文档库 最新最全的文档下载
当前位置:文档库 › 苏教版立体几何习题含答案详解

苏教版立体几何习题含答案详解

苏教版立体几何习题含答案详解
苏教版立体几何习题含答案详解

苏教版立体几何习题含

答案详解

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

(江苏最后1卷)给出下列四个命题:

(1)如果平面与平面相交,那么平面内所有的直线都与平面相交

(2)如果平面⊥平面,那么平面内所有直线都垂直于平面

(3)如果平面⊥平面,那么平面内与它们的交线不垂直的直线与平面也不垂

(4)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面 真命题...

的序号是 ▲ .(写出所有真命题的序号)

【答案】(3)(4)

(南师大信息卷)在棱长为1的正方体中,若点是棱上一点,则满足的点的个数为 6 .

提示:点在以为焦点的椭圆上,分别在、、

、、、上. 或者,若在上,设,

有. 故上有一点(的中点)满足条件.

αβαααβαβαβαβαβαβ1111ABCD A B C D -P 12PA PC +=P P 1AC P AB AD 1AA 11C B 11C D 1C C P AB AP x =2211(1)(2)2,2

PA PC x x x +=+-+=∴=

AB P AB

同理在、、、、上各有一点满足条件.

又若点在上上,则.

故上不存在满足条件的点,同理上不存在满足条件的点.

(南通三模)已知正方体1C

的棱长为1C 各个面的中心为顶点的凸多面体为2C ,以2C 各个面的中心为顶点的凸多面体为3C ,以3C 各个面的中心为顶点的凸多面体为4C ,依此类推。记凸多面体n C 的棱长为n a ,则6a = ▲ .

AD 1AA 11C B 11C D 1C C P 1

BB 12PA PC +=>1BB P 1DD P

218111==B A a ,由1C 各个面的中心为顶点的几何体为正八面体2C ,其棱长

182

2

11222==

=B A B A a ,由2C 各个面的中心为顶点的几何体为正方体3C ,其棱长263

2

22333==

=B A B A a ,如此类推:得到2,22,6654===a a a 。 答案:2

(泰州期末)设、、表示是三个不同的平面,a 、b 、c 表示是三条不同的直线,给出下列

五个命题:

(1)若a ∥,b ∥,a ∥b ,则∥;

(2)若a ∥,b ∥,,则;

(3)若;

αβγαβαβααββαβ??=?b a c ,,b a //ααα⊥???⊥⊥a c b c a b a ,,,

(4)若则或;

答案:(2)

(南京三模)7.已知α、β是两个不同的平面,下列四个条件:

①存在一条直线a ,a α⊥,a β⊥;

②存在一个平面γ,,γαγβ⊥⊥;

③存在两条平行直线a 、b ,,a b αβ??,a ∥β,b ∥α;

④存在两条异面直线a 、b ,,a b αβ??,a ∥β,b ∥α。

其中是平面α∥平面β的充分条件的为= ▲ .(填上所有符合要求的序号)

答案:①③

(苏锡常二模)设,是两条不同的直线,,是两个不同的平面,给出下列命题:

(1)若,,,则;

,,γβγα⊥⊥βα//βα⊥m n αββα//β?m α?n n m //

(2)若,,,则;

(3)若,,,则;

(4)若,,,则.

上面命题中,所有真命题的序号为 .

答案:(2),(4)

(苏州期末)已知正三棱锥的底面边长为6,侧棱长为5,则此三棱锥的体积为_________.

答案:339

(南京二模).一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥容器,当x=6cm 时,该容器的容积为__________________3cm .

βα//β⊥m α//n n m ⊥βα⊥α⊥m β//n n m //βα⊥α⊥m β⊥n n m ⊥

答案:48

(南通一模).在棱长为4的正方体中,、分别为棱、上的动点,点为正方形

的中心. 则空间四边形在该正方体各个面上的正投影所构成的图形中,

面积的最

大值为 ▲ .

答案:12

1111ABCD A B C D E F 1AA 11D C G 11B BCC AEFG

E

A

(第11题)

E

G

D

E

A(E

)

B

在前、后面的正投影的面积最大值为12;

如图②,当E与

1

A重合,四边形AEFG在左、右面的正投影的面积最大值为8;

如图③,当F与D重合时,四边形AEFG在上、下面的

正投影的面积最大值为8;

综上得,面积最

大值

为12.

(本题源于《必修2》立体几何章节复习题,复习时应注重课本)

AB BC ⊥,1AB BC ==,2DC =, 点E 在PB 上. (1)求证: 平面AEC ⊥平面PAD ; (2)当PD

平面AEC 时, 求:PE EB 的值.

