文档库 最新最全的文档下载
当前位置:文档库 › (激光)东大猎鹰队技术报告

(激光)东大猎鹰队技术报告

(激光)东大猎鹰队技术报告
(激光)东大猎鹰队技术报告

第三届“飞思卡尔”杯全国大学生

智能汽车邀请赛

技术报告

学校:东北大学

队伍名称:猎鹰队

参赛队员:王学亮

侯俊

李远超

带队教师:张云洲

陈述平

关于技术报告和研究论文使用授权的说明

本人完全了解第二届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:

带队教师签名:

日期:

目录

第一章引言 (1)

第二章智能车硬件设计方案 (3)

2.1电源模块 (4)

2.2道路信息采集模块--光电传感器 (6)

2.3速度检测模块--速度传感器 (7)

2.4电机驱动模块和舵机驱动模块--主电机及舵机驱动 (7)

2.41电机驱动 (7)

2.42舵机驱动 (7)

2.5串口模块 (8)

2.5.1无线串口传送数据 (8)

2.5.2无线串口数据曲线 (10)

第三章智能车软件设计方案 (11)

3.1道路信息采集策略 (11)

3.2速度控制策略 (13)

3.21速度给定控制方案 (13)

3.22速度PID控制算法 (14)

3.3方向控制策略 (15)

第四章机械结构的调整 (17)

4.1底盘的调整 (17)

4.2前轮的调整 (17)

4.3后轮距及后轮差速的调整 (18)

4.4齿轮传动机构的调整 (19)

4.5优化舵机响应 (19)

4.6后悬挂减震系统 (20)

第五章总结与展望 (21)

5.1智能汽车技术指标 (21)

5.2总结 (21)

5.3设计中存在的问题 (22)

5.4展望 (23)

参考文献 .................................................................................................... I 附录A 源程序........................................................................................... I

第一章引言

我国从2006年才开始举办智能车竞赛。首届比赛采用MC9S12DG128作为主控芯片,相比于MC9S12DP256有256K的程序存储空间,MC9S12DG128只有128K程序存储空间。赛车模型、舵机和驱动电机与韩国2005年汉阳大学比赛时几乎相同。首届智能车竞赛于2006年8月20日至21日在清华大学进行,共有来自全国57所高校的112支参赛队参加。由于是首届比赛,赛道中只有直道和弯道,没有上下坡。从赛车寻迹技术方案来看,赛道检测方式也大体分为红外发射/接受管检测方式和CCD/CMOS摄像头检测方式两类。但是采用摄像头方案的成绩普遍比采用红外传感器方案的好。基于第一届和第二届比赛的成功经验,第三届比赛将范围扩大到全国具有以自动化专业为主的理工类高等本科学校约300余所,并采取赛区比赛和全国总决赛结合的比赛形式。经过竞争和评选,东北大学获得本次比赛东北赛区的承办权,最终的决赛将于2008年8月在东北大学举行。

运动策略的制定主要是依靠对传感器得到的道路及行驶信息进行采集、分析、决策、执行四个步骤来进行的。

研究智能车竞赛所用的MC9S12DG128B的资源配置和开发方法,设计电路图和相应的系统软件,构建完整的智能小车光电导航式控制系统。目的是为了让智能汽车以最快的速度,沿导航线走完全部赛道。本文主要对以下几个方面做研究:

首先,介绍了研究背景、比赛规则和设计构思。阐述了控制系统的资源配置、资源需求与分配和核心处理器的寄存器,MC9S12单片机寄存器资源。相比于其它类型的单片机,16位的MC9S12的功能更加强大,功能引脚较多,能够很好地满足智能车控制系统的需要。

其次,设计了智能车控制系统的硬件电路,包括各个模块的电路设计方案以及相关电路。采用的方案以MC9S12单片机为核心,包括总体控制系统的设计,各部件需要的供电电源设计,传感器电路设计,速度检测电路的设计等。

第三届全国大学生智能汽车邀请赛技术报告

然后,进行了软件和算法的设计。根据传感器采集的道路信息,经处理分析之后,控制转角和速度。并通过记忆算法,最后实现智能汽车快速的完成赛道。

最后,阐述了赛车机械结构调整,主要是调节车的重心、前轮、后轮、舵机,使智能车在高速行走时,更加稳定。

第二章智能车硬件设计方案

图2.1智能车俯视图图2.2智能车前面视图

图2.3智能车后面视图图2.4智能车左面视图

图2.5智能车右面视图

第三届全国大学生智能汽车邀请赛技术报告

根据本次大赛的特点,智能车的控制系统主要有电源模块,道路信息采集模块,速度检测模块,电机驱动模块,舵机驱动模块及串口模块。

2.1电源模块

电源模块为系统其它各个模块提供所需要的电源,设计中,除了要考虑到电压范围和电流容量等基本参数之外,还要在电源转换效率、降低噪声、防止干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。

电源模块由若干相互独立的稳压电路模块组成。一般采用如下图所示的星型结构,这样做可以减少各模块之间的相互干扰,另外为了进一步减小单片机的5V电源噪声,可以单独使用一个5V的稳压芯片,与其它接口电路分开。除了电机驱动模块的电源可以直接取自电池之外,其余各模块的工作电压则需要从电池电压经过变换稳压获取,在这次比赛中,采用的是稳压芯片实现。

图3.4 电源模块电路结构

比赛提供7.2V电池,整个系统需要为以下模块供电:

●为单片机供电(5V);

●为传感器供电(5V);

●为电机驱动供电(7.2V);

●为舵机供电(转向舵机和制动舵机)(6V);

第二章智能车硬件设计方案

●可能会有发热元件,接出5V风扇供电口。

由上可以知道,系统需要7.2V、6V、5V,其中7.2V可以由电池直接供电,6V和5V就需要稳压芯片来供电了,如果把所有接到5V的电源都从一个口输出,万一出现异常状况(例如大电流),单片机必然重启,因此需要多个稳压芯片同时工作,以保证单片机正常工作。

