文档库 最新最全的文档下载
当前位置:文档库 › 传感器原理与应用习题_第5章磁电式传感器

传感器原理与应用习题_第5章磁电式传感器

传感器原理与应用习题_第5章磁电式传感器
传感器原理与应用习题_第5章磁电式传感器

第5章 磁电式传感器习题集与部分参考答案

5-1 阐明磁电式振动速度传感器的工作原理,并说明引起其输出特性非线性的原因。

5-2 试述相对式磁电测振传感器的工作原理和工作频率范围。

5-3 试分析绝对式磁电测振传感器的工作频率范围。如果要扩展其测量频率范围的下限应采取什么措施;若要提高其上限又可采取什么措施?

5-4 对永久磁铁为什么要进行交流稳磁处理?说明其原理。

5-5 为什么磁电式传感器要考虑温度误差?用什么方法可减小温度误差?

5-6 已知某磁电式振动速度传感器线圈组件(动圈)的尺寸如图P5-1所示:D1=18mm ,D2=22mm ,L=39mm ,工作气隙宽Lg=10mm ,线圈总匝数为15000匝。若气隙磁感应强度为0.5515T ,求传感器的灵敏度。

5-6 解:已知D1=18mm ,D2=22mm ,L=39mm ,Lg=10mm ,W=15000匝,Bg=0.5515T 工作气隙的线圈匝数Wg=(总匝数W/线圈长度L )*气隙长度Lg

g g W l B K 0=,2)(210D D l +=π

5-7 某磁电式传感器固有频率为10Hz ,运动部件(质量块)重力为2.08N ,气隙磁感应强度B g =1T ,工作气隙宽度为t g =4mm ,阻尼杯平均直径D CP =20mm ,厚度t=1mm ,材料电阻率m mm /1074.128?Ω?=-ρ。试求相对阻尼系数ξ=?若欲使ξ=0.6,问阻尼杯璧厚t 应取多大? 5-8 某厂试制一磁电式传感器,测得弹簧总刚度为18000N/m ,固有频率60Hz ,阻尼杯厚度为1.2mm 时,相对阻尼系数ξ=0.4。今欲改善其性能,使固有频率降低为20Hz ,相对阻尼系数ξ=0.6,问弹簧总刚度和阻尼杯厚度应取多大?

5-9 已知惯性式磁电速度传感器的相对阻尼系数ξ=2/

1,传感器-3dB 的下限频率为16Hz ,试求传感器的自振频率值。

5-10 已知磁电式速度传感器的相对阻尼系数ξ=0.6,求振幅误差小于2%测试时的n ωω/范围。

解:已知ξ=0.6,振幅误差小于2%。

若振动体作简谐振动,即当输入信号x 0为正弦波时,可得到频率传递函数

???

? ??+???? ??-???? ??=02020

021)(ωωξωωωωωj j x x t 得 振幅比2

022020021?????????? ??+????????

???? ??-

???? ??=ωωξωωωωj x x t 0x x t

=1.02时,0ωω=3.51;0x x t =0.98时,0ωω=1.45 因要求0ωω

>>1,一般取0ωω≥3,所以取0ωω≥3.51

5-11 已知磁电式振动速度传感器的固有频率n f =15Hz ,阻尼系数ξ=0.7。若输入频率为f=45Hz 的简

谐振动,求传感器输出的振幅误差为多少?

5-12 何谓霍尔效应?利用霍尔效应可进行哪些参数测量?

答:当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。霍尔器件工作产生的霍尔电势为IB K d

IB R U H H H ==,由表达式可知,霍尔电势H U 正比于激励电流I 及磁感应强度B ,其灵敏度H K 与霍尔系数H R 成正比,而与霍尔片厚度d 成反比。

利用霍尔效应可测量大电流、微气隙磁场、微位移、转速、加速度、振动、压力、流量和液位等;用以制成磁读头、磁罗盘、无刷电机、接近开关和计算元件等等。

5-13 霍尔元件的不等位电势和温度影响是如何产生的?可采取哪些方法来减小之。

答:影响霍尔元件输出零点的因素主要是霍尔元件的初始位置。

霍尔位移传感器,是由一块永久磁铁组成磁路的传感器,在霍尔元件处于初始位置0=?x 时,霍尔电势H

U 不等于零。霍尔式位移传感器为了获得较好的线性分布,在磁极端面装有极靴,霍尔元件调整好初始位置时,可以使霍尔电势H U =0。不等位电势的重要起因是不能将霍尔电极焊接在同一等位面上,可以通过机械修磨或用化学腐蚀的方法或用网络补偿法校正。