15.(1)证明: 过A 作AF ⊥DC 于F, 则CF=DF=AF,

所以090DAC ∠=, 即AC DA ⊥…………………………… 2分

又PA ⊥底面ABCD ,AC ?面ABCD ,所以AC PA ⊥……4分 因为,PA AD ?面PAD ,且PA

AD A =,

所以AC ⊥底面PAD …………………………………………6分 而AC ?面ABCD , 所以平面AEC ⊥平面

PAD …………………………………………………… 8分

(2)连接BD 交AC 于点O, 连接EO, 因为PD 平面AEC ,PD ?面PBD ,

面PBD 面AEC=EO, 所以PD :PE EB :DO OB ::2DO OB DC AB ==:2PE EB =⊥⊥ (1) 求证:平面AEC ⊥平面ABE ;

(2) 点F 在BE 上,若DE

BE

BF

111C B A ABC - 60=∠ACB BC C A ,11⊥AEB C C BB 11//1F C F C B P 11-1)证明:在中ABC ?,∵AC =2BC =4,0

60=∠ACB

∴32=AB ,∴222AC BC AB =+,∴BC AB ⊥

由已知1BB AB ⊥, ∴C C BB AB 11面⊥

又∵C C BB ABE ABE AB 11面,故面⊥? (2)证明:取AC 的中点M ,连结FM M C ,1

在AB FM ABC //中,?,

而FM ABE ?平面,∴直线

FM 11A ACC AE M C //11C M ABE ?平面ABE M C 面//1M FM M C =?11//FMC ABE 面面AEB F C 面//11//C F 11B C H EH //EH AB 1

32

EH AB ==C C BB AB 11面⊥11EH BB C C

⊥面1111111113223

P B C F E B C F B C F V V S EH --?==??=90,60,1O O

BAC B AB ∠=∠==△ABD 沿着AD

折起到△A B 'D 的位置,连结B 'C (如图2).

??1

A 1

B G

B

A

B

C D

F

E

G

(第16题图)

(1)若平面A B'D⊥平面AD C,求三棱锥B'-AD C的体积;

(2)记线段B'C的中点为H,平面B'ED与平面HFD的交线为l,求证:HF∥l;

(3)求证:AD⊥B'E.

(南通三模)如图,三棱柱111ABC A B C -中,D 、E 分别是棱BC 、AB 的中点,点F 在棱

1CC 上,已知1,3,2AB AC AA BC CF ====.

(1)求证:1C E ∥平面ADF;

(2)若点M 在棱1BB 上,当BM 为何值时,平面CAM ⊥平面ADF

分析:(1)要证明ADF E C 平面//1,可通过线线平行和面面平行两条路来证明线面平行.

Ⅰ.要在平面ADF 中找到与E C 1平行的直线,可反用线面平行的性质,利用过E C 1的平面与平面ADF 的交线OF ,这里注意O 为ABC ?的重心,(

1

2

=OE CO ),再利用比例关系证明OF E C //1从而证明结论.

Ⅱ.取BD 中点M ,可通过证明面ADF ME C 平面//1,证明ADF E C 平面//1

解:(1)连接交于,连接.

因为CE ,AD 为△ABC 中线,

所以O 为△ABC 的重心,

. CE AD O OF 12

3

CF CO CC CE ==

从而

OF 图2所示,将沿折起,使得平面平面,连结,设点是的中点.

(1)求证:平面;

(2)若平面,其中为直线与平面的交点,求三棱锥的体积.

?1C E ?ADF 1//C E ADF CAM ⊥ADF 111ABC A B C -1B B ⊥?⊥D BC AD BC ⊥⊥?⊥

Rt CBM ?Rt FCD ?⊥⊥ADF ?CAM ⊥ADF CAM ⊥ADF ABC Rt ?6=AC 3

=BC ?=∠90ABC CD ACB ∠E AC 4=CE BCD ?CD ⊥BCD ACD AB F AB ⊥DE BCD //EF BDG G AC BDG DEG B

-

A

(第16题)

B

C D B 1

M

(南通一模)如图,在六面体中,,,.求证:

(1);

(2).

证明:(1)取线段的中点,连结、,

1111ABCD A B C D -11//AA CC 11A B A D =AB AD =1AA BD ⊥11//BB DD BD M AM 1A M

因为,,

所以,

又,平面,所以平面.

而平面,

所以.

(2)因为,

平面,平面,

所以平面.