(1)7.2v电机电源

目前电路板上将两片33886并联,PWM信号一路直接输入到A1,一路经过反向后输入到A2。这样如果PWM波的占空比高于50%时,电机朝一个方向转;占空比低于50%时,电机朝另一个方向转。通过这种方式,可以在程序中实现反向制动,而这对于赛车在直道上提高速度是有帮助的。33886 作为一个单片电路H-桥,是理想的功率分流直流马达和双向推力电磁铁控制器. 它的集成电路包含内部逻辑控制,电荷泵,门控驱动,及低读选通(on) 金属-氧化物半导体场效应晶体管输出电路.33886 能够控制连续感应直流负载上升到5.0 安培,输出负载脉宽调制( PWM-ed)的频率可达10 千赫一个故障状态输出可以报告欠压,短路,过热的情况. 两路独立输入控制两个半桥的推拉输出电路的输出. 两个无效输入使H-桥产生三态输出(呈现高阻抗)33886制定的参数范围是-40°C≤TA ≤125 °C、5.0V≤V+≤28V。集成电路也可以工作在40V通过降低规定的定额值。集成电路能够在表面安装带散热装置的电源组件,其特点是:

●与MC33186DH1类似的增强特性

● 5.0 v至40 v连续运转

●120 mΩRDS(ON) H桥MOSFETs

●TTL/CMOS兼容输入

●PWM的频率可达10千赫

●通过内部常定时关闭对PWM有源电流限制(依靠降低温度的阈值)

●输出短路保护

●欠压关闭

●故障状况报告

第三届全国大学生智能汽车邀请赛技术报告

MC33886芯片的保护是很必要的,MC33886持续工作时最大输出电流为5A,并将最大电流限制在8A,当电流超过8A的时候,MC33886会自动将输出口置为高阻态。而电机额定电压下堵转电流为16.72A,远远超出了MC33886的驱动能力。在小车调速的过程中,需要快速的启动和制动,经常导致MC33886过热,甚至烧毁MC33886芯片。为了避免MC33886被烧毁,在硬件上可以采用多片并联的方式(这种方式也不是很好,因为每片MC33886的内阻不可能一样,如果有一片相对较小时,就需要在软件上加一些保护措施,进一步保护MC33886,比如防止MC33886芯片输入占空比的突变和根据MC33886的FS端口的电平变化来保护此芯片。

实际工作时,舵机所需要的工作电流一般在几十毫伏左右,电压无需十分稳定。电机驱动电路的电源可以直接使用电池两端的电压。模型车在启动过程中往往会产生很大的冲击电流,一方面会对其他电路造成电磁干扰;另一方面由于电池内阻造成电池两端的电压下降,甚至会低于稳压电路所需要的最低电压值,产生单片机复位现象。为了克服启动冲击电流的影响,可以在电源中增加容值较大的电解滤波电容,也可以采用缓启动的方式控制电机。在启动时,驱动电路输出电压有一个渐变的过程,使得电机启动速度略为降低从而减少启动冲击电流的幅度。

2.2道路信息采集模块--光电传感器

本次比赛分为光电组和摄像头组两大组。要符合大赛规则,参加光电组就不能用摄像头进行采集赛道信息。利用光电传感器对赛道黑线光线反射特点,确定车的位置定位,研究最优算法使小车不偏离轨道并且以最大速度完成比赛。

采用光电传感器,光电传感器分为发射和接收两部分,其中发射管发射红外光或者激光等特定光线,当照射在白板上,由于光的反射使接收管能够接收到反射光信号,此时接收管的信号端会有相应的电平变化,当照射在黑线上,由于光被黑线几乎吸收,接收管基本上接收不到光信号,此时接收管的信号端会发生相反的电平跳变,这样就能够将黑白线区分开了。

参赛车模采用激光传感器作为道路信息采集设备。

第二章智能车硬件设计方案

市场上的激光管有比较好的性能,它可以照射很远的距离依然有很高的强度,根据激光特性,除了激光的入射光和反射光是最强的以外,其他的所有散射光的强度都是相同的,在此情况下,实际测量发现激光可以看到20cm以上的距离,对于赛车的前瞻性大有好处,可以适当把光照调远,实现前瞻性循线控制。而且可见激光管由于光斑可见,对于安装调试能够提供很大方便,所以选择的就是可见光的激光管12个,在车前10cm的地方排成一字形。

2.3速度检测模块--速度传感器

速度检测电路的基本原理为:在很短的时间内,通过光电传感器来测量固定在后轮的轴上的码盘通过的孔数,输送到单片机的脉冲累加器外部引脚,经过换算计算出智能车的实际速度,为速度PID控制环节提供可靠的数据。

光电传感器是经过改造制成的。以智能车原来所携带的安装在后轮的轴上的齿轮作为码盘,齿轮本身具有76个齿,即相当于光电码盘上有76个孔,具有相当的精确度。另外自己制作基本的支架,通过光电传感器来实现对后轮电机的速度采集。光电传感器的供电电压为5V,外加1K的上拉电阻,输出信号的是0~5V高低电平。

具有齿槽结构的圆盘固定在后轮驱动电机输出轴上,采用直射式红外光传感器读取齿槽圆盘转动脉冲,再通过PT7返回给单片机。

2.4电机驱动模块和舵机驱动模块--主电机及舵机驱动

2.41电机驱动

在本次比赛中,后轮电机驱动电路的MC33886驱动芯片允许的频率范围是5KHZ-20KHZ,当频率低于5KHZ的时候,MC33886芯片会发出刺耳的尖叫声,而当频率大于30KHZ时,电机不转。因此采用了20KHZ的PWM输出频率供给MC33886,选择PWM01和PWM23通道作为后轮电机的驱动源。

2.42舵机驱动

舵机的工作频率是50HZ,但是为了加快舵机的反应速度,在本次比赛中,将舵机的工作频率提高到100HZ。即PWM45的输出频率为100HZ。经过时间

第三届全国大学生智能汽车邀请赛技术报告

检验,可以得出结论,在100HZ的PWM45输出控制下,舵机没有出现不正常的反应,而且响应速度确实比50HZ时快。

2.5串口模块

在智能车的制作和调试过程中,需要将赛车检测到的路面信息以及速度等参数实时地发送给PC,以便对算法进行有针对性的分析。由于小车在行驶时不能通过有线的方式获得其运行参数,就需使用无线方式。

