文档库 最新最全的文档下载
当前位置:文档库 › 基于LabVIEW的英文文献

基于LabVIEW的英文文献

基于LabVIEW的英文文献
基于LabVIEW的英文文献

Electric Measurements with LabVIEW

Dambovita

Abstract: The paper presents a data acquisition system which consists in Hall effect sensors, a PCI 6023(National Instruments) data acquisition board, Lab VIEW graphical programming environment and the experimental results achieved by the authors concerning the behavior of ac electrical circuits. The instruments used in the measurement technique were developed as computer data base equipments, using well determined functions (the acquisition of parameters, signal processing/adapting) with the communication possibility on a serial interface or on a parallel port. Today, data acquisition boards are used and can be assembled directly into the computer, having the operation possibility of an oscilloscope. The appearance of the LabVIEW environment was motivated by the research automation activity and by the application development, based on a hierarchical instrument structure, which is composed by the user's interface and the visual programming elements.

Keywords:data acquisition, graphical programming, Hall effect, electric power

1 Introduction

The use of the LabVIEW graphical programming environment ensures the analysis and study of power measurement methods in single-phase and three-phase alternative current circuits [3, 6, 7]. The evolution in both electric measurement technique, in the electronic field and in the area of data acquisition systems, arguments the opportunity and justification of designing new instruments in order to improve the research activity in this area [2, 3].

The modern applied metrology is integrally linked with other fast-growing domains, such as computer technology, data processing and telecommunications. Adaptation of the information systems’ techniques for the needs of measurement sys tems created a new interdisciplinary field dealing with Distributed Measurement-Control Systems (DMCS). Elements of DMCS (nodes) are distributed territorially, connected via wired or wireless network and able to exchange information between each other. Currently the research in the area of DMCS is focused on the applicability issues and adapting of new information and communication technologies for such systems [8]. Nowadays, a very important issue in

DMCS technology ensures the safety of communication. In many cases, the success of often costly experiments or missions and also the biological and economical security depends on the proper functioning of such systems. Due to the still growing integration with telecommunications and general public computer networks, the security of distributed measurement systems has been dramatically reduced. In many DMCS the information security of the network becomes one of the major development problems. Information security issues are also very important (because of the specific openness of such systems, and ease of attack) in the wireless and mobile DMCS systems. Since the nodes of DMCS can be both socalled Measuring Servers, usually based on PCs with huge processor power, as well as mobile wireless sensors powered from battery, the existing disparity of calculation power makes another important issue for the development of common methods, ensuring the safety of DMCS. Therefore there is an urgent need to develop proper methods and tools to ensure the safety and security of these systems [1, 8].

The software plays nowadays a huge role in measurement systems and very often determines their quality. The growing processors’ computing power and memory capacity allows for the development of more complex software. An important issue becomes the creation of new methods and software tools for designing distributed measurement systems, and in particular low-cost and easyto- use libraries and tools for designing software that provides secure exchange of information independently of used information and communication infrastructure.

Existing software design tools dedicated for DMCS, integrated software environments such as LabVIEW, LabWindows/CVI, HPVEE, enable simple and flexible development process of applications, but among others do not include libraries for secure data exchange. The security problem was only slightly considered which has resulted in the introduction of certain access control mechanisms to certain parts of an application (front panels and their components) based on login and password identification system. But there is no use of cryptographic methods, and the information between nodes is sent explicitly, mostly as a plain text.

Therefore, it seems necessary to develop a complete library of functions, programs and

tools tailored to specific programming environments, which would give the application or system developer the opportunity to design and simulate secure and safe distributed measurement system in an easy and intuitive way. These additives should help to ensure safe transmission of data in any communication infrastructure and the creation of mechanisms for authentication and integrity of both measurement and control data.

In the previous work, the authors have analyzed the LabVIEW environment capabilities for efficient implementation of cryptographic algorithms [1]. The next phase of the work, described in this paper, is to develop new mathematical tool for LabVIEW environment - a Large Number library (also known as Big Integer or arbitrary length integer library). This library allows for the computation on numbers with arbitrary (within the limits of available memory) number of decimal digits, far exceeding the typical representation in computer systems (32 or 64bit). Large numbers are widely used in many popular cryptographic algorithms, including RSA, Rabin or ElGamal public-key encryption systems, used for both, data encryption and the generation of secure digital signatures [2,3]. The LN library in addition to basic arithmetic operation includes operation modulo N in the suitable rings or finite bodies, functions for calculating the opposite element in such algebras and primality test algorithms.