霍尔元件的灵敏系数H K 是温度的函数,关系式为:()T K K H H ?+=α10,大多数霍尔元件的温度系数α是正值,因此,它们的霍尔电势也将随温度升高而增加αΔT 倍。

补偿温度变化对霍尔电势的影响,通常采用一种恒流源补偿电路。基本思想是:在温度增加的同时,让激励电流 I 相应地减小,并能保持 I K H ?乘积不变,也就可以相对抵消温度对灵敏系数H K 增加的影响,从而抵消对霍尔电势的影响。

5-14 磁敏传感器有哪几种?它们各有什么特点?可用来测量哪些参数?

答:磁敏电阻:外加磁场使导体(半导体)电阻随磁场增加而增大的现象称磁阻效应。载流导体置于磁场中除了产生霍尔效应外,导体中载流子因受洛仑兹力作用要发生偏转,载流子运动方向偏转使电流路径变化,起到了加大电阻的作用,磁场越强增大电阻的作用越强。磁敏电阻主要运用于测位移。

磁敏二极管:输出电压随着磁场大小的方向而变化,特别是在弱磁场作用下,可获得较大输出电压变化,r 区内外复合率差别越大,灵敏度越高。当磁敏二极管反向偏置时,只有很少电流通过,二极管两端电压也不会因受到磁场的作用而有任何改变。利用磁敏二极管可以检测弱磁场变化这一特性可以制成漏磁探伤仪。

5-15 为什么说磁电感应式传感器是一种有源传感器?

5-16 变磁阻式传感器有哪几种结构形式?可以检测哪些非电量?

5-17 磁电式传感器是速度传感器,它如何通过测量电路获得相对应的位移和加速度信号?

5-18 磁电式传感器与电感式传感器有哪些不同?磁电式传感器主要用于测量哪些物理参数?

答:a.磁电式传感器是通过磁电作用将被测量转换为电信号的一种传感器。

电感式传感器是利用线圈自感或互感的变化来测量的一种装置。

b.磁电式传感器具有频响宽、动态范围大的特点。而电感式传感器存在交流零位信号,不宜于高频动态信号检测;其响应速度较慢,也不宜做快速动态测量。

c. 磁电式传感器测量的物理参数有:磁场、电流、位移、压力、振动、转速。

5-19 发电机是利用导线在永久磁铁的磁场中作旋转运动而发电的。无论负载怎样消耗这个电能,永久磁铁不会变弱,这是什么道理?

答:发电机供应给负载的电能是,为转动这个发电机所供应得机械能(火力或水力)变换而来的能量。磁铁持有的能量未被消耗,所以磁铁不会变弱。

5-20 只要磁通量发生变化,就有感应电动势产生,请说出三种产生感应电动势的方法。

答:(1)线圈与磁场发生相对运动;(2)磁路中磁阻变化;(3)恒定磁场中线圈面积变化。

5-21 已知测量齿轮齿数Z=18,采用变磁通感应式传感器测量工作轴转速(如图所示)。若测得输出电动势的交变频率为24(Hz),求:被测轴的转速n(r/min)为多少?当分辨误差为±1齿时,转速测量误差是多少?

解:(1)测量时,齿轮随工作轴一起转动,每转过一个齿,传感器磁路磁阻变化一次,磁通也变化一次,因此,线圈感应电动势的变化频率f 等于齿轮的齿数Z 与转速n 的乘积。

f=nZ/60

n=60f/Z=60*24/18=80(r/min)

(2)读数误差为±1齿,所以应为1/18转,即:

n=80±1/18 (r/min)

5-22 什么是霍尔效应?霍尔电势的大小与方向和哪些因素有关?影响霍尔电势的因素有哪些?

答:霍尔效应:将一载流导体放在磁场中,若磁场方向与电流方向正交,则在与磁场和电流方向正交,则在与磁场和电流两者垂直的方向上将会出现横向电势,这一现象称为霍尔效应,相应的电势称为霍尔电势。具有霍尔效应的半导体在其相应的侧面上装上电极后即构成霍尔元件,常用灵敏度H K 来表征霍尔元件的特性,霍尔电势正比于激励电流I 和磁感应强度B ;而灵敏度H K 由霍尔系数H R 与霍尔片的厚度d 决定: IB K IB d R U H H H =?=1,d R K H H =

5-23 集成霍尔器件有哪几种类型?试画出其输出特性曲线。

5-24 有一测量转速装置,调制盘上有100对永久磁极,N 、S 极交替放置,调制盘由转轴带动旋转,在磁极上方固定一个霍尔元件,每通过一对磁极霍尔元件产生一个方脉冲送到计数器。假定t=5min 采样时间内,计数器收到N=15万个脉冲,求转速n=?转/分。

5-25 磁敏元件有哪些?(磁敏电阻、磁敏二极管、磁敏晶体管)什么是磁阻效应?简述磁敏二极管、晶体管工作原理。

5-26 磁敏电阻与磁敏晶体管有哪些不同?与霍尔元件在本质上的区别是什么?