2.5.1无线串口传送数据

异步串行通讯(SCI)是单片机和外界进行通讯的最常用方式之一。SCI最常用的标准是EIA RS-232C,它是由美国电子工业协会正式公布的一种SCI标准,通常称为RS-232标准。在RS-232标准中电平采用负逻辑,即低电平-3~-15V 代表逻辑“1”,高电平+3~+15V代表逻辑“0”。而单片机采用的CMOS标准则是正逻辑,即高电平3~5V代表逻辑“1”,低电平0~0.8V代表逻辑“0”。所以需要一个转换芯片把与TTL电平兼容的CMOS电平转换为RS-232电平。

RS-232的接口信号有10个,除了发送(TXD)、接收(RXD)和地(GND)信号外,还有用于控制的通信应答信号。但在一般的数据通讯中可以只使用TXD、RXD和GND。计算机的串行口是按照数据终端设备(DTE)定义的,如果单片机的串行口按照数据通讯设备(DCE)定义,计算机的串行口可以和单片机的串行口直接对应相连;如果单片机的串行口也是按照DTE定义,则要把两个串行口的RXD和TXD交叉连接。

异步串行通讯中“异步”的含义是没有共同的时钟用以同步,所以必须约定通讯数率,通常用波特率表示。波特率的含义是1秒中发送的数据位数。RS-232标准中波特率的范围是50~11520bps。

第二章智能车硬件设计方案

图4.6 PC机与单片机的通信接口

另外,进行SCI通讯的双方还必须约定数据位数、奇偶校验方式、停止位个数等事宜。

设置串口的数据参数,如图3.9所示:

图3.9串口数据参数设置

MC9S12DG128内集成两个SCI模块,分别称之为SCI0和SCI1。其特点是:

●半双工/全双工模式

●13位波特率寄存器

第三届全国大学生智能汽车邀请赛技术报告

●8位/9位可编程数据位

●独立的发送和接收

●可编程的发送极性

●8中中断类型标志

●接受结构检测

●硬件极性检查

●1/16位时间噪声检测

2.5.2无线串口数据曲线

智能车的行走路线是根据跑道上的黑线确定的,根据光电传感器采集到的路况信息控制舵机及后轮电机。而为了获取路况信息,就要求单片机能够和PC 机通信,而比较方便有效的方式就是串行通讯。同时在进行系统调试的时候,比如PID参数测定,采用传感器记忆数据时也要用到串口。所以,串口电路必不可少。

第三章智能车软件设计方案

3.1道路信息采集策略

因为激光传感器的距离太近,很容易产生干扰信号,从而影响赛道信息的采集。为此,采用激光扫描。打开相隔5个传感器的两个传感器,0.2ms后关断这两个传感器,0.4ms后再打开下两个传感器。这样就可以减少相邻传感器的干扰。2.8ms完成一次扫描,然后把这一周期的道路信息采集进来,在单片机上进行信息处理。

这次采用的光电传感器信息采集方式流程图如图3.1所示:

第三届全国大学生智能汽车邀请赛技术报告

图4.2光电传感器信息采集方式流程图

第三章智能车软件设计方案

判断黑线是在车的左侧,右侧和中间。设中间2个传感器检测到黑线,则认为黑线在车的中间。当智能车在直线上以高速行走时,很容易会产生振荡,会有轻微的左右摇摆,因而可以进行滤波,认为是中间4个传感器检测到黑线都是中间状态;如果右边4个传感器检测到黑线,则认为黑线在车的右边;如果左边4个传感器检测到黑线,则认为黑线在车的左边。

检测车的位置是 2.8ms一个周期,但只根据一个状态无法判断车是处在直道,弯道还是S道。我们可以把之前的状态和现在的状态进行存贮,计算处理,从而最终判断智能车是处在那一种路面情况,然后根据处理程序进行舵机和电机的调节。

3.2速度控制策略

3.21速度给定控制方案

当智能车在直道行走的时候,可以给最高速度;当智能车在弯道出直道时,速度相对高速;当智能车直道入弯的时候,速度突然减下来;当智能车在弯道时,相对低速。

速度的程序流程图如图4.5所示。

第三届全国大学生智能汽车邀请赛技术报告

图4.5速度函数的流程图

3.22速度PID控制算法

在计算机控制系统中,数字PID控制算法通常又分为位置式PID和增量式PID。本次设计中,采用的是位置式PID。

增量式与位置式算法是有差别的,增量式是计算机的积累功能,又硬件或者被控对象完成。而我们的小车的硬件没有这样的功能,所以我们选用位置式,而且位置式在实践中,也能很好的PID跟随性,符合小车要求的速度调节。

比例系数kp的作用是对偏差作出的影响,使系统向减少偏差的方向变化。

积分系数ki的作用是消除系统静差,但ki增加太大不利于减少超调、减少震荡,使系统不稳定,系统静差的消除反而减慢。

微分系统kd的作用事加快系统的响应,但是对扰动的抑制能力减弱。在实

第三章智能车软件设计方案

际的赛车过程中,道路的信息误差扰动特别大,因而考虑减去微分环节,只用PI调节。在实际应用中,也是PI调节效果更好。

3.3方向控制策略

根据光电传感器采集回来的道路信息,进行存储、分析和计算。当不同位置的传感器检测到黑线,舵机的PWM模块就给不同的值,使舵机摆动不同的角度。由前面得到的道路状态信息,而增加相应权值不一样的摆动角度。当智能车在直线上高速行走的时候,中间4个传感器检测到黑线的舵机摆角,比原来基数的舵机摆角更加小。当智能小车的舵机摆角不正,跑直道有振荡的时候,这样可以使小车在直道高速运行的时候,左右来回振荡变小。当刹车标志位置为1的时候,表明智能小车正在过弯道,可以把传感器两端的8个传感器相应的摆动角度变大。更有利于转过弯道而不至于跑出赛道。

由前面得到的道路状态信息,而增加相应权值不一样的摆动角度。当智能车在直线上高速行走的时候,中间4个传感器检测到黑线的舵机摆角,比原来基数的舵机摆角更加小。当智能小车的舵机摆角不正,跑直道有振荡的时候,这样可以使小车在直道高速运行的时候,左右来回振荡变小。当刹车标志位置1的时候,表明智能小车正在过弯道,可以把传感器两端的8个传感器相应的摆动角度变大,更有利于转过弯。