2. Power Measurement in Single-Phase AC Circuits

The instantaneous power [1,2,3,4] to an electric dipole is defined as the product of the instantaneous values of the voltage (u) to the terminal of the dipole and the current (i) that flows through the dipole:

P=ui (1)

The instantaneous power can be classified into input and output power, depending on the association of the voltage (u) and the current (i), which respects the rule of receivers and generators. In a sine-wave steady-state with the T period, the active power (P) can be defined as the average value of the instantaneous power, considering a natural number of periods:

For a single-phase circuit which functions under a sine-wave permanent rate, in which the voltage and current have the following expressions:

it results:

- the active power: P = UI cos?

- the reactive power: Q = UI sin?(5)

- the apparent power: S = UI

The complex apparent power (S) is defined into the simplified complex representation as the product between the complex voltage (U) and the conjugate complex current (I*):

The real part of the complex power (S) is the active power (P), the imaginary part is the reactive power (Q), the module is the apparent power (S) and the argument is equal to the phase displacement (?) of the circuit:

For a single-phase circuit which does not function in sine-wave rate [4] and has the terminal voltage u(t):

there can be defined:

the active power:

the reactive power:

the apparent power:

S=UI (11)

By taking into account the relations ab ove, we can notice that S 2≠P 2+Q 2 and therefore the notion of deforming power can be introduced:

The application below (fig. 1) which is realized by using the LabVIEW graphical programming environment, basing on the presented theoretical considerations [2,5,6,7], allows the graphical display of the time variation of the voltage, the current, the instantaneous and active power. Control elements are used in order to modify the voltage and the charge impedance parameters, and also other elements are used for indicating the voltage, the current, the power factor, the active, reactive and apparent power (in order to obtain an accurate view of the current, it is possible to multiply the amplitude 1, 10, 20, 50 or 100 times).

Fig.1. Single-Phase AC Circuits Operation and Power Measurement – simulation

2.2 Signal Conditioning

The acquisition data board is a complex system which allows parameter measurement and monitoring from a technological process, using transducers which can transform studied physical measures into electrical voltage [1,3,4,6,7]. For single-phase ac circuits, it is necessary to obtain signals with voltage-range amplitude, to be applied at the input of the board. For phase/line voltages, resistive voltage dividers (do not ensure galvanic isolation) or voltage measurement transformers (ensure galvanic separation) can be used. Shunts

(current-voltage converter) or current measurement transformers can be used for currents. The use of both voltage dividers and shunts must be done by taking into account the current through the voltage divider, the voltage drop on the shunt, the power dissipation, parasite resistances, self-heating effects, dynamic effects.

Fig.2. Data acquisition system

Fig.3. Experimental results

The use of voltage-current meas urement transformers ensures the energetic system’s galvanic isolation of the measuring system, but it introduces ratio and angle errors and realizes an inadequate perturbation transfer. The adopted solution was to use current and voltage transducers based on the Hall effect. The block diagram of the acquisition system is presented in fig.2 and fig.3 presents the experimental results.

Remark: The voltage values and the parameters of the consumers in fig. 3a, were introduced into the application realized for simulation (fig.1).

3. Power Measurement in Three-Phase AC Circuits

For a random receiver (Z), consisting in linear impedances, forming a system with n nodes which is alimented through a circuit with n conductors [1], the total complex apparent power (S) transmitted to the receiver is:

By expressing the potentials of the nodes using the potential differences reported to a point N having a random potential, the expression (3.1) becomes:

(14)

The definitions of active and reactive power give the following results:

The total active power P (respectively the reactive power – Q) consumed by a random receiver with n phases and alimented through a line of n conductors, is equal to the sum of n active single-phase powers (or reactive single-phase powers) which are given by the Ik line currents, with the UkN voltages between the n conductors and the N point. The alternative three-phase circuits have the following voltage system:

If the voltage system supplies a three-phase balanced receiver, the current system will be:

If the phase impedances are different, the receiver is not balanced and the absorbed currents from the source can be calculated with methods that are related to star connected three-phase balanced receivers, it results:

), the voltage value will be: Regarding the impedance value of the neutral conductor (Z

Fig.4. Data Acquisition System – block diagram

The block diagram of the data acquisition system is presented in fig.4. The measuring methods for active/reactive power in three-phase ac circuits, depend on the type of the consumer and the number of conductors in the electric energy supply system.

For three-phase circuits with neutral conductor (n=4), the generalized theorem becomes:

The total active power in this case can be measured by using the 4 wattmeter method (if a random value is given to the potential of the N point) or using the 3 wattmeter method (if the potential of the N point is equal to the one of the neutral conductor).

