: n CS_HREDRAW 当窗口水平方向上的宽度发生变化时,将重新绘制整个窗口。当窗口发生重绘时,窗口中的文字和图形将被擦除。如果没有指定这一样式,那么在水平方向上调整窗口宽度时,将不会重绘窗口。 n CS_VREDRAW 当窗口垂直方向上的高度发生变化时,将重新绘制整个窗口。如果没有指定这一样式,那么在垂直方向上调整窗口高度时,将不会重绘窗口。 n CS_NOCLOSE 禁用系统菜单的Close命令,这将导致窗口没有关闭按钮。 n CS_DBLCLKS 当用户在窗口中双击鼠标时,向窗口过程发送鼠标双击消息。 style成员的其他取值请参阅MSDN。 知识点在Windows.h中,以CS_开头的类样式(Class Style)标识符被定义为16位的常量,这些常量都只有某1位为1。在VC++开发环境中,利用goto definition功能,可以看 到CS_VREDRAW=0x0001,CS_HREDRAW=0x0002,CS_DBLCLKS =0x0008,CS_NOCLOSE=0x0200,读者可以将这些16进制数转换为2进制数,就可以发现它们都只有1位为1,并且为1的位各不相同。用这种方式定义的标识符称为“位标志”,我们可以使用位运算操作符来组合使用这些样式。例如,要让窗口在水平和垂直尺寸发生变化时发生重绘,我们可以使用位或(|)操作符将CS_HREDRAW和CS_VREDRAW组合起来,如style=CS_HREDRAW | CS_VREDRAW。假如有一个变量具有多个样式,而我们并不清楚该变量都有哪些样式,现在我们想要去掉该变量具有的某个样式,那么可以先对该样式标识符进行取反(~)操作,然后再和这个变量进行与(&)操作即可实现。例如,要去掉先前的style变量所具有的CS_VREDRAW样式,可以编写代 码:style=style & ~ CS_VREDRAW。 在Windows程序中,经常会用到这种位标志标识符,后面我们在创建窗口时用到的窗口样式,也是属于位标志标识符。

在VB中调用DLL的方法

1制作好DLL之后,就可以用VB调用它,实现VB调用C程序。VB程序要使用DLL中的函数,首先必须要有特殊的声明,用Declare声明语句在窗体级或模块级或全局模块的代码声明段进行声明,将动态链接库中的函数声明到VB中,供VB程序调用。 语句格式为:Declare Sub过程名Lib[Alias"别名]([ByVal参数AS类型]),或为Declare Function函数名Lib[Alias"别名]([ByVal参数AS类型])AS类型在声明中首先用Declare 关键字表示声明DLL中的函数。在C语言中有的函数类型为VOID,它表示不具有返回值,则必须用关键字Sub将其声明成过程。有的函数具有返回值,则必须用关键字Function将其声明成函数,并且在声明语句的最后要用AS关键字指明函数返回值的类型。 例如上面的ADD.DLL在VB中就可以声明为: Declare Function ADD Lib“c:\ADD.dll”(ByVal X AS Integer,ByVal Y AS Integer,ByVal filein asstring)AS Integer 通过此声明语句将函数ADD声明到VB中,便可直接调用。 2、dll文件中的函数好像是C语言写的, //函数名:int__stdcall GetMacNo(int*MacNo) //功能:获取卡机的卡机号(单机时) //参数:MacNo[0]-被读出的卡机号 //返回值:0-成功, //2-PC接收超时, //3-应答错误 dll的文件名是COMM232.dll 函数的形参int*MacNo是指针吗? 在VB中应该怎么声明和调用该函数? VB里也可以定义指针吗? 问题补充:vb调用dll文件中的函数我是会的,但这儿的形参有一个星号才不知是怎么一回事, 我是这样声明的对吗? Public Declare Function GetMacNo Lib"COMM232.dll"(ByVal MacNo As Integer)As Integer 又应该怎么调用呢?要先定义一个指针的变量再传给*MacNo还是要怎么做? 都说了MacNo是被读出的卡机号,那么就是传址的了。 dim l as integer dim m as integer l=GetMacNo(m) if l=0then label1.caption="卡机号:"&m elseif l=2then msgbox"PC接收超时" elseif l=3then msgbox"应答错误" end if

相关文档