舵机函数的流程图如图3.4所示。

第三届全国大学生智能汽车邀请赛技术报告

图3.4 舵机函数的流程图

第四章机械结构的调整

为了让赛车能在直道和弯道上高速稳定的通过,而且转弯比较灵巧,快速,除了有相应的软件和硬件电路的设计之外,赛车的机械结构对其也有很重要的影响。所以我们对赛车的机械结构也做了一些相应的调整。本章的将主要介绍赛车车模的机械特点和调整方案。

4.1底盘的调整

我们把车的后轮底盘放低(在新车模的基础上),从而降低整车的重心,防止车翻倒。而车头的底盘高度不变,这是为了使车能顺利的上坡而不至于由于底盘过底使底盘擦到赛道。

4.2前轮的调整

调试中发现,在车模过弯时,转向舵机的负载会因为车轮转向角度增大而增大。为了尽可能降低转向舵机负载,对前轮的安装角度,即前轮定位进行了调整。前轮定位的作用是保障汽车直线行驶的稳定性,转向轻便和减少轮胎的磨损。前轮是转向轮,它的安装位置由主销内倾、主销后倾、前轮外倾和前轮前束等4 个项目决定,反映了转向轮、主销和前轴等三者在车架上的位置关系。主销后倾角是前轮主销与前轮垂直中心线之间的夹角,也就是主销上端向后倾斜的角度。在赛车上是通过四个黄色的小垫片来调整的。减小主销后倾角可以减小前轮的回正力矩。也就是如果车轮向右转,后倾角可以产生一个向左的回正力,使车轮回正比较快,但又使转向更为费力。设黄色垫片2:2(即前2后2)为0°,1:3(前1后3)为2°~3°,则我们改为3:1(前3后1),使其倾角为负2°~3°。这样则可以减小回正力矩的作用,使转向更为灵活,但也会使回正比原来稍慢。

主销内倾角是前轮主销在赛车水平面内向内倾斜的角度,虽然增大内倾角也可以增大回正的力矩,但增大内倾角会在赛车转向的过程中,增大赛车与路面的滑动,从而加速轮胎的磨损,由于轮胎对地的附着力对防止侧滑有很重要的影响,所以如果轮胎磨损则得不偿失,所以内倾角调整为0°。

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

东北大学秦皇岛分校计算机接口技术实验报告

计算机接口技术实验报告 ____________________________________________________________________ __________ 班级: ____ 姓名:_____ 班内序号:_______ 实验日期: 学院: _______计算机与通信工程学院__ 专业:_______计算机科学与技术 ___________ 实验顺序:___1___ 实验名称:_系统中断实验_________________ 实验分数:_______ 考评日期:________ 指导教师:张旭 ____________________________________________________________________ __________ 一.实验目的 1.掌握PC机中断处理系统的基本原理。 2.学会编写中断服务程序。 ____________________________________________________________________ __________ 二.实验环境 TPC-ZK-II 集成开发环境 三.实验原理 1.在PC/XT系统中,中断系统是由两片8259A构成(如图),可以管理 15级中断。 电路特点如下: ①两片8259A的CAS0~CAS2同名端互联,从片8259A的INT与主 8259A的第二级中断请求输入连接; ②主片8259A的端口地址在020H~03FH范围内有效,从片8259A的端 口地址在0A0H~0BFH范围内有效。由于将芯片的A0与地址总线的

最低位连接,所以两个芯片的有效地址分别为20H 、21H 和A0H 、A1H ; ③ 主从片8259A 的中断触发极性都为边沿(上升沿)有效; ④ 选择为全嵌套方式,即IR0最高、IR1、IR2(从片的IR0~IR7)、 然后是主 片的IR3~IR7。 ⑤ 主、从芯片均采用非缓冲结构,主片的SP/EN 端接高电平,从片的 SP/EN 端接低电平; ⑥ 设定0~7级对应的中断号为08H ~0FH,8~15级对应的中断号为 70~77H 。 系统上电时,ROM BIOS 对8259A 的主片和从片要执行初始化命令、惊醒初始化操作。 多片8259A 的级联结构图 IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR3 IR4 IR5 IR6 IR7 /INTA INT 8259A (主片) SP/EN CAS0CAS1CAS 2 /INTA INT CPU IR0 IR1 IR2 /INTA INT 8259A (主片) SP/EN CAS0CAS1CAS 2 Vcc D7~D0 D7~D0 D7~D0

激光探测技术讲解

激光探测技术 激光技术用于检测工作主要是利用激光的优异特性,将它作为光源,配以相应的光电元件来实现的。它具有精度高、测量范围大、检测时间短、非接触式等优点,常用于测量长度、位移、速度、振动等参数。当测定对象物受到激光照射时,激光的某些特性会发生变化,通过测定其响应如强度、速度或种类等,就可以知道测定物的形状、物理、化学特征,以及他们的变化量。响应种类有:光、声、热,离子,中性粒子等生成物的释放,以及反射光、透射 激光技术用于检测工作主要是利用激光的优异特性,将它作为光源,配以相应的光电元件来实现的。它具有精度高、测量范围大、检测时间短、非接触式等优点,常用于测量长度、位移、速度、振动等参数。当测定对象物受到激光照射时,激光的某些特性会发生变化,通过测定其响应如强度、速度或种类等,就可以知道测定物的形状、物理、化学特征,以及他们的变化量。响应种类有:光、声、热,离子,中性粒子等生成物的释放,以及反射光、透射光、散射光等的振幅、相位、频率、偏振光方向以及传播方向等的变化。 ◆激光测距 激光测距的基本原理是:将光速为 C 的激光射向被测目标,测量它返回的时间,由此求得激光器与被测目标间的距离 d 。 即:d=ct/2 式中t-激光发出与接收到返回信号之间的时间间隔。可见这种激光测距的精度取决于测时精度。由于它利用的是脉冲激光束,为了提高精度,要求激光脉冲宽度窄,光接收器响应速度快。所以,远距离测量常用输出功率较大的固体激光器与二氧化碳激光器作为激光源;近距离测量则用砷化镓半导体激光器作为激光源。 ◆激光测长