又平面,平面平面,

所以.同理得,

所以

11A D A B =AD AB =BD AM ⊥1BD A M ⊥1AM

A M M =1AM A M ?、1A AM BD ⊥1A AM 1AA ?1A AM 1AA BD ⊥11//AA CC 1AA ?11D DCC 1CC ?11D DCC 1//AA 11D DCC 1AA ?11A ADD 11A ADD 111D DCC DD =11//AA DD 11//AA B

B 11//BB DD

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何复习测试题及答案

立体几何复习测试题及答案

高一数学立体几何复习题 必修2立体几何知识点 第一章:空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相 平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫 做棱台。 2、空间几何体的三视图和直观图 把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线 照射下的投影叫平行投影,平行投影的投影线是平行的。 3、 空间几何体的表面积与体积 ⑴ 圆柱侧面积;l r S ??=π2侧面;圆锥侧面积:l r S ??=π侧面 ⑵ 圆台侧面积:l R l r S ??+??=ππ侧面 (3)体积公式: h S V ?=柱体;h S V ?=31锥体;()h S S S S V 下下上上台体+?+=31 (4)球的表面积和体积:32344R V R S ππ==球球,. 第二章:点、直线、平面之间的位置关系 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直 线。 4、公理4:平行于同一条直线的两条直线平行.

5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行。 ⑵性质:一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线平行。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂 直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑶定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 第一部分:空间几何体的结构特征及其三视图和直观图

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

必修 立体几何单元测试题及答案

M D' D C B A 立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A 2S B .2S C .22S D .4S 9.直线l 在平面α外,则 A .α//l B .α与l 相交 C .α与l 至少有一个公共点 D .α与l 至多有一个公共点 10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥?===1与平面M 成030角,则 D C 、间的距离为( ) A .1 B .2 C .2 D .3 11.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

关于立体几何解答题一题多解与多题一解的探索

关于立体几何解答题一题多解与多题一解的探索 ──从2011年高考数学谈起 贵州省遵义市习水县第一中学袁嗣林 摘要:纵观近年高考数学试题,可以看出,立体几何解答题是历年高考的必考题型。分值一般12分,难度属容易或中档题。学生得分率较高,但失分率也高。本文就2011年高考数学真题为例,对立体几何解答题作一些归类。关于立体几何解答题可以归类为一题多解与多题一解,即一类题有多种解法,多种题型可以用一种解法完成。 关键词:一题多解;多题一解;立体几何 一、一题多解 例1 (安徽理17)如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。 (Ⅰ)证明直线∥; (II)求棱锥F—OBED的体积。 分析:本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.通常解法是传统法和向量法。 (I)解法一(传统法):证明:设G是线段DA与EB延长线的交点. 由于△OAB与△ODE都是正三角形,所以

∥,OG=OD=2, 同理,设是线段DA与线段FC延长线的交点,有 又由于G和都在线段DA的延长线上,所以G与重合. 在△GED和△GFD中,由∥和OC∥,可知B和C分别是GE和GF 的中点,所以BC是△GEF的中位线,故BC∥EF. 解法二(向量法):过点F作,交AD于点Q,连QE,由平面ABED⊥平 面ADFC,知FQ⊥平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系. 由条件知 则有 所以即得BC∥EF. (II)略 评注:向量法和传统法有时可以转换着使用,主要工具是利用三线垂定理及逆定理和面面垂直、线面垂直、线线垂直找出两辆相互垂直的三条直线,进而建立直角坐标系。 例2 (湖北理18)如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

空间几何体测试题及答案.doc

第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分)班别座号姓名成绩 一、选择题(本大题共10小题,每小题5分,共50分) 1、图(1)是由哪个平面图形旋转得到的() A B C D 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为() A.1:2:3 B.1:3:5 C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为() A. 3 B. 23 C. 33 D. 43 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= A. 1:3 B. 1:1 C. 2:1 D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6 A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为() A.3 3 4 cm π B. 3 8 6 cm π C. 3 6 1 cm π D. 3 6 6 cm π 8、一个体积为3 8cm的正方体的顶点都在球面上,则球的表面积是 A.2 8cm π B.2 12cm π C.2 16cm π D.2 20cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是() A. 3 π B. 4 π C. 2 π D. π 10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A1B1=2, AA1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32 A B 1 C 正视图侧视图府视图

立体几何大题题库

立体几何解答题题库 1. 如图,在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,P A =AB =AC =3,平面//α平面P AB ,且α与棱PC ,AC ,BC 分别交于P 1,A 1,B 1三点. (1)过A 作直线l ,使得l BC ⊥,11l P A ⊥,请写出作法并加以证明; (2)若α将三棱锥P -ABC 分成体积之比为8:19的两部分(其中,四面体P 1A 1B 1C 的体积更小),D 为线段B 1C 的中点,求四棱锥A 1-PP 1DB 1的体积. 2. 如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示). (1)求四棱锥P -ABCD 的体积; (2)证明:BD ∥平面PEC ; (3)线段BC 上是否存在点M ,使得AE ⊥PM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由. 3.如图1所示,平面多边形CDEF 中,四边形ABCD 为正方形,EF ∥AB ,AB =2EF =2,沿着AB 将图形折成图2,其中AED ∠90,,AE ED H =?=为AD 的中点. (Ⅰ)求证:EH ⊥BD ;