5-27 磁敏晶体管与普通晶体管的区别是什么?

5-28 试证明霍尔式位移传感器的输出与位移成正比。

5-29 霍尔元件能够测量哪些物理参数?霍尔元件的不等位电势的概念是什么?温度补偿的方法有哪几种?

答:a.霍尔元件可测量磁场、电流、位移、压力、振动、转速等。

b.霍尔组件的不等位电势是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电势,可用输出的电压表示。

c.温度补偿方法:分流电阻法:适用于恒流源供给控制电流的情况。电桥补偿法

5-30 简述霍尔效应及构成以及霍尔传感器可能的应用场合。

答:一块长为l、宽为d的半导体薄片置于磁感应强度为磁场(磁场方向垂直于薄片)中,当有电流I流过时,在垂直于电流和磁场的方向上将产生电动势Uh。这种现象称为霍尔效应。霍尔组件多用N型半导体材料,且比较薄。霍尔式传感器转换效率较低,受温度影响大,但其结构简单、体积小、坚固、频率响应宽、动态范围(输出电势变化)大、无触点,使用寿命长、可靠性高、易微型化和集成电路化,因此在测量技术、自动控制、电磁测量、计算装置以及现代军事技术等领域中得到广泛应用。

5-31 试分析霍尔效应产生的原因。

答:金属或半导体薄片置于磁场中,当有电流通过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。如将N型半导体薄片,垂直置于磁场中。在薄片左右两端通以电流,这时半导体中的载流子(电子)将沿着与电流相反的方向运动。由于外磁场的作用,电子将受到磁场力(洛仑兹力)的作用而发生偏转,结果在半导体的后端面上积累了电子而带负电,前端面则因缺少电子而带正电,从而在前后端面形成电场。该电场产生的电场力也将作用于半导体中的载流子,电场力方向和磁场力方向正好相反,当与大小相等时,电子积累达到动态平衡。这时,在半导体前后两端面之间建立的电动势就称为霍尔电动势。

5-32 霍尔电动势的大小、方向与哪些因素有关?

答:霍尔电动势的大小正比于激励电流I与磁感应强度B,且当I或B的方向改变时,霍尔电动势的方向也随着改变,但当I和B的方向同时改变时霍尔电动势极性不变。

一定的感受机构对一些能够转换成位移量的其他非电量,如振动、压力、应变、流量等进行检测。

8磁电式传感器习题及解答

第8章磁电式传感器 一、单项选择题 1、下列不属于霍尔元件基本特性参数的是()。 A. 控制极内阻 B. 不等位电阻 C. 寄生直流电动势 D. 零点残余电压 2、制造霍尔元件的半导体材料中,目前用的较多的是锗、锑化铟、 砷化铟,其原因是这些()。 A.半导体材料的霍尔常数比金属的大 B.半导体中电子迁移率比空穴高 C.半导体材料的电子迁移率比较大 D.N型半导体材料较适宜制造灵敏度较高的霍尔元件 3、磁电式传感器测量电路中引入积分电路是为了测量()。 A.位移B.速度 C.加速度 D.光强 4、为了提高磁电式加速度传感器的频响范围,一般通过下面哪个措施来实现()。

A.减小弹簧片的刚度 B. 增加磁铁的质量 C. 减小系统的阻尼力 D. 提高磁感应强度 5、磁电式传感器测量电路中引入微分电路是为了测量() A.位移B.速度 C.加速度 D.光强 6、霍尔电势与()成反比 A.激励电流 B.磁感应强度 C.霍尔器件宽度 D.霍尔器件长度7、霍尔元件不等位电势产生的主要原因不包括() A.霍尔电极安装位置不对称或不在同一等电位上 B.半导体材料不均匀造成电阻率不均匀或几何尺寸不均匀C.周围环境温度变化 D.激励电极接触不良造成激励电流不均匀分配 二、多项选择题