从光学原理可知,单色光的最大可测长度L与光源波长λ和谱线宽度Δλ的关系用普通单色光源测量,最大可测长度78cm。若被测对象超过 78cm,就须分段测量,这将降低测量精度。若用氦氖激光器作光源,则最大可测长度可达几十公里。通常测长范围不超过10m,其测量精度可保证在 0.1μm 以内。 ◆激光干涉测量 激光干涉测量的原理是利用激光的特性-相干性,对相位变化的信息进行处理。由于光是一种高频电磁波,直接观测其相位的变化比较困难,因此使用干涉技术将相位差变换为光强的变化,观测起来就容易的多。通常利用基准反射面的参照光和观测物体反射的观测光产生的干涉,或者是参照光和通过观测物体后相位发生变化的光之间的干涉,就可以非接触地测量被测物体的距离以及物体的大小,形状等,其测量精度达到光的波长量级。因为光的波长非常短,所以测量精度相当高。 ◆激光雷达 激光雷达是用于向空中发射激光束,并对其散射信号光进行分析与处理,以获知空气中的悬浮分子的种类和数量以及距离,利用短脉冲激光,可以按时间序列观测每个脉冲所包含的信息,即可获得对象物质的三维空间分布及其移动速度、方向等方面的信息。如果使用皮秒级的脉冲激光,其空间分辨率可以达到 10cm以下。激光照射在物体上后,会发生散射,按照光子能量是否发生变化,散射分为弹性散射和非弹性散射两种类型。弹性散射又有瑞利散射和米氏散射之分。相对于激光波长而言,散射体的尺寸非常小时,称为瑞利散射;与激光波长相当的散射,称之为米氏散射。瑞利散射强度与照射激光波长的四次方成反比,所以,通过改变波长的测量方式就可以和米氏散射区别开。相应地,非弹性散射也有拉曼散射和布里渊散射两种。拉曼散射是指光遇到原子或分子发生散射时,由于散射体的固有振动以及回转能和能量的交换,致使散射光的频率发生变化的现象。拉曼散射所表现出的特征,因组成物质的分子结构的不同而不同,因此,将接收的散射光谱进行分光,通过光谱分析法可以很容易鉴定分子种类。所以,通过测量散射光,就可以测定空气中是否有乱气流(米氏散射),以及CO、NO等各种大气污染物的种类及数量(拉曼散射)。由此可见,激光雷达技术在解决环境问题方面占据着举足轻重的位置。

激光测距实验报告(精)

一、激光测距简介: 激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点: ①激光有小的光束发散角,即所谓的方向性好或准直性好。 ②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。 ③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。 若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。 世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。 激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。 由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。 激光测距仪-分类: 一维激光测距仪 用于距离测量、定位; 二维激光测距仪(Scanning Laser Range finder) 用于轮廓测量,定位、区域监控等领域; 三维激光测距仪(3D Laser Range finder) 用于三维轮廓测量,三维空间定位等领域。 激光测距-方法 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。

激光测量技术总结

激光测量技术 第一章 激光原理与技术 1、简并度:同一能级对应的不同的电子运动状态的数目; 简并能级:电子可以有两个或两个以上的不同运动状态具有相同的能级,这样的能级叫 简并能级 2、泵浦方式:光泵浦,电泵浦,化学泵浦,热泵浦 3、激光产生三要素:泵浦,增益介质,谐振腔 阀值条件:光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种 损耗之和. 4、He-Ne 激光器的三种结构:【主要结构:激光管(放电管,电极,光学谐振腔)+电源+光学元件】 1)内腔式;2)外腔式;3)半内腔式 5、激光器分类:1)工作波段:远红外、红外激光器;可见光激光器;紫外、真空紫外激光器;X 光激光器 2)运转方式:连续激光器;脉冲激光器;超短脉冲激光器 6、激光的基本物理性质:1)激光的方向性。不同类型激光器的方向性差别很大,与增益介质的方向性及均匀性、谐振腔的类型及腔长和激光器的工作状态有关。气体激光器的增益介质有良好的均匀性,且腔长大,方向性 ,最好! 例1:对于直径3mm 腔镜的632.8nmHe-Ne 激光器输出光束,近衍射极限光束发散角为 2)激光的高亮度。 3)单色性。激光的频率受以下条件影响:能级分裂;腔长变化←泵浦、温度、振 动 4)相干性:时间相干性(同地异时):同一光源的光经过不同的路径到达同一位置, 尚能发生干涉,其经过的时间差τc 称为相干时间。相干长度: 例 : He-Ne laser 的线宽和波长比值为10-7求Michelson 干涉仪的最大测量长度是 多少? 解: ,最大测量长度为Lmax=Lc/2=3.164m 。 空间相干性(同时异地):同一时间,由空间不同的点发出的光波的相 干性。 7、相邻两个纵模频率的间隔为 谐振腔的作用:(1)提供正反馈;(2)选择激光的方向性;(3)提高激光的单色性。 例 设He-Ne 激光器腔长L 分别为0.30m 、1.0m,气体折射率n~1,试求纵模频率间隔各为多 少? 8、激光的横模:光场在横向不同的稳定分布,激光模式一般用TEMmnq 表示 原因:激活介质的不均匀性,或谐振腔内插入元件(如布儒斯特窗)破坏了腔的旋转对称性。激光横模形成的主要因素是谐振腔两端反射镜的衍射作用,光束不再是平行光,光强也改变为非均匀的。 λ λν?=?=?=//2c t c L c 1 =?c ντm L c 328.6/2=?=λλrad d 4102/22.1-?≈≈λθnL C 2=?νHz 105.10.1121031.0m,Hz 1053 .012103,m 30.0288288 1?=???=?=?=???=?==?νννL L nL c

激光倍频实验报告

篇一:激光谐振腔与倍频实验 激光谐振腔与倍频实验 a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容] 1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。 2、掌握腔外倍频技术,并了解倍频技术的意义。 3、观察倍频晶体0.53?m绿色光的输出情况。[实验基本原理] 1、激光谐振腔 光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。 图1 激光谐振腔示意图 (1)组成: 光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。 (2)工作原理: 谐振腔中包含了能实现粒子数反转的激光工作物质。它们受到激励后,许多原子将跃迁到激发态。但经过激发态寿命时间后又自发跃迁到低能态,放出光子。其中,偏离轴向的光子会很快逸出腔外。只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。这些光子成为引起受激发射的外界光场。促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。 (3)种类:图2 谐振腔的种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。 如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔(满足,否则称为不稳定腔(满足1?g1.g2或0?g1.g2)。上述列举的谐振腔都属0?g1.g2?1) 稳定腔。 (4)本实验中的激光谐振腔: 本实验采用的是外腔式钕玻璃激光器。外腔式激光器的两个反射镜是放在激光棒的外侧,长度可调,频率可变,在激光棒的两侧按一定的角度贴有布儒斯特窗片。由于布儒斯特窗对p 偏振分量具有100%的透过率,从而输出线偏光。 2、激光倍频 (1)非线性光学基础 极化强度矢量和入射长的关系为: p??(1)e??(2)e2??(3)e3??(1) ……分别是线性极化率,二阶非线性极化率,三阶非线性极化率……,?(2) ,?(1),?(3),且每加一次极化,?值减小七八个数量级。在入射光场比较小的时候,?