(Ⅱ)求四棱锥D -ABFE 的体积. 4. 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形,且平面⊥PAD 底面ABCD ,12 1 == =AD BC AB ,090=∠=∠ABC BAD . (1)证明::AB PD ⊥; (2)点M 在棱PC 上,且CP CM λ=,若三棱锥ACM D -的体积为3 1 ,求实数λ的值. 5. 已知ABCD 是矩形,PD ⊥平面ABCD ,PD =DC =a ,AD =,M 、N 分别是AD 、PB 的中点。 (Ⅰ)求证:平面MNC ⊥平面PBC ; (Ⅱ)求点A 到平面MNC 的距离。 6. 在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点. (1)求证:平面AB 1E ⊥平面B 1BCC 1; (2)求证:A 1C ∥平面AB 1E .

文科立体几何解答题类型总结及其答案

F E C A D B A 1 C 1B 1 B C A D F E A B C M N A 1 B 1 C 1 B C B A 1 C 1 A D C 1 D 1 B 1 A C D A B E 《立体几何》解答题 1.(2008年江苏卷)如图,在四面体ABCD 中,CB =CD , AD ⊥BD ,点E , F 分别是AB , BD 的中点. 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD. 2.(2009年江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中, E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C 求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)平面A 1FD ⊥平面BB 1C 1C. (第1题) (第2题) (第3题) (第4题) 3. 如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M 、N 分别为A 1B 、B 1C 1的中点. (Ⅰ)求证:BC ∥平面MNB 1; (Ⅱ)求证:平面A 1CB ⊥平面ACC 1A 1. 4. 如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC, 点D 是AB 的中点. (Ⅰ)求证:CD ⊥平面A 1ABB 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)线段AB 上是否存在点M ,使得A 1M ⊥平面CDB 1 5. 如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点,E为BC 的中点. (Ⅰ)求证:BD ⊥平面AB 1E ; (Ⅱ)求直线AB 1与平面BB 1C 1C 所成角的正弦值; (Ⅲ)求三棱锥C -ABD 的体积. 6. 如图,在正方体ABCD -A 1B 1C 1D 1中,F 为AA 1的中点. 求证:(Ⅰ)A 1C ∥平面FBD ; (Ⅱ)平面FBD ⊥平面DC 1B. (第5题) (第6题) (第7题) C 1 D 1 B 1 C D A 1

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

立体几何测试题带答案解析

____________班级___________学号____________分数______________ 一、选择题 1 .下列说确的是 ( ) A .三点确定一个平面 B .四边形一定是平面图形 C .梯形一定是平面图形 D .平面α和平面β有不同在一条直线上的三 个交点 2 .若α//β,a//α,则a 与β的关系是 ( ) A .a//β B .a β? C .a//β或a β? D .A a =β 3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为 ( ) A .4、6、8 B .4、6、7、8 C .4、6、7 D .4、5、7、8 4 .一个体积为123 的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为 ( ) A .36 B .8 C .38 D .12 5 .若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 ( ) A .l ∥a B .l 与a 异面 C .l 与a 相交 D .l 与a 没有公共点 6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为 ( ) A .1:2:3 B .1:4:9 C .2:3:4 D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ( ) A .π12 B .π24 C .π36 D .π48 8 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是 ( ) A .相交 B .异面 C .平行 D .异面或相交 6 5 6 5

9 .设正方体的棱长为 23 3,则它的外接球的表面积为 ( ) A .π38 B .2π C .4π D .π3 4 10.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的 表面积为 A .π7 B .π14 C .π21 D .π28 11.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 ( ) A .12l l ⊥,23l l ⊥13//l l ? B .12l l ⊥,23//l l ?13l l ⊥ C .233////l l l ? 1l ,2l ,3l 共面 D .1l ,2l ,3l 共点?1l ,2l ,3l 共面 12.如图,正方体1111ABCD A B C D 中,E ,F 分别为棱AB ,1CC 的中点,在平面11ADD A 且与平面1D EF 平行的直线 ( ) A .有无数条 B .有2条 C .有1 条 D .不存在 二、填空题 13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根 据图中标出的尺寸,计算这个几何体的表面积是______. 14.如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D A B C D A 1 B 1 C 1 D 1 E F

相关文档
相关文档 最新文档