文档库 最新最全的文档下载
当前位置:文档库 › 自控原理实验报告--徐聪聪

自控原理实验报告--徐聪聪

自控原理实验报告--徐聪聪
自控原理实验报告--徐聪聪

电子科技大学自动化工程学院

标准实验报告

(实验)课程名称:自控原理基础实验MATLAB上机实验

姓名:

学号:

指导老师:任

电子科技大学

实验报告

学生姓名:徐聪聪学号:2013070908017指导教师:任文伟

一、实验室名称:C2-509

二、实验项目名称:MATLAB的基本使用方法及程序设计

三、实验学时:2学时

四、实验原理:

MATLAB基本命令的使用及其编程的基本方法,向量的表示与计算,学会使用help命令。

五、实验目的:

1.掌握MATLAB软件使用的基本方法;

2.熟悉MATLAB的数据表示,基本运算和程序控制语句;

3.熟悉MATLAB绘图命令及基本绘图控制;

4.熟悉MATLAB程序设计的基本方法。

六、实验器材:计算机

七、实验内容:

实验习题一

分别用>, 和~= 求得a=[5:1:15] 与b=[1 2 8 8 7 10 12 11 13 14 15]的比较,并对结果进行分析.

程序如下:

a=[5:1:15];

b=[1 2 8 8 7 10 12 11 13 14 15];

y1=a>b,y2=a~=b

结果:

y1 =

1 1 0 0 1 0 0 1 0 0 0

y2 =

1 1 1 0 1 0 1 1 0 0 0

实验习题二

(1)绘制余弦曲线y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π]

程序:

t=[0:0.01:2*pi];

y=cos(t);

y1=cos(t-0.25);

y2=sin(t-0.5);

figure,plot(t,y,'b'),grid gtext('y=cos(t)')

figure,plot(t,y1,'r',t,y2,'b'),grid gtext('y1=cos(t-0.25)') gtext('y2=sin(t-0.5)')

1

2

3

4

5

6

7

-1-0.8-0.6-0.4-0.200.20.40.60.8

1

1

2

3

4

5

6

7

-1-0.8-0.6-0.4-0.200.20.40.60.8

1

实验习题三

绘制[0,4π]区间上的x1=10sint 曲线,并要求: (1)颜色为红色、数据点标记为加号;

(2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 程序:

t=[0:0.1:4*pi] x1=10*sin(t); plot(t,x1,'r+'),grid title('x1=10*sin(t)') xlabel('t') ylabel('x1')

x1=10*sin(t)

t

x 1

实验习题四 x=[0 1;1 0]; y=[0 0;1 0];

计算x&y+x>y 时,程序首先执行x+y 运算,然后将相加结果与y 比较,最后将比较结果和x 作与运算.用diary 命令将其过程保存下来。 程序:

diary 1.4.1.txt x=[0 1;1 0]; y=[0 0;1 0]; x&y+x>y diary off 结果:

八、实验结论:

1.从习题一结果可以看出,MATLAB 在对同维向量比较时,是各元素

分别进行比较,并用“1”和“0”分别表示真和假。

2.从习题四结果看出:算术运算>关系比较>逻辑运算。

九、总结及心得体会:

通过学习掌握了MATLAB软件使用的基本方法,数据表示,基本运算和程序控制语句,熟悉了MATLAB绘图命令及基本绘图控制及程序设计的基本方法。

报告评分:

指导教师签字:

实验报告

学生姓名:薛川东学号:2014070910020指导教师:任文伟

一、实验室名称:C2-509

二、实验项目名称:MATLAB系统模型建立和动态特性分析实验

三、实验学时:4学时

四、实验原理:

应用MATLAB命令对控制系统进行建模,动态特性分析及相关方面知识的运用。

1.对控制系统进行建模,并进行模型转换和系统的串并联反馈等运

算;

2.运用step,impulse等命令分别对系统单位阶跃响应和阶跃响应的

动态特性进行分析。

五、实验目的:

1.掌握如何使用MALAB进行系统模型的建立;

2.学习利用MALAB命令得阶跃响应曲线,分析系统动态特性;

3.利用MALAB求阶跃响应的性能指标。

六、实验器材(设备、元器件):计算机

七、实验内容:

实验习题一

已知系统传递函数为:

221()0.41

s G s s s +=

++ 求上述传递函数的零极点增益和状态空间的表达形式。 程序: num=[2 1]; den=[1 0.4 1]; sys=tf(num, den) [z,p,k]=tf2zp(num, den) sys=tf2ss(num, den)