Fig.5. Data Acquisition System –experimental results

4 Conclusion

The implementation of the applications (simulating and data acquisition) into the LabVIEW graphical programming environment has been realized basing on theoretical aspects and experimental determinations in the laboratory, using accurate devices. These applications can be used both for studying the measurement methods of power (student/personnel training because of the ability of modifying the parameters of the circuits and of the effect display) and for performing high accuracy measurements.

The use of the presented signal conditioning system enlarges the data acquisition abilities

in the electric system, in order to study the operation of electric machines, converters, transient rates. The flexibility of the instrument is given by the possibility of including other operations in the measurement process (analysis, operation automation, access to the data basis, sending data on the Internet, etc.).

References

[1] Dogaru-Ulieru,V. – Electrical and Electronic Measurements, Ed. Printech, Bucharest, 2005

[2] Dogaru-Ulieru,V., s.a.- LabVIEW Application in Electrical Measurements, Ed.CONPHYS, Rm. Valcea, 2002

[3] Ertrugul, N. – LabVIEW for Electric Circuits, Machines, Drives, and Laboratories, Pretince Hall PTR, NJ, 2002

[4] Golovanov, C., s.a – Measurements Modern Issues in Electroenergetics, Ed. Tehnica, Bucharest, 2002

[5] Maier, V.,s.a–LabVIEW in Quality of Electric Energy, Ed. Albastra, Cluj-Napoca, 2000

[6] ***National Instruments, LabVIEW – User Manual, LabVIEW – Data Acquisition Basics Manual, Academic Resources 2004

[7] *** https://www.wendangku.net/doc/5c3274340.html,,*** https://www.wendangku.net/doc/5c3274340.html,

labview简介

LabVIEW是一种程序开发环境,类似于C和BASIC开发环境,但LabVIEW与其它计算机语言的显著区别是:其它计算机语言都是采用基于文本的语言产生代码行,而LabVIEW使用图形化编程语言G语言编写程序,产生的程序是框图的形式。像C或BASIC 一样, LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等等。LabVIEW也有传统的程序调试工具,如设置断点、以动画形式显示数据及其通过程序(子VI)的结果、单步执行等等,便于程序的调试。 虚拟仪器,简称VI,包括三部分:前面板、框图程序和图标/连接器。程序前面板,如图一所示,用于设置输入量和观察输出量。它模拟真实仪器的前面板。其中,输入量被称为Controls(控件),用户可以通过控件向VI中设置输入参数等;输出量被称为Indicators(指示器),VI通过指示器向用户提示状态或输出数据等。用户还可以使用各种图标,如旋钮、开关、按钮、图表及图形等,使前面板易看易懂。每一个程序前面板都有相应的框图程序与之对应。框图程序,如图二所示,用图形编程语言编写,可以把它理解成传统程序的源代码。框图中的部件可以看成程序节点,如循环控制、事件控制和算术功能等。这些部件都用连线连接,以定义框图内的数据流动方向。图标/接口器件可以让用户把VI程序变成一个对象(VI子程序),然后在其他程序中像子程序一样地调用它。图标表示在其他程序中被调用的子程序,而接线端口则表示图标的输入/输出口,就像子程序的参数端口对应着VI程序前面板控件和指示器的数值。 图一图二 虚拟仪器和传统仪器的差异很大,具有很强的优势。独立的传统仪器,例如示波器和波形发生器,性能强大,但是价格昂贵,且被厂家限定了功能,只能完成一件或几件具体的工作,因此,用户通常都不能够对其加以扩展或自定义其功能。仪器的旋钮和开关、内置电路及用户所能使用的功能对这台仪器来说都是固定的。另外,开发这些仪器还必须要用专门的技术和高成本的元部件,从而使它们身价颇高且很不容易更新。基于PC机的虚拟仪器系统,诞生以来就充分利用了现成即用的PC机所带来的最新科技。这些科技和性能上的优势迅速缩短了独立的传统仪器和PC机之间的距离,包括功能强大的处理器(如Pentium4)、操作系统及微软Windows XP、NET技术和Apple Mac OSx。除了融合诸多功能强大的特性,这些平台还为用户提供了简单的联网工具。此外,传统仪器往往不便随身携带,而虚拟仪器可以在笔记本电脑上运行,充分体现了其便携特性。需要经常变换应用项目和系统要求的工程师和科学家们需要有非常灵活的开发平台以便创建适合自己的解决方案。可以使用虚拟仪器以满足特定的需要,因为有安装在PC 机上的应用软件和一系列可选的插入式硬件,无需更换整套设备,即能完成新系统的开

管理信息系统MIS(Management Information System)