三、填空题 1、通过将被测量转换为电信号的传感器称为磁电式传感器。 2、磁电作用主要分为和两种情况。 3、磁电感应式传感器是利用导体和磁场发生相对运动而在导体两端输出的原理进行工作的。 4、磁电感应式传感器是以原理为基础的。 5、当载流导体或半导体处于与电流相垂直的磁场中时,在其两端将产生电位差,这一现象被称为。 6、霍尔效应的产生是由于运动电荷受作用的结果。 7、霍尔元件的灵敏度与和有关。 8、霍尔元件的零位误差主要包括和。 9、磁电式传感器是半导体传感器,是基于的一类传感器。 10、磁电式传感器是利用原理将运动速度转换成信号输出。 11、磁电式传感器有温度误差,通常用分路进行补偿。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

《传感器原理与应用习题解答》

第1章传感器的技术基础 1.传感器的定义是什么? 答:传感器最早来自于“sensor”一词,就是感觉的意思。随着传感器技术的发展,在工程技术领域中,传感器被认为是生物体的工程模拟物。而且要求传感器不但要对被测量敏感,还要就有把它对被测量的响应传送出去的功能,也就是说真正实现能“感”到,会“传”到的功能。 传感器是获取信息的一种装置,其定义可分为广义和狭义两种。广义定义的传感器是指那些能感受外界信息并按一定规律转换成某种可用信号输出的器件和装置,以满足信息的传输、处理、记录、显示和控制等要求。这里的“可用信号”是指便于处理、传输的信号,一般为电信号,如电压、电流、电阻、电容、频率等。狭义定义的传感器是指将外界信息按一定规律转换成电量的装置才叫传感器。 按照国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。 国际电工委员会(IEC)将传感器定义为:传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号。美国测量协会又将传感器定义为“对应于特定被测量提供有效电信号输出的器件”。传感器也称为变换器、换能器或探测器。如前所述.感受被测量、并将被测量转换为易于测量、传输和处理的信号的装置或器件称为传感器。 2.简述传感器的主要分类方法。 答:(1)据传感器与外界信息和变换效应的工作原理,可分为物理传感器、化学传感器和生物传感器三大类。 (2)按输入信息分类。传感器按输入量分类有力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、热敏传感器、振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

传感器原理与应用复习题及答案【精选】

《传感器原理与应用》试题及答案 一、名词解释 1.传感器2.传感器的线性度3.传感器的灵敏度4.传感器的迟滞5.绝对误差6.系统误差7.弹性滞后8.弹性后效9.应变效应10.压电效应11.霍尔效应12.热电效应13.光电效应14.莫尔条纹15.细分 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.按输出量形类可分为、、。 4.误差按出现的规律分、、。 5.对传感器进行动态的主要目的是检测传感器的动态性能指标。 6.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 7.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 8.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 9.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 10.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。 11.电容式压力传感器是变型的。 12.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL为Pa-1。 13.图像处理过程中直接检测图像灰度变化点的处理方法称为。 14.热敏电阻常数B大于零的是温度系数的热敏电阻。 15.若测量系统无接地点时,屏蔽导体应连接到信号源的。 16.目前应用于压电式传感器中的压电材料通常有、、。 17.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型 18.热敏电阻按其对温度的不同反应可分为三类、、。 19.光电效应根据产生结果的不同,通常可分为、、三种类型。 20.传感器的灵敏度是指稳态标准条件下,输出与输入 的比值。对线性传感器来说,其灵敏度是。 21.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。 22.采用热电阻作为测量温度的元件是将的测量转换为的测量。23.单线圈螺线管式电感传感器主要由线圈、和可沿线圈轴向