运行结果:

Transfer function: 2 s + 1 --------------- s^2 + 0.4 s + 1 z =

-0.5000 p =

-0.2000 + 0.9798i -0.2000 - 0.9798i k =

2 A =

-0.4000 -1.0000

1.0000 0

实验习题二 已知传递函数为:

2

16()616

G s s s =

++ 求其单位阶跃响应的最大值,峰值时间和它对应的超调量,上升时间。 程序:

G=tf([16],[1 6 16]);

%计算最大峰值时间和它对应的超调量。 C=dcgain(G) [y,t]=step(G); plot(t,y) grid

[Y,k]=max(y);

Output_max=Y

timetopeak=t(k) percentovershoot=100*(Y-C)/C

%计算上升时间。

n=1;

while y(n)

n=n+1;

end

risetime=t(n)

%计算稳态响应时间。

i=length(t);

while(y(i)>0.98*C)&(y(i)<1.02*C) i=i-1;

end

setllingtime=t(i)

结果:

C = 1

Output_max = 1.0284

timetopeak = 1.1820

percentovershoot = 2.8369

risetime = 0.9202

setllingtime = 1.4276

00.51 1.52 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

八、实验结论:

1. MATLAB 命令能十分方便的对控制系统进行建模,并进行模型转换和系统的串并联反馈等运算。

2. 通过运用MATLAB 命令编程能准确、直观、快速的得到系统单位阶跃响应和阶跃响应的动态特性。

九、总结及心得体会:

掌握了如何使用MALAB进行系统模型的建立,学会利用MALAB 命令得阶跃响应曲线,分析系统动态特性,及求阶跃响应的性能指标。

报告评分:

指导教师签字:

实验报告

学生姓名:薛川东学号:2014070910020指导教师:任文伟

一、实验室名称:C2-509

二、实验项目名称:MATLAB系统根轨迹和频域分析实验

三、实验学时:4学时

四、实验原理:

应用MATLAB命令绘制线性系统的根轨迹、Bode图和Nyquist 图,并通过其掌握分析系统特性方面的知识。

1.运用MATLAB命令求特征多项式的根和传递函数的零极点,分析

系统稳定性;

2.运用rlocus, bode, nyquist等MATLAB命令分别绘制线性系统的根

轨迹、Bode 图和Nyquist 图;

3. 运用rlofind, margin 等MATLAB 命令分析系统性能。 五、实验目的:

1.学习使用MATLAB 求特征多项式的根,分析系统稳定性; 2.学习使用MATLAB 由传递函数求零点和极点; 3.学习使用MATLAB 绘制根轨迹; 4.掌握由根轨迹分析系统性能的方法;

5.学习使用MATLAB 绘制Bode 图和Nyquist 图; 6.掌握使用Bode 图和Nyquist 图分析系统性能的方法。 六、实验器材(设备、元器件): 七、实验内容: 实验习题一

已知系统如下

32

2()32k

G s s s s

=

++ 绘制其根轨迹,并根据根轨迹图求若要使系统稳定,k 的最大值。 代码: n=[2]; d=[1 3 2 0]; rlocus(n,d) rlocfind(n,d)

Root Locus

Real Axis (seconds -1)

I m a g i n a r y A x i s (s e c o n d s -1)

Select a point in the graphics window selected_point =

0.0000 + 1.4039i ans =

2.9566

由rlocus 命令在根轨迹上可得k =2.9566,此值因为是手工点击得到,故与理论求得k 最大值3有一些误差。

实验习题二

bode 图法判断系统稳定性:

已知两个单位负反馈系统的开环传递函数分别为:

322.7()54G s s s s =

++,322.7

()54G s s s s

=+-

用bode 图法判断系统闭环的稳定性。

程序: n1=[2.7]; d1=[1 5 4 0]; margin(n1,d1); figure,bode(n1,d1) n2=[2.7]; d2=[1 5 -4 0]; margin(n2,d2); figure,bode(n2,d2)

M a g n i t u d e (d B )10

-210

-1

10

10

1

10

2

P h a s e (d e g )

Bode Diagram

Gm = 17.4 dB (at 2 rad/s) , Pm = 51.7 deg (at 0.578 rad/s)

Frequency (rad/s)

M a g n i t u d e (d B )

10

-210

-1

10

10

1

10

2

P h a s e (d e g )

Bode Diagram

Gm = Inf , Pm = -58.1 deg (at 0.535 rad/s)

Frequency (rad/s)