东北大学毕业-论文设计要求

目录 一、内容总体要求 (3) (一)引言 (3) (二)论文的类型 (3) (三)毕业设计的选题 (3) (四)论文的写作 (4) 二、编写格式 (5) (一)封面 (5) 1、论文题目 (6) 2、作者姓名 (6) 3、指导教师姓名 (6) 4、论文封面日期 (6) (二)中文题名页 (6) 1、题目 (6) 2、姓名 (6) 3、学校与日期 (7) (三)英文题名页 (7) 1、题目 (7) 2、姓名 (7) 3、职称 (7) 4、学校与日期 (7) (四)毕业设计论文(任务书) (7) 1、毕业设计(论文)题目 (7) 2、基本内容 (7) 3、毕业设计(论文)专题部分 (8) 4、学生接受毕业设计(论文)题目日期 (8) (五)中文摘要 (8) 1、中文题目 (8) 2、摘要 (8) 3、摘要内容 (8) 4、关键词 (8) 5、关键词内容 (8) 6、关键词的选取 (8) 7、摘要内容的编写 (9) (六)英文摘要 (9) 1、题目 (9) 2、摘要 (9) 3、格式 (9) 4、关键词 (9) (七)目录 (9) 1、目录 (10) 2、索引条目 (10) 3、各节 (10) (八)正文 (10)

1、标题 (11) 2、正文 (11) 3、节 (11) 4、小节 (12) 5、正文编号 (12) 6、图 (12) 7、表 (12) 8、程序代码 (13) 9、结论 (13) (九)参考文献 (13) (十)结束语(致谢) (14) 三、其他要求 (14) 1、打印 (14) 2、页码编排 (14) 3、页眉设置 (14) 4、装订 (14)

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

东北大学20秋答案《微控制器接口技术》在线平时作业1

1.在接口电路中“口”的精确定义是() A.已赋值的寄存器 B.8位数据寄存器 C.可读可写的寄存器 D.可寻址的可读可写的寄存器 答案:D 2.89C51具有4个I/O口分别为() A.P0、P1、P2、P3 B.P1、P2、P3、P4 答案:A 3.若中断源都编程为同级,当他们同时申请中断时CPU首先响应() A.T0 B.INT0 C.T1 D.INT1 答案:B 4.正在执行某条指令时,响应中断执行中断服务程序然后返回到() A.该条指令 B.该条指令的下一条指令 C.该条指令的上一条指令 答案:B 5.外部程序存储器的选通控制信号为() A./RD B.ALE C./WR D./PSEN 答案:D

6.单片机复位的条件是() A.初始上电和正常工作期间,RST端维持2个机器周期的高电平 B.初始上电和正常工作期间,RST端维持20毫秒的高电平 C.初始上电需20毫秒,正常工作期间只需2个机器周期的高电平 答案:C 7.使用外部中断/INT1下降沿触发,初始化时需将下面位标志置1的是() A.IE1 B.IT1 C.ET1 D.PT1 答案:B 8.控制定时/计数器工作方式的寄存器是() A.TCON B.PCON C.TMOD D.SCON 答案:C 9.下列指令中不是变址寻址方式的是() A.JMP @A+DPTR B.MOVC A,@A+DPTR C.MOVC A,@A+PC D.MOVX A,@DPTR 答案:D 10.在下列总线中,哪种需用导线最少() A.SPI B.I2C C.并行通信 答案:B

11.与中断系统相关的寄存器有以下四个() A.IE、TMOD、SCON、PSW B.IE、TCON、SCON、IP 答案:B 12.串行口控制寄存器SCON中的TI和RI两位的清‘0’是() A.由软件清0 B.硬件自动清0 答案:A 13.在中断服务程序中至少应有一条() A.传送指令 B.转移指令 C.加法指令 D.中断返回指令 答案:D 14.在寄存器间接寻址方式中,指定寄存器中存放的是() A.操作数 B.操作数地址 C.转移地址 D.地址偏移量 答案:B 15.设置SP30H后经过一系列堆栈操作,当进栈数据全部弹出后,SP应指向() A.30H B.07H C.31H D.2FH 答案:A 16.串行发送数据的第9位是用指令把TB8位送入SBUF中。()

激光测距实验报告

激光脉冲测距实验 1.实验目的 通过学习激光脉冲测距的工作原理;了解激光脉冲测距系统的组成;搭建室内模拟激光脉冲测距系统进行正确测距,为今后的工程设计奠定理论基础和工程实践基础。 2.实验原理 激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。 在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为 R=/2 (2-1) 式中c为光速。真空中的光速是一个精确的物理常数 C1=299792458 m/s 光纤中的平均折射率n为 n=1.000275266 故光纤中的光速为 C=299710000 可见,激光测距的任务就是准确地测定时间间隔t。当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的 ⊿R=C⊿t/2 (2-2) 实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。设这段时间内脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为 R=1/2cmT=cm/f=1.6m (2-3) 相应的测距精度为 ⊿R =1/2Ct=c/(2f) (2-4) 可见,脉冲激光测距机的测距精度由晶振的频率决定。常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。晶振的频率愈高,测距精度就愈高, 但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。 对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

(完整word版)激光光束分析实验报告讲解

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束 质量的因子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和因子的倒数K因子(通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基模(模) 高斯光束有最好的光束质量,其,可以证明对于一般的激光光束有。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。 实验原理

如图选定坐标系。设光束的束腰位置为,束腰直径为,远场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的光束直径。光束传播方程的一级近似为: 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角, 可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任一垂直面上的光束能量密度函数。由于能量密度函数关于传播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明: 其中: 因此只要测出能量密度函数就可以求出传播轴上任一垂直面上的光束直径。 有了测量光束直径的方法后,分别在轴向位置处测量能量密度函数,求出光束直径和,之后将其代入光束传播的一级近似方程

专业概论A卷答案 东北大学!!