传感器 习题复习过程

传感器习题

3-1 什么是应变效应?什么是压阻效应?利用应变效应解释金属电阻应变片的工作原理。 1、所谓应变效应是指金属导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化,这种现象称为电阻应变效应。 2、半导体材料的电阻率ρ随作用应力的变化而发生变化的现象称为压阻效应。 3、应变式传感器的基本工作原理:当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,将引起应变敏感元件的阻值发生变化,通过转换电路变成电量输出。输出的电量大小反映了被测物理量得大小。 3-2 试述温度误差的概念、产生的原因和补偿的办法。 1、由于测量现场环境温度的改变而给测量带来的附加误差,称为应变片的温度误差。 2、产生的原因有两个:一是敏感栅的电阻丝阻值随温度变化带来的附加误差;二是当试件与电阻丝材料的线膨胀系数不同时,由于环境温度的变化,电阻丝会产生附加变形,从而产生附加电阻变化。 3、电阻应变片的温度补偿方法通常有:线路补偿和应变片自补偿。 3-3 电阻应变片的直流电桥测量电路,若按不同的桥臂工作方式可分为哪几种?各自的输出电压如何计算? 1、可分为:单臂电桥、半差动电桥和全差动电桥三种。 2、单臂电桥输出电压为:半差动电桥输出电压为: 全差动电桥输出电压为: 3-4 拟在等截面的悬臂梁上粘贴四个完全相同的电阻应变片,并组成差动全桥测量电路,试问:(1)四个电阻应变片怎样贴在悬臂梁上? (2)画出相应的电桥电路。 ①如图3-1为等截 面积悬臂①如题图 3-4﹙a﹚所示等 截面悬梁臂,在外 力F作用下,悬梁 臂产生变形,梁的 上表面受到拉应 变,而梁的下表面 受压应变。当选用四个完全相同的电阻应变片组成差动全桥电 路,则应变片如题图3-4﹙b﹚所示粘贴。 ②电阻应变片所构成的差动全桥电路接线如图3-4﹙c﹚所 示,R1、R4所受应变方向相同,R2、R3、所受应变方向相同,但与R1、R4所受应变方向相反。 6-1 什么叫正压电效应和逆压电效应?什么叫纵压电效应和横压电效应? 压电效应:某些电介质,当沿着一定方向对其使力而使它变形时,内部就产生极化现象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,又重新恢复到不带电的状态的现象。 1、正压电效应和逆压电效应 仅供学习与交流,如有侵权请联系网站删除谢谢2

传感器原理与应用习题及答案

《第一章传感器的一般特性》 1 试绘制转速和输出电压的关系曲线,并确定: 1)该测速发电机的灵敏度。 2)该测速发电机的线性度。 2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。 3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少? 4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大? 5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。 6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。 《第二章应变式传感器》 1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。 2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。 在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。

传感器与检测技术考题及答案

传感器与检测技术考试试题 一、填空:(20分) 1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A T T B A 0d )(N N ln )T T (e k 0σ-σ?+-。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。 5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。(2分) 6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分) 7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分) 8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。(2分) 1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积 增大时,铁心上线圈的电感量(①增大,②减小,③不变)。 2、在平行极板电容传感器的输入被测量与输出电容值之间的关 系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。 3、在变压器式传感器中,原方和副方互感M 的大小与原方线圈 的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。 4、传感器是能感受规定的被测量并按照一定规律转换成可用输

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

传感器原理与应用习题_第5章磁电式传感器

第5章 磁电式传感器习题集与部分参考答案 5-1 阐明磁电式振动速度传感器的工作原理,并说明引起其输出特性非线性的原因。 5-2 试述相对式磁电测振传感器的工作原理和工作频率范围。 5-3 试分析绝对式磁电测振传感器的工作频率范围。如果要扩展其测量频率范围的下限应采取什么措施;若要提高其上限又可采取什么措施? 5-4 对永久磁铁为什么要进行交流稳磁处理?说明其原理。 5-5 为什么磁电式传感器要考虑温度误差?用什么方法可减小温度误差? 5-6 已知某磁电式振动速度传感器线圈组件(动圈)的尺寸如图P5-1所示:D1=18mm ,D2=22mm ,L=39mm ,工作气隙宽Lg=10mm ,线圈总匝数为15000匝。若气隙磁感应强度为0.5515T ,求传感器的灵敏度。 5-6 解:已知D1=18mm ,D2=22mm ,L=39mm ,Lg=10mm ,W=15000匝,Bg=0.5515T 工作气隙的线圈匝数Wg=(总匝数W/线圈长度L )*气隙长度Lg g g W l B K 0=,2) (210D D l +=π 5-7 某磁电式传感器固有频率为10Hz ,运动部件(质量块)重力为2.08N ,气隙磁感应强度B g =1T ,工作气隙宽度为t g =4mm ,阻尼杯平均直径D CP =20mm ,厚度t=1mm ,材料电阻率m mm /1074.128?Ω?=-ρ。试求相对阻尼系数ξ=?若欲使ξ=0.6,问阻尼杯璧厚t 应取多大? 5-8 某厂试制一磁电式传感器,测得弹簧总刚度为18000N/m ,固有频率60Hz ,阻尼杯厚度为1.2mm 时,相对阻尼系数ξ=0.4。今欲改善其性能,使固有频率降低为20Hz ,相对阻尼系数ξ=0.6,问弹簧总刚度和阻尼杯厚度应取多大? 5-9 已知惯性式磁电速度传感器的相对阻尼系数ξ=2/1,传感器-3dB 的下限频率为16Hz ,试求传感器的自振频率值。 5-10 已知磁电式速度传感器的相对阻尼系数ξ=0.6,求振幅误差小于2%测试时的n ωω/范围。