由图知,第一个系统相角裕度和幅值裕度都为正值,所以系统稳定。第二个系统相角裕度为负,系统不稳定。

实验习题三

已知系统的开环传递函数为:

)

1()

3()()(-+=

s s s K s H s G 用Nyquist 图法判断系统相对稳定性(对参数K 分段讨论)。 n = [0.5*1 0.5*3]; %取k = 0.5时的值 d = [1 -1 0]; nyquist(n,d)

hold on %求k = 0.5的奈氏值,显示结果,并保持 n1 = [2*1 2*3]; %取k = 2 d1 = d; %保留原分母矢量 nyquist(n1,d1)%求k = 2时的奈氏值,结果显示

-8

-7-6-5-4-3-2-101

-150

-100

-50

50100

150

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

结果分析:

上图为K 值分别等于0.5和2的Nyquist 图,但是)(s G 在虚轴上有极点,故应该加增补奈氏曲线,如下图1所示。

图1 习题三的理论nyquist 图

由于)()(s H s G 在右半s 平面有一极点,故1=P 。当01K <<时,其奈氏图如图1(a)所示,图中可见ω从0到∞+变化时,奈氏曲线逆时针包围(0,1j -)点21-圈,即21-=N ,2)21(212=+=-=N P Z ,因此闭环系统不稳定。当1K

>时,其奈氏图如图1(b)所示,ω从0到

∞+变化时,奈氏曲线逆时针包围(0,1j -)点21+圈,21+=N ,

-

=N

P

Z,此时闭环系统是稳定的。

=

)2

-

1(2

1

2=

八、实验结论:

1.运用MATLAB命令十分方便的求特征多项式的根和传递函数的

零极点;

2.运用rlocus, bode, nyquist等MATLAB命令可以快速地分别绘制线

性系统的根轨迹、Bode图和Nyquist图;

3.运用rlofind, margin等MATLAB命令可以准确地分析系统性能。九、总结及心得体会:

学习使用MATLAB求特征多项式的根,分析系统稳定性,由传递函数求零点和极点,绘制根轨迹,由根轨迹分析系统性能的方法,绘制Bode 图和Nyquist图,及分析系统性能的方法。

报告评分:

指导教师签字:

实验报告

学生姓名:薛川东学号:2014070910020指导教师:任文伟

一、实验室名称:C2-509

二、实验项目名称:随动系统的校正

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理-PID控制特性的实验研究——实验报告

自动控制原理-PID控制特性的实验研究——实验报告

2010-2011 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2010 年月日评分:

一、实验目的 1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选择系统参数的方法; 3、通过仿真实验研究,总结PID 控制规律及参数变化对系统性能影响的规律。 二、实验任务及要求 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P )、比例积分(PI )、比例微分(PD )及比例积分微分(PID )控制规律和控制器参数(Kp 、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验内容如下: ) s (Y ) s (R ) 6)(2(1 ++s s ) (s G c 1、比例(P )控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。总结比例(P )控制的规律。 2、比例积分(PI )控制,设计参数Kp 、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和K I 的变化情况。总结比例积分(PI )控制的规律。 3、比例微分(PD )控制,设计参数Kp 、K D 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

PID自控原理实验报告

自动控制原理实验 ——第七次实验

一、实验目的 (1)了解数字PID控制的特点,控制方式。 (2)理解和掌握连续控制系统的PID控制算法表达式。 (3)了解和掌握用试验箱进行数字PID控制过程。 (4)观察和分析在标PID控制系统中,PID参数对系统性能的影响。 二、实验容 1、数字PID控制 一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。模拟PID控制框图如下: 输出传递函数形式: ()1 () ()p i d U s D s K K K s E s s ==++ 其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微

分常数。 2、被控对象数学模型的建立 1)建立模型结构 在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID 整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为: 0001 ()1 s G s K e T S τ-=? + 这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。 001211 ()11 G s K T S T S =? ?++ 2)被控对象参数的确认 对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认0T 和τ,以达到转换成有时延的单容被控过程的目的。单位阶跃输入实验辨识的原理方框如图3-127所示。 对于不同的 、 和K 值,得到其单位阶跃输入响应曲线后,由 010()0.3()Y t Y =∞和020()0.7()Y t Y =∞得到1t 和2t ,再利用拉氏反变换公式得到