东北大学继续教育学院 专业概论试卷(作业考核线上) A 卷 学习中心:黑龙江漠河奥鹏学习中心[17] 院校学号:C54570212090015 姓名牟雷 (共页) 说明:请简要叙述以下问题。 1、计算机的产生是20世纪伟大成就之一。根据你的观察,列出计算机的主要应用,简述计算机发展趋势。 答:计算机一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能.标志着人类历史进入到信息化的时代,大大提高了社会生产的效率。这些是可以切身体会到的。同时也促进了全球化的历程,地球村的说。应用领域:科学计算、信息管理、过程控制、辅助设计、计算机翻译、人工智能、多媒体应用、计算机网络、高能物理、工程设计、地震预测、气象预报、航天技术等。由于计算机具有高运算速度和精度以及逻辑判断能力,因此出现了计算力学、计算物理、计算化学、生物控制论等。 发展趋势:(1)微型化 一方面,随着计算机的应用日益广泛,在一些特定场合,需要很小的计算机,计算机的重量、体积都变得越来越小,但功能并不减少。另一方面,随着计算机在世界上日益普及,个人电脑正逐步由办公设备变为电子消费品。人们要求电脑除了要保留原有的性能之外,还要有时尚的外观、轻便小巧、便于操作等特点,如平板电脑、手持电脑等。今后个人计算机(Personal Computer)在计算机中所占的比重将会越来越大,使用也将会越来越方便。 (2)巨型化社会在不断发展,人类对自然世界的认识活动也越来越多,很多情况要求计算机对数据进行运算。“巨型化”在这里并不是通常意义上的大小,主要是指机器的性能——运算速度等。

(3)网络化因特网(Internet)的建立正在改变我们的世界,改变我们的生活。网络具有虚拟和真实两种特性,网上聊天和网络游戏等具有虚拟特性,而网络通信、电子商务、网络资源共享则具有真实的特性。 (4)智能化 今后,计算机在生活中扮演的角色将会更加重要,计算机应用将具有更多的智能特性,能够帮助用户解决—些自己不熟悉或不愿意做的事,如智能家电、烹调等。 (5)新型计算机 目前新一代计算机正处在设想和研制阶段。新一代计算机是把信息采集、存储处理、通信和人工智能结合在一起的计算机系统。 2、简述计算机存储器的功能和主要指标。计算机系统的存储器分为哪几个层次? 答: 存储器的功能:现代计算机是以存储器为中心的计算机系统,存储器是计算机的重要组成部分。当利用计算机完成某项任务时,首先把解决问题的程序和所需数据存于存储器中,在执行程序时再由存储器快速地提供给处理机。显然,存储器的功能是存储信息,被存储的信息包括程序信息和数据信息等。存储器主要指标:存储器作为计算机系统的核心部件之一,有必要对其性能进行描述。描述一个存储器性能优劣的主要指标有存储容量、存储周期和存取时间、可靠性、性能价格比、功耗、可靠性等。计算机系统中存储层次可分为高速缓冲存储器、主存储器、辅助存储器三级。高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题辅助存储器用于扩大存储空,即硬盘,光盘等,容量大,但存取数据慢,计算机都是先把辅存中要读的东西放到主存后处理,然后在依据情况是否写回。主存即为内存,断电信息丢失,但存取数据块,他的容量大小直接影响计算机运行速度。 3、操作系统的基本功能有哪些?你了解哪几种操作系统,各有什么特点? 答:操作系统的功能概括为两大功能:扩展的虚拟机功能、资源管理功能。其中,资源管理功能包括了处理机管理、内存管理、设备管理、文件管理四大功能。而扩展的虚拟机提供友好的人机交互以及程序级接口,使得计算机看上去像是功能扩展了的机器。最常见的是按照操作系统的性质来划分的类型:分为批处理操作系统、分时操作系统、实时操作系统、网络操作系统、嵌入式操作系统。批处理系统的主要特点是系统吞吐量大、系统资源利用率较高、平均作业周转时间(作业从提交到结果输出的时间)较长,系统无交互力。分时系统中往往支持多道程序执行,尽管如此,各运行任务具有独立性,互不影响;由于将处

激光熔覆实验报告

激光熔覆实验报告 1.实验目的 1)熟悉激光熔覆的概念、特性和基本方法; 2)了解激光熔覆所涉及的激光器、加工机床、送粉器和喷嘴; 3)用侧向送粉法在45钢表面进行镍基合金的激光熔覆,优化工艺参数获得良好的熔 覆层; 4)测量熔覆层的尺寸,观察显微组织。 2.实验原理 激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。 与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多、粒度及含量变化大等特点,因此激光熔覆技术应用前景十分广阔。 熔覆材料:目前应用广泛的激光熔覆材料主要有:镍基、钴基、铁基合金、碳化钨复合材料。其中,又以镍基材料应用最多,与钴基材料相比,其价格便宜。 工艺设备原理 熔覆工艺:激光熔覆按熔覆材料的供给方式大概可分为两大类,即预置式激光熔覆和同步式激光熔覆。预置式激光熔覆是将熔覆材料事先置于基材表面的熔覆部位,然后采用激光束辐照扫描熔化,熔覆材料以粉、丝、板的形式加入,其中以粉末的形式最为常用。同步式激光熔覆则是将熔覆材料直接送入激光束中,使供料和熔覆同时完成。熔覆材料主要也是以粉末的形式送入,有的也采用线材或板材进行同步送料。 预置式激光熔覆的主要工艺流程为:基材熔覆表面预处理---预置熔覆材料---预热---激光熔化---后热处理。 同步式激光熔覆的主要工艺流程为:基材熔覆表面预处理---送料激光熔化---后热处理。 按工艺流程,与激光熔覆相关的工艺主要是基材表面预处理方法、熔覆材料的供料方法、预热和后热处理。 3.实验设备 YLS-2000(IPG)光纤激光器、45钢板材(40╳60╳15),Ni基合金粉末。 4.实验步骤 1)预先准备好的45钢试样表面用酒精和丙酮清洗干净,用电吹风机吹干备用; 2)在激光加工工作头上安装反射聚焦工作头,接通电源,调节送粉嘴的位置;在送粉 器中加入适量的NiCrSiB合金粉末;