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

最新传感器原理与应用习题解答》

传感器原理与应用习 题解答》

第1章传感器的技术基础 1.传感器的定义是什么? 答:传感器最早来自于“sensor”一词,就是感觉的意思。随着传感器技术的发展,在工程技术领域中,传感器被认为是生物体的工程模拟物。而且要求传感器不但要对被测量敏感,还要就有把它对被测量的响应传送出去的功能,也就是说真正实现能“感”到,会“传”到的功能。 传感器是获取信息的一种装置,其定义可分为广义和狭义两种。广义定义的传感器是指那些能感受外界信息并按一定规律转换成某种可用信号输出的器件和装置,以满足信息的传输、处理、记录、显示和控制等要求。这里的“可用信号”是指便于处理、传输的信号,一般为电信号,如电压、电流、电阻、电容、频率等。狭义定义的传感器是指将外界信息按一定规律转换成电量的装置才叫传感器。 按照国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。 国际电工委员会(IEC)将传感器定义为:传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号。美国测量协会又将传感器定义为“对应于特定被测量提供有效电信号输出的器件”。传感器也称为变换器、换能器或探测器。如前所述.感受被测量、并将被测量转换为易于测量、传输和处理的信号的装置或器件称为传感器。 2.简述传感器的主要分类方法。 答:(1)据传感器与外界信息和变换效应的工作原理,可分为物理传感器、化学传感器和生物传感器三大类。

(2)按输入信息分类。传感器按输入量分类有力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、热敏传感器、振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器等。这种分类对传感器的应用很方便。 (3)按应用范围分类。根据传感器的应用范围的不同,通常分为工业用、民用、科研用、医用、军用传感器等。按具体使用场合,还可分为汽车用、舰船用、航空航天用传感器等。如果根据使用目的的不同,还可分为计测用、监测用、检查用、控制用、分析用传感器等。 3.传感器主要由哪些部分组成?并简单介绍各个组成部分。 答:传感器的核心部件是敏感元件,它是传感器中用来感知外界信息和转换成有用信息的元件。传感器一般由敏感元件、传感元件和基本转换电路三部分组成。 图1-1传感器的组成 (1)敏感元件直接感受被测量,并以确定的关系输出某一物理量。 (2)传感元件将敏感元件输出的非电物理量转换成电路参数量或电量。 (3)基本转换电路将电路参数转换成便于测量的电量。基本转换电路的类型又与不同的工作原理的传感器有关。因此常把基本转换电路作为传感器的组成环节之一。 4.传感器的静态特性的参数主要有哪些? 答:表征传感器的静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞、重复性、稳定性、漂移、阈值等。 5.传感器未来发展的方向主要有哪些? 答:(1)开发新材料

传感器习题第7章 磁电式传感器

第7章 磁电式传感器 1、 某霍尔元件尺寸为l=10mm ,b=3.5mm ,d=1.0mm ,沿l 方向通以电流I=1.0mA ,在垂直 于l 和b 的方向上加有均匀磁场B =0.3T ,灵敏度为22V/(A·T),试求输出的霍尔电势以及载流子浓度。 解: 输出的霍尔电势为: ) (mV IB K U H H 6.63.0100.1223=???==- 由 ne R d R K H H H 1 =,= 可得载流子浓度为: 3 203 19/1084.210 1106.12211m ed K n H ?=????=?= -- 第8章 光电式传感器 8-8当光纤的46.11=n ,45.12=n ,如光纤外部介质的10=n ,求光在光纤内产生全反射时入射光的最大入射角c θ。 解: 最大入射角 8.91706.0arcsin 45.146.1arcsin 1arcsin 222 2210 ==-=-=n n n c θ 2、若某光栅的栅线密度为50线/mm ,标尺光栅与指示光栅之间的夹角为0.01rad 。求:所形成的莫尔条纹的间距。 解: 光栅栅距为 mm mm W 02.0/501 == 标尺光栅与指示光栅之间的夹角为 rad 01.0=θ 莫尔条纹的间距为 mm mm W W B H 201.002.02 sin ==≈=θθ ++