MIS(Management Information System) the term in the interest of the administration. In the wake of the development of MIS, much business sit up the decentralized message concentration to establish the information system ministry of directly under director, and the chief of information system ministry is ordinarily in the interest of assistant manager’s grade. After the authority of business is centralized up high-quality administration personnel staff’s hand, as if causing much sections office work decrease, hence someone prophesy, middle layer management shall vanish. In reality, the reappearance phase employed layer management among the information system queen not merely not to decrease, on the contrary there being the increase a bit. This is for, although the middle layer management personnel staff getting off exonerate out through loaded down with trivial details daily routine, yet needs them to analyses researching work in the way of even more energy, lift further admonishing the decision of strategic importance level. In the wake of the development of MIS, the business continuously adds to the demand of high technique a talented person, but the scarce thing of capability shall be washed out gradually. This compels people by means of study and cultivating, and continuously lifts individual’s quality. In The wake of the news dispatch and electric network and file transmission system development, business staff member is on duty in many being living incomparably either the home. Having caused that corporation save the expenses enormously, the work efficiency obviously moves upward American Rank Zeros corporation the office system on the net, in the interest of the creativity of raise office personnel staff was produced the advantageous term. At the moment many countries are fermenting one kind of more well-developed manufacturing industry strategy, and become quickly manufacturing the business. It completely on the basis of the user requirement organization design together with manufacture, may carry on the large-scale cooperation in the interest of identical produce by means of the business that the flow was shifted the distinct districts, and by means of the once more programming to the machinery with to the resources and the reorganization of personnel staff , constituted a fresh affrication system, and causes that manufacturing cost together with lot nearly have nothing to do with. Quickly manufacturing the business establishes a whole completely new strategy dependence relation against consumer, and is able to arouse the structure of production once more revolution. The management information system is towards the self-adoption and Self-learning orientation development, the decision procedure of imitation man who is be able to be better. Some entrepreneurs of the west vainly hope that consummate MIS is encircles the magic drug to govern the business all kinds of diseases; Yet also someone says, and what it is too many is dependent on the defeat that MIS be able to cause on the administration. It is adaptable each other to comprehend the effect to the business of MIS, and is favor of us to be living in development and the research work, and causes the business organization and administer the better development against MIS of system and administration means , and establish more valid MIS. 英文翻译文章的出处:Russ Basiura, Mike Batongbacal 管理信息系统: 管理信息系统就是我们常说的MIS(Management Information System), 在强调管理,

java毕业论文外文文献翻译

Advantages of Managed Code Microsoft intermediate language shares with Java byte code the idea that it is a low-level language witha simple syntax , which can be very quickly translated intonative machine code. Having this well-defined universal syntax for code has significant advantages. Platform independence First, it means that the same file containing byte code instructions can be placed on any platform; atruntime the final stage of compilation can then be easily accomplished so that the code will run on thatparticular platform. In other words, by compiling to IL we obtain platform independence for .NET, inmuch the same way as compiling to Java byte code gives Java platform independence. Performance improvement IL is actually a bit more ambitious than Java bytecode. IL is always Just-In-Time compiled (known as JIT), whereas Java byte code was ofteninterpreted. One of the disadvantages of Java was that, on execution, the process of translating from Javabyte code to native executable resulted in a loss of performance. Instead of compiling the entire application in one go (which could lead to a slow start-up time), the JITcompiler simply compiles each portion of code as it is called (just-in-time). When code has been compiled.once, the resultant native executable is stored until the application exits, so that it does not need to berecompiled the next time that portion of code is run. Microsoft argues that this process is more efficientthan compiling the entire application code at the start, because of the likelihood that large portions of anyapplication code will not actually be executed in any given run. Using the JIT compiler, such code willnever be compiled.