VR空间虚拟现实与可视化东北大学结课作业及实验含代码

空间信息可视化有与虚拟现实 实验报告 学院:资源与土木工程学院 班级:测绘1402 姓名:古再丽努尔·喀日 学号: 20141668 指导老师:郭甲腾 2017 年 5 月

成绩评定表

目录 VRML编程环境熟悉 (4) VRML绘制基本几何模型 (7) VRML空间变换与群节点设计 (16) VRML 绘制复杂造型 (20) VRML环境设计与视点控制 (22) VRML动画交互 (28) 结课作业 (37)

实验一 VRML编程环境熟悉 智能自动完成 在编辑 VRML 文本时能够根据上下文关系及其在场景图中的位置给出一个包含合适的 VRML 标识文本的列表以供选择。这些 VRML 标识文本关键字关键字、PROTO 原型定义名称、节点名称、域的名称、域类型、SFNode 节点和 MFNode 节点的子域、标准 VRML 脚本对象及其属性和方法的名称。 动态错误检测。 场景图树的可视化显示 节点的代码能够根据场景图的结构展开或收起以方便编辑,可以在结构视图中选择要编辑的节点或域。 多文档同时编辑 在同一个 VrmlPad 中同时打开多个文件以便进行文件之间的复制、剪切、粘贴的操作, 或方便的查找替换文本。同一个文件也可以使用两个窗口来浏览同一文件的不同部分。根据当前打开的文件能够很容易的找到与之相关的文件(例如Inlines、Anchor、EXTERNPROTOs)并进行编辑。 整合脚本调试器 可以使用此整合的脚本调试器在内嵌的 vrmlscript 脚本中,或在用 Cortona 控件插入VRML的网页中查找并修复。这个调试器有这些控制脚本的执行的功能:可以暂停脚本的执行,运行至指定行,设置断点,一步步的运行脚本。监视脚本的数据状态:当前调用的堆栈;相关的前后代码中变量,数组,对象;计算包含这些数据的表达式。在调试阶段修改变量,数组,或对象的值。在调试阶段添加并测试新的脚本代码。使用 Quick Watch window(快速监视窗口)检验或修改变化的数据。使用CodeTips(代码上的弹出提示)快速监视脚本中的变量值。VrmlPad 可以提示用户语法、值类型的错误或警告。提供域值是否在适当范围中。可以校验是否有重复的节点定义,是否有不匹配的域名或路由。 网络三维技术的出现最早可追朔到VRML,VRML(Virtual Reality Modeling Language)即虚拟现实建模语言。VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0草案。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph\'96上公布通过了规范的VRML2.0第一版。它在 VRML1.0的基础上进行了很大的补充和完善。它是以SGI 公司的动态境界Moving Worlds提案为基础的。 1997年12月VRML作为国际标准正式发布, 1998年1月正式获得国际标准化组织ISO批准简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。 VRML规范支持纹理映射、全景背景、雾、视频、音频、对象运动、和碰撞检测--一切用于建立虚拟世界的所具有的东西。 但是VRML并没有得到预期的推广运用,不过这不是VRML的错,要知道当时14.4k 的modems是普遍的。VRML是几乎没有得到压缩的脚本代码,加上庞大的纹理贴图等数据,要在当时的互连网上传输简直是场噩梦。 1998年。VRML组织把自己改名为Web3D组织,同时制订了一个新的标准,Extensible 3D (X3D),到了2000年春天,Web3D组织完成了VRML到X3D的转

激光实验报告讲解

激光实验报告 He-Ne 激光器模式分析 一.实验目的与要求 目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测 试分析,掌握模式分析的基本方法。对本实验使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理,性能,学会正确使用。 要求:用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵横模间隔,判别高阶 横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的横向光场分布花样,体会谐振腔的调整对它的影响。 二.实验原理 1.激光模式的一般分析 由光学谐振腔理论可以知道,稳定腔的输出频率特性为: L C V mnq η2= [1q (m 2n 1)+++π]cos -1[(1—1 R L )(1—2R L )]1/2 (17) 其中:L —谐振腔长度; R 1、R 2—两球面反射镜的曲率半径; q —纵横序数; m 、n —横模序数; η—腔内介质的折射率。 横模不同(m 、n 不同),对应不同的横向光场分布(垂直于光轴方向),即有不同的光斑花样。但对于复杂的横模,目测则很困难。精确的方法是借助于仪器测量,本实验就是利用共焦扫描干涉仪来分析激光器输出的横模结构。 由(17)式看出,对于同一纵模序数,不同横模之间的频差为: )(12' ':n m L C n m mn ??πηυ?+= cos -1[(1-1R L )(1-2 R L )]1/2 (18) 其中:Δm=m -m ′;Δn=n -n ′。对于相同的横模,不同纵模间的频差为 q L C q q ?ηυ?2':= 其中:Δq=q -q ′,相邻两纵模的频差为

L C q ηυ?2= (19) 由(18)、(19)式看出,稳定球面腔有如图2—1的频谱。 (18)式除以(19)式得 cos )(1'':n m n m mn q ??πν??+=-1[(1-1R L )(1-2 R L )]1/2 (20) 设:q n m mn υ?υ??'':= ; S= π 1 cos -1[(1-)]1)(21R L R L -1/2 Δ表示不同的两横模(比如υ00与υ 10)之间的频差与相邻两纵模之间的频差之 比,于是(20)式可简写作: S n m ? = ?+?)( (21) 只要我们能测出Δ,并通过产品说明书了解到L 、R 1、R 2(这些数据生产厂家常给出),那么就可以由(21)式求出(Δm +Δn )。如果我们选取m=n=0作为基准,那么便可以判断出横模序数m 、n 。例如,我们通过测量和计算求得(Δm +Δn )=2,那么,激光器可能工作于υ00、υ10、υ01、υ11、υ20、υ02。 2. 共焦球面扫描干涉仪的基本工作原理 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图2—2。反射镜的曲率半径R 1=R 2=L 。 图 2-2

相关文档