+ - t 1 t 2 A A B B t 0 t 0 3、利用一个六位循环码码盘测量角位移,其最小分辨率是多少?如果要求每个最小分辨率对应的码盘圆弧长度最大为0.01mm ,则码盘半径应有多大?若码盘输出数码为“101101”,初始位置对应数码为“110100”,则码盘实际转过的角度是多少? 解: 六位循环码码盘测量角位移的最小分辨率为: rad 098.06.52 3606=== α。 码盘半径应为: mm mm l R 1.0098 .001.0== = α 循环码101101的二进制码为110110,十进制数为54; 循环码110100的二进制码为100111,十进制数为39。 码盘实际转过的角度为: 846.515)3954(=?=?-=αθ。 第13章 传感器在工程检测中的应用 P275 15-8 用两只K 型热电偶测量两点温差,其连接线路如图所示。已知t 1=420℃,t 0=30℃,测得两点的温差电势为15.24mV ,试问两点的温差为多少?后来发现,t 1温度下的那只热电偶错用E 型热电偶,其它都正确,试求两点实际温度差。 解: t 1=420℃,t 0=30℃。若为K 型热电偶,查表(15-5)可知: 1(,0)17.241AB e t mV = 0(,0) 1.203AB e t mV = 所以 10(,)17.241 1.20316.038()AB e t t mV =-= 因为 1020(,)(,)15.24AB AB e t t e t t mV -= 所以 20(,)16.03815.240.798()AB e t t mV =-= 所以 2020(,0)(,0)(,) 1.2030.798 2.001()AB AB AB e t e t e t t mV =+=+= 查表可得 250t C ≈ 所以,两点的温差为 2142050370()t t C -=-= 若t 1温度下用的是E 型热电偶,则需查表(15-6)。t 1=420℃,t 0=30℃,则有 mV t e AB 546.30)0,(1=

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

传感器原理与应用习题课后答案_第2章到第8章

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第2章 电阻式传感器 2-1 金属应变计与半导体应变计在工作机理上有何异同?试比较应变计各种灵敏系数概念的不同物理意义。 答:(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。 (2)对于金属材料,灵敏系数K0=Km=(1+2μ)+C(1-2μ)。前部分为受力后金属几何尺寸变化,一般μ≈,因此(1+2μ)=;后部分为电阻率随应变而变的部分。金属丝材的应变电阻效应以结构尺寸变化为主。 对于半导体材料,灵敏系数K0=Ks=(1+2μ)+πE 。前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE>>(1+2μ),因此K0=Ks=πE 。半导体材料的应变电阻效应主要基于压阻效应。 2-2 从丝绕式应变计的横向效应考虑,应该如何正确选择和使用应变计?在测量应力梯度较大或应力集中的静态应力和动态应力时,还需考虑什么因素? 2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。 答:电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。在工作温度变化较大时,会产生温度误差。 补偿办法:1、温度自补偿法 (1)单丝自补偿应变计;(2) 双丝自补偿应变计 2、桥路补偿法 (1)双丝半桥式;(2)补偿块法 2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。 答:原因:)(211)(44 433221144332211R R R R R R R R R R R R R R R R U U ?+?+?+?+?-?+?-?=? 上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。无论是输出电压还是电流,实际上都与ΔRi/Ri 呈非线性关系。 措施:(1) 差动电桥补偿法:差动电桥呈现相对臂“和”,相邻臂“差”的特征,通过应变计合理布片达到补偿目的。常用的有半桥差动电路和全桥差动电路。 (2) 恒流源补偿法:误差主要由于应变电阻ΔRi 的变化引起工作臂电流的变化所致。采用恒流源,可减小误差。 2-5 如何用电阻应变计构成应变式传感器?对其各组成部分有何要求? 答:一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性敏感元件构成传感器,用以对任何能转变成弹性元件应变的其他物理量作间接测量。 要求:非线性误差要小(<%~%),力学性能参数受环境温度影响小,并与弹性元件匹配。 2-6 现有栅长3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%。欲用来测量泊松比μ=的铝合