labview问题集合

Labview初学者常见问题以及解答(上) 1、Labview如何实现由一个事件引发其他三个事件的顺序发生,且这三次事件间的时间间隔为50ms?回答:可以引用状态机来设计程序,将触发事件作为状态机的状态控制参数,后面发生的三个事件依次作为状态机的三个顺序状态,设置状态切换时间间隔为500ms. 2、labview在主程序通过局部变量不能实时看子vi的参数回答:通过局部变量只能得到子vi 运行完之后的结果。可以用control reference 方式,在子vi加一个属性节点引出一个reference。主程序里把需要显示的控件创建一个reference连到子vi的reference输入端口。另外也可以用vi server方式实现。 3、如何在一个graph或chart显示多个Y轴刻度,并且使每个通道对应每个刻度?回答:在前面板上,右键点击刻度,然后选择duplicate scales,就会创建一个新的刻度。然后再点击右键,选择swap sides,就可以让刻度显示在图的左边或右边。然后右键右上角的plot legend 上的曲线plot,选择Y scales然后就可以选择与该曲线相应的Y轴SCALES。多条曲线对应多条Y轴的刻度时,是同样的方法。 4、如何从labview中打开一个pdf文件?回答:最简单的方法:用system exec.vi实现,在system exec.vi的command line 端口创建一个常量,输入adobe reader 的路径,再加上文件名等几个参数就可以实现上述要求。举例如下:如果要拉开位于c盘的1234.pdf文件可以这样写“C:\Program files\Acrobt 7.0\Acrobat\Acrobat.exe”/t “C:\1234.pdf” “username”其中C:\Program files\Adobe\Acrobt 7.0\Acrobat\Acrobat.exe是Adobe Reader 的安装路径,/t是命令参数,C:\1234.pdf则是要打开的文件名,最后的username 是用户的名字 5、采集数据在graph如何显示系统时间,并且随着采集点数时间不断刷新。回答:有两种方式,一种是采集波形数据然后输出给graph,在graph上选择显示绝对时间,并且去掉ignore time stamp选项。第二种是采集数据文件,然后用获取时间的vi获取当前时间,然后把采集的数据文件和当前vibuild成波形文件再给graph.graph的设置和前种方法一样。这样就可以显示出时间虽采集点不断刷新的效果。 6、report generation里的standard和HTML究竟是什么意思?回答:STANDARD和HTML 是LV本身就有的报表类型,无须安装其他的文本编辑工具就可以打印。STANDARD是LV内建的一种报表格式,可以打印但不能存盘,也就是说我们的报表没有电子版。HTML是网页格式的文件,可以用浏览器打开,其实相当于LV帮我们编写HTML代码,这种格式是不能直接打印的,需要先指定网页路径才能打印出来。还要注意,如果是一段程序是用了report generation 的vi,在打包成exe文件或llb文件时,需要加入两个动态vi:_excel dynamic vi和_word dynamic vi。如果生成的报表采样了模板需要自支持文件里添加相应模板。 7、如果要将channel名字,测的是什么信号,采样率是多少这样的数据和采得数据一起存入文件应该用什么方式比较好?回答:推荐一种以前基本被忽略的文件结构——TDM FILE格式来存,这种文件格式基于二进制的方式,而在存储过程中可以加入很多的外部信息进去,例如free text;free interger等等,所以存这样的应用还是挺合适的。

管理信息系统中英文翻译资料

Managemengt Information Systems By a management information system,we propose the follow alternate definition: an integrated uer/machine system (usually computerized) for providing information to support decision making in an enterprise. The key elements of this definition are —An integrated uer/machine system —For proving information —To support decision making —In an enterprise A management information system utilizes —Computer hardware and software —Manual procedures —Models for analysis —A database Just as there is a logical flow of materials in the creation of a product, there is logical flow of information in a management information system.In manufacturing,raw materials move through a process that transforms the raw materials into usable products. In a similar fashion, in an information system,data are supplied to a system(input), the data are manipulated(processed),and they are transformed into information(output).In its simplest form ,a management information systemed may be depicted by an input-process-output(IPO) model

毕业论文5000字英文文献翻译

英文翻译 英语原文: . Introducing Classes The only remaining feature we need to understand before solving our bookstore problem is how to write a data structure to represent our transaction data. In C++ we define our own data structure by defining a class. The class mechanism is one of the most important features in C++. In fact, a primary focus of the design of C++ is to make it possible to define class types that behave as naturally as the built-in types themselves. The library types that we've seen already, such as istream and ostream, are all defined as classesthat is,they are not strictly speaking part of the language. Complete understanding of the class mechanism requires mastering a lot of information. Fortunately, it is possible to use a class that someone else has written without knowing how to define a class ourselves. In this section, we'll describe a simple class that we canuse in solving our bookstore problem. We'll implement this class in the subsequent chapters as we learn more about types,expressions, statements, and functionsall of which are used in defining classes. To use a class we need to know three things: What is its name? Where is it defined? What operations does it support? For our bookstore problem, we'll assume that the class is named Sales_item and that it is defined in a header named Sales_item.h. The Sales_item Class The purpose of the Sales_item class is to store an ISBN and keep track of the number of copies sold, the revenue, and average sales price for that book. How these data are stored or computed is not our concern. To use a class, we need not know anything about how it is implemented. Instead, what we need to know is what operations the class provides. As we've seen, when we use library facilities such as IO, we must include the associated headers. Similarly, for our own classes, we must make the definitions associated with the class available to the compiler. We do so in much the same way. Typically, we put the class definition into a file. Any program that wants to use our class must include that file. Conventionally, class types are stored in a file with a name that, like the name of a program source file, has two parts: a file name and a file suffix. Usually the file name is the same as the class defined in the header. The suffix usually is .h, but some programmers use .H, .hpp, or .hxx. Compilers usually aren't picky about header file names, but IDEs sometimes are. We'll assume that our class is defined in a file named Sales_item.h. Operations on Sales_item Objects

LabVIEW

第一章LabVIEW简介 LabVIEW是美国国家仪器公司(National Instruments Co)开发的一种图形化的编程环境。其名称含义为实验室虚拟仪器工作平台(Lab oratory V irtual I nstrument E ngineering W orkbench)。作为一种方便的数据采集和仪器控制开发软件,它可工作于Macintoshe 、Sun SPARC工作站、HP9000/700系列工作站以及PC机等各种机型,可运行于Windows 3.1、Windows9x/2000、Windows NT、UNIX等多系统下,是一种灵活有效的仪器控制和数据分析软件系统。 LabVIEW程序使用虚拟仪器(V irtual I nstrument,缩写为VI)的概念。它是指一台计算机和连接外部的端口(计算机的COM口,LPT口或内插板)在软件控制下可完全模拟替代传统的仪器。因VI功能完全是由软件定义,故在硬件系统不变的情况下,用户可通过软件开发自行改变或扩充仪器的功能,实现自己的特殊要求,或用一套硬件系统实现多种仪器的功能,从而使虚拟仪器VI不但比传统仪器更灵活有效,而且也更经济。VI的核心就是LabVIEW程序,所以在LabVIEW中,所有程序均称之为VI程序,不管它是否通过端口和外界进行通讯。每个VI程序均可作为一个功能模块被重复使用,因而使用LabVIEW来开发和扩展程序极为方便。 LabVIEW编程语言同常规的程序语言不同,它采用更易使用和理解的图形化程序语言-G语言(Graphical programming language)。G语言使用图标代替常规的一条或一组语句来实现一个功能,通过各功能图标间的逻辑连接实现程序功能。 其编程过程不是书写一行行语句,而是连接一个个代表一定功能的图标,其程序编制过程简单,不涉及复杂功能实现的算法,易于掌握。同时,因为其编程过程基于可重复使用的功能模块,故可方便地使用由专业人员编制提供的专业级别的功能模块,开发出专业水平的程序。所以,LabVIEW在世界范围内的众多领域如航空、航天、通信、汽车、半导体、化学和生物医学等得到了广泛的应用,从简单的仪器控制、数据采集到复杂的测试和数据处理,从工厂、科研院所到大学里的实验室,到处都可以发现LabVIEW的应用。在西方国家(如美国)的许多大学已将LabVIEW作为本科的教学内容,成为工程师素质培养的一个方面。由于LabVIEW虚拟仪器的强大功能,使得使用一套硬件系统就可进行多种不同要求的研究,故而可以用更小的消耗进行更多的研究,尤其适合在我国资金较少的科研单位用于研究工作。 LabVIEW6.-中,包含许多专家编写的VI供用户使用。在数据采集方面有许多采集卡(DAQ)的支持模块,使采集程序的编制不必涉及低层控制;有各种数字、模拟信号I/O模块;有对GPIB(General Purpose Interface Bus,IEEE488标准)、VXI(VME bus eXtensions for Instrumentation ,扩展IEEE1014标准)和Serial端口的支持和控制等VI。在数据处理控制方面有各种数字信号处理和产生、频谱分析、滤波、平滑窗口、概率统计等VI。 本LabVIEW简介部分主要介绍LabVIEW语言的基础知识,包括界面、菜单、工具、模板、器件、函数等,通过这一部分的学习,读者即可使用LabVIEW编程并在实际工作中进行应用。LabVIEW进阶部分将深入探讨LabVIEW的编程环境、编程技巧以及优化策略等和更多的功能,考虑到篇幅限制,本书不与介绍,感兴趣的同学可参看下列参考书继续学习,

9个常用的国外英文论文文献数据库

9个常用的国外英文论文文献数据库9个论文文献数据库,科研搬砖,阅读涨姿势,论文写作小帮手!先说说什么是数据库:学术科研中说的「数据库」和「文献数据库」,往往是一种网站的形式,这个网站的贮存了大量文献数据(比如论文)可以简单的理解为一个网络图书馆。 数据库中的论文往往都是耗费了大量的时间和精力整理出 来的,还有很多是需要购买版权才可以放在互联网上的,再加上维护这个网站本身就耗费颇多,因此这些数据库通常不是完全免费的,你可以在上面免费查找文献,浏览摘要等简介内容,但是如果你要下载文献,就要付钱。 大学因为科研和教学需要,常年要下载大量的论文材料,所以就会和数据库的经营者签订很多协议,例如包年,就是给一定量的钱,然后就可以无限制下载论文。也有按照下载的数量进行计费。那英语作为世界第一学术语言,有哪些数据库是值得大家分享的呢?1、Wiley InterScience(英文文献期刊)Wiley InterScience是John Wiely & Sons公司创建的动态在线内容服务,1997年开始在网上开通。通过InterScience,Wiley 学术期刊集成全文数据库(Academic Search Premier,简称ASP):包括有关生物科学、工商经济、资讯科技、通讯传播、工程、教育、艺术、文学、医药学等领域的七千多种期刊,