传感器习题及答案

选择题 1.码盘式传感器是建立在编码器的基础上的,它能够将角度转换为数字编码,是一种数字式的传感器。码盘按结构可以分为接触式、__a__和__c__三种。 a.光电式 b.磁电式 c.电磁式 d.感应同步器 2. 改变电感传感器的引线电缆后,___c___。 a.不必对整个仪器重新标定 b. 必须对整个仪器重新调零 c. 必须对整个仪器重新标定 d. 不必对整个仪器重新调零 3.应变片的选择包括类型的选择、材料的选用、__c__、__d__等。 a.测量范围的选择 b.电源的选择 c. 阻值的选择 d. 尺寸的选择 e.精度的选择 f.结构的选择 4.应变片绝缘电阻是指已粘贴的__b__应变片的之间的电阻值。 a.覆盖片与被测试件 b.引线与被测试件 c.基片与被测试件 d.敏感栅与被测试件 5.在光的作用下,电子吸收光子能量从键合状态过渡到自由状态,引起物体电阻率的变化,这种现象称为_d_。 a.磁电效应 b.声光效应 c.光生伏特效应 d.光电导效应 6.结构由线圈、铁芯、衔铁三部分组成的。线圈套在铁芯上的,在铁芯与衔铁之间有一个空气隙,空气隙厚度为。传感器的运动部分与衔铁相连。当外部作用力作用在传感器的运动部分时,衔铁将会运动而产生位移,使空气隙发生变化。这种结构可作为传感器用于__c___。 a. 静态测量 b. 动态测量 c. 静态测量和动态测量 d. 既不能用于静态测量,也不能用于动态测量 7. 4 不属于测试系统的静特性。 (1)灵敏度(2)线性度(3)回程误差(4)阻尼系数 8. 电阻应变片的输入为 1 。 (1)力(2)应变(3)速度(4)加速度 9. 结构型传感器是依靠 3 的变化实现信号变换的。 (1)本身物理性质(2)体积大小(3)结构参数(4)电阻值 10. 不能用涡流式传感器进行测量的是 4 。 (1)位移(2)材质鉴别(3)探伤(4)非金属材料 11. 变极距电容传感器的输出与输入,成1关系。 (1)非线性(2)线性(3)反比(4)平方 12. 半导体式应变片在外力作用下引起其电阻变化的因素主要是 3 。 (1)长度(2)截面积(3)电阻率(4)高通 13.压电式传感器输出电缆长度的变化,将会引起传感器的3产生变化。 (1)固有频率(2)阻尼比(3)灵敏度(4)压电常数

传感器原理及应用

《传感器原理及应用》 实 验 指 导 书 测控技术实验室

实验一金属箔式应变片----单臂、半臂、全桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工 作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化, 这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为:ΔR/R电阻丝电阻相对变化, K为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uο1=Ek?/4。在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ek?/2。在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ek?。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、 ±15V、±4V直流电源、万用表。 四、实验方法和要求: 1、根据电子电路知识,实验前设计出实验电路连线图。 2、独力完成实验电路连线。 3、找出这三种电桥输出电压与加负载重量之间的关系,并作出V o=F(m) 的关系曲线。

4、分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化 量,ΔW重量变化量)和非线性误差:δf1=Δm/yF·s×100%式中Δm为 输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·s满量程 输出平均值,此处为200g。 五、思考题 1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2) 负(受压)应变片(3)正、负应变片均可以。 2、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1) 对边(2)邻边。 3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3, R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

最新传感器原理及应用习题答案完整版

传感器原理及应用习题答案完整版

传感器原理及应用习题答案 习题1 (2) 习题2 (3) 习题3 (6) 习题4 (7) 习题5 (8) 习题6 (9) 习题7 (11) 习题8 (13) 习题9 (15) 习题10 (16) 习题11 (17) 习题12 (18) 习题13 (21)

习题1 1-1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 答:传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。 通常传感器由敏感元件和转换元件组成。 敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。 由于传感器的输出信号一般都很微弱, 因此需要有信号调节与转换电路对其进行放大、运算调制等。随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换电路可能安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。此外,信号调节转换电路以及传感器工作必须有辅助的电源,因此信号调节转换电路以及所需的电源都应作为传感器组成的一部分。 1-2 简述传感器的作用和地位及其传感器技术的发展方向。 答:传感器位于信息采集系统之首,属于感知、获取及检测信息的窗口,并提供给系统赖以进行处理和决策所必须的原始信息。没有传感技术,整个信息技术的发展就成了一句空话。科学技术越发达,自动化程度越高,信息控制技术对传感器的依赖性就越大。 发展方向:开发新材料,采用微细加工技术,多功能集成传感器的研究,智能传感器研究,航天传感器的研究,仿生传感器的研究等。 1-3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 答:传感器的静态特性是指被测量的值处于稳定状态时的输出—输入关系。与时间无关。 主要性能指标有:线性度、灵敏度、迟滞和重复性等。 1-4 传感器的动态特性指什么?常用的分析方法有哪几种? 答:传感器的动态特性是指其输出与随时间变化的输入量之间的响应特性。 常用的分析方法有时域分析和频域分析。时域分析采用阶跃信号做输入,频域分析采用正弦信号做输入。 1-5 解释传感器的无失真测试条件。

相关文档
相关文档 最新文档