其中近四千种全文刊。 学术研究图书馆(Academic Research Library,简称ARL)综合参考及人文社会科学期刊论文数据库,涉及社会科学、人文科学、商业与经济、教育、历史、传播学、法律、军事、文化、科学、医学、艺术、心理学、宗教与神学、社会学等学科,收录2,300多种期刊和报纸,其中全文刊占三分之二,有图像。可检索1971年来的文摘和1986年来的全文。商业信息数据库(ABI/INFORM)ABI即为Abstracts of Business Information的缩写,世界着名商业及经济管理期刊论文数据库,收录有关财会、银行、商业、计算机、经济、能源、工程、环境、金融、国际贸易、保险、法律、管理、市场、税收、电信等主题的1,500多种商业期刊,涉及这些行业的市场、企业文化、企业案例分析、公司新闻和分析、国际贸易与投资、经济状况和预测等方面,其中全文刊超过50%,其余为文摘,有图像。 医学电子期刊全文数据库(ProQuest Medical Library)该数据库收录有220种全文期刊,文献全文以PDF格式或文本加图像格式存储;收录范围包括所有保健专业的期刊,有护理学、儿科学、神经学、药理学、心脏病学、物理治疗及其它方面。 6. BlackwellBlackwell出版公司是世界上最大的期刊出版商之一(总部设在英国伦敦的牛津),以出版国际性期刊为主,

房地产信息管理系统的设计与实现 外文翻译

本科毕业设计(论文)外文翻译 译文: ASP ASP介绍 你是否对静态HTML网页感到厌倦呢?你是否想要创建动态网页呢?你是否想 要你的网页能够数据库存储呢?如果你回答:“是”,ASP可能会帮你解决。在2002年5月,微软预计世界上的ASP开发者将超过80万。你可能会有一个疑问什么是ASP。不用着急,等你读完这些,你讲会知道ASP是什么,ASP如何工作以及它能为我们做 什么。你准备好了吗?让我们一起去了解ASP。 什么是ASP? ASP为动态服务器网页。微软在1996年12月推出动态服务器网页,版本是3.0。微软公司的正式定义为:“动态服务器网页是一个开放的、编辑自由的应用环境,你可以将HTML、脚本、可重用的元件来创建动态的以及强大的网络基础业务方案。动态服务器网页服务器端脚本,IIS能够以支持Jscript和VBScript。”(2)。换句话说,ASP是微软技术开发的,能使您可以通过脚本如VBScript Jscript的帮助创建动态网站。微软的网站服务器都支持ASP技术并且是免费的。如果你有Window NT4.0服务器安装,你可以下载IIS(互联网信息服务器)3.0或4.0。如果你正在使用的Windows2000,IIS 5.0是它的一个免费的组件。如果你是Windows95/98,你可以下载(个人网络服务器(PWS),这是比IIS小的一个版本,可以从Windows95/98CD中安装,你也可以从微软的网站上免费下载这些产品。 好了,您已经学会了什么是ASP技术,接下来,您将学习ASP文件。它和HTML文 件相同吗?让我们开始研究它吧。 什么是ASP文件? 一个ASP文件和一个HTML文件非常相似,它包含文本,HTML标签以及脚本,这些都在服务器中,广泛用在ASP网页上的脚本语言有2种,分别是VBScript和Jscript,VBScript与Visual Basic非常相似,而Jscript是微软JavaScript的版本。尽管如此,VBScript是ASP默认的脚本语言。另外,这两种脚本语言,只要你安装了ActiveX脚本引擎,你可以使用任意一个,例如PerlScript。 HTML文件和ASP文件的不同点是ASP文件有“.Asp”扩展名。此外,HTML标签和ASP代码的脚本分隔符也不同。一个脚本分隔符,标志着一个单位的开始和结束。HTML标签以小于号(<)开始(>)结束,而ASP以<%开始,%>结束,两者之间是服务端脚本。

毕业论文外文翻译模版

长江大学工程技术学院 毕业设计(论文)外文翻译 外 文 题 目 Matlab Based Interactive Simulation Program for 2D Multisegment Mechanical Systems 译 文 题 目 二维多段机械系统基于Matlab 的 交互式仿真程序 系 部 化学工程系 专 业 班 级 化工60801 学 生 姓 名 李泽辉 指 导 教 师 张 铭 辅 导 教 师 张 铭 完 成 日 期 2012.4.15 顶层配置在管路等,要求设备,所有设要求,对调整使案,编是指机确保机组中资料试

外文翻译 二维多段机械系统基于Matlab 的交互式仿真程序 Henryk Josiński, Adam ?witoński, Karol J?drasiak 著;李泽辉 译 摘要:本文介绍了多段机械系统设计原则,代表的是一个模型的一部分的设计系统,然后扩展 形成的几个部分和模型算法的分类与整合的过程,以及简化步骤的过程叫多段系统。本文还介绍了设计过程的二维多段机械系统的数字模型,和使用Matlab 的软件包来实现仿真。本文还讨论测试运行了一个实验,以及几种算法的计算,实现了每个单一步骤的整合。 1 简介 科学家创造了物理模型和数学模型来表示人类在运动中的各种形式。数学模型 使创建数字模型和进行计算机仿真成为可能。模型试验,可以使人们不必真正的实 验就可以虚拟的进行力和力矩的分解。 本文研究的目的是建立一个简单的多段运动模型,以增加模型的连续性和如何 避免不连续为原则。这是创建一个人类运动模型系统的冰山一角。其使用matlab 程 序包创建的数字模型,可以仿真人类运动。 文献中关于这一主题的内容很广泛。运动的模式和力矩的分解在这些文献中都 有涉猎。动态的平面人体运动模型,提出了解决了迭代矩阵的方法。还值得一提的 是这类项目的参考书目,布鲁贝克等人提出了一个模型——人腿模型,这个以人的 物理运动为基础的平面模型仿真了人腿——一个单一的扭簧和冲击碰撞模型。人腿 模型虽然简单,但是它展示人类的步态在水平地面上的运动特征。布鲁贝克等人还 介绍,在人腿模型的双足行走的基础上,从生物力学的角度而言,符合人体步行的 特征。这个模型具有一个躯干,双腿膝盖和脚踝。它能够合理的表现出人多样的步 态风格。一个仿真人类运动的数学模型反应出了人的部分运动状态。 图1. 力的分解 2 力的分解

英文期刊刊名缩写大全

20 century British history. (20 Century Br Hist) AACN clinical issues. (AACN Clin Issues) AANA journal. (AANA J) AAPS pharmSci [electronic resource]. (AAPS PharmSci) ACP journal club. (ACP J Club) AIDS (London, England) (AIDS) AIDS alert. (Aids Alert) AIDS care. (AIDS Care) AIDS education and prevention : official publication of the International Society for AIDS Education. (AIDS Educ Prev) AIDS patient care and STDs. (AIDS Patient Care STDS) AIDS research and human retroviruses. (AIDS Res Hum Retroviruses) AIHAJ : a journal for the science of occupational and environmental health and safety. (AIHAJ) AJNR. American journal of neuroradiology. (AJNR Am J Neuroradiol) AJS; American journal of sociology. (AJS) ANS. Advances in nursing science. (ANS Adv Nurs Sci) ANZ journal of surgery. (ANZ J Surg) APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. (APMIS) ASHA. (ASHA) Abdominal imaging. (Abdom Imaging) Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. (Acad Emerg Med) Academic medicine : journal of the Association of American Medical Colleges. (Acad Med) Academy of Management journal. Academy of Management. (Acad Manage J) Academy of management review. Academy of Management. (Acad Manage Rev) Accident and emergency nursing. (Accid Emerg Nurs) Accident; analysis and prevention. (Accid Anal Prev) Accounts of chemical research. (Acc Chem Res) Acta anaesthesiologica Scandinavica. (Acta Anaesthesiol Scand) Acta anatomica. (Acta Anat (Basel)) Acta astronautica. (Acta Astronaut) Acta biotheoretica. (Acta Biotheor) Acta crystallographica. Section A, Foundations of crystallography. (Acta Crystallogr A) Acta crystallographica. Section B, Structural science. (Acta Crystallogr B) Acta crystallographica. Section C, Crystal structure communications. (Acta Crystallogr C) Acta crystallographica. Section D, Biological crystallography. (Acta Crystallogr D Biol Crystallogr) Acta dermato-venereologica. (Acta Derm Venereol) Acta diabetologica. (Acta Diabetol) Acta haematologica. (Acta Haematol)

相关文档
相关文档 最新文档