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

PID控制实验报告,DOC

实验二数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k == ,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3设被控对象为一个电机模型传递函数Bs Js s G += 21 )(,式中 J=0.0067,B=0.1。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21 )()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 functiondy=ex3f(t,y,flag,para) u=para; J=0.0067;B=0.1; dy=zeros(2,1); dy(1)=y(2);

自控原理与系统 试卷(含答案)

《自动控制原理与系统》期末试卷A 一、填空题(每空2分,共30分) 1.根据自动控制技术发展的不同阶段,自动控制理论分为和 。 2.对控制系统的基本要求包括、、。 3.系统开环频率特性的几何表示方法:和。 4.线性系统稳定的充要条件是。 5.控制系统的时间响应从时间的顺序上可以划分为和 两个过程。 6.常见的五种典型环节的传递函数、、 、和。 二、简答题(每题4分,共8分) 1.建立系统微分方程的步骤 2.对数频率稳定判据的内容 三、判断题(每题1分,共10分) 1.()系统稳定性不仅取决于系统特征根,而且还取决于系统零点。 2.()计算系统的稳态误差以系统稳定为前提条件。 3.()系统的给定值(参考输入)随时间任意变化的控制系统称为随动控制系统。 4.()线性系统特性是满足齐次性、可加性。 5.()传递函数不仅与系统本身的结构参数有关,而且还与输入的具体形式有关。 6.()对于同一系统(或元件),频率特性与传递函数之间存在着确切的对应关

系。 7.( )传递函数只适用于线性定常系统——由于拉氏变换是一种线性变换。 8.( )若开环传递函数中所有的极点和零点都位于S 平面的左半平面,则这样的系统称为最小相位系统。 9.( )“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数乘积,不包含表示反馈极性的正负号。 10.( )系统数学模型是描述系统输入、输出及系统内部变量之间关系的数学表达式。 四、计算题(每题12分,共36分) 1.试求取如图所示无源电路的传递函数)(s U /)(s U i 。 2.设单位负反馈系统的开环传递函数为) 1(1 )( s s s G ,试求系统反应单位阶跃函数的过 渡过程的上升时间r t ,峰值时间p t ,超调量% 和调节时间s t 。 3.设某系统的特征方程式为01222 3 4 s s s s ,试确定系统的稳定性。若不稳定, 试确定在s 右半平面内的闭环极点数。 五、画图题(共16分) .某系统的开环传递函数为) 20)(1() 2(100)( s s s s s G ,试绘制系统的开环对数频率特性曲线。

一阶二阶自控原理实验报告

成绩 北京航空航天大学 自动控制原理实验报告 学院自动化科学与电气工程学院 专业方向电气工程及其自动化 班级120311 学号12031019 学生姓名毕森森 指导教师 自动控制与测试教学实验中心

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014.10.28 实验编号29 同组同学无 一、实验目的 1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2. 学习在电子模拟机上建立典型环节系统模型的方法。 3. 学习阶跃响应的测试方法。 二、实验内容 1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统:系统传递函数为: 模拟运算电路如图1- 1所示: 图 1- 1 由图 1-1得 在实验当中始终取R 2= R 1 ,则K=1,T= R 2 C,取时间常数T分别为: 0.25、 0.5、1。 2.二阶系统: 其传递函数为: 令=1弧度/秒,则系统结构如图1-2所示: 图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示:

图1-3 取R 2C 1=1 ,R 3C 2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 四、实验设备 HHMN-1电子模拟机一台、PC 机一台、数字式万用表一块 五、实验步骤 1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路; 2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相; 3. 检查线路正确后,模拟机可通电; 4. 双击桌面的“自控原理实验”图标后进入实验软件系统。 5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。 6. 单击“确定”,进行实验。完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。 六、实验结果 1、一阶系统。

PID实验报告

实验题目:PID控制实验 学生姓名:学号: 区队:日期: 学科名称现代控制系统实验 实验目的 1.理解一阶倒立摆的工作机理及其数学模型的建立及简化的方法;掌握使用Matlab/Simulink软件对控制系统的建模方法; 2.通过对一阶倒立摆控制系统的设计,理解和掌握闭环PID控制系统的设 计方法; 3.掌握闭环PID控制器参数整定的方法;理解和掌握控制系统设计中稳定 性、快速性的权衡以及不断通过仿真实验优化控制系统的方法。 实验设备倒立摆实验箱、MATLAB6.5 实验原理PID控制原理分析: 由前面的讨论已知实际系统的物理模型: Kp=30,Ki=0,Kd=0.5 60 122 .6 ) ( 2- = s s G 对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。系统控制结构框图如图3-37,图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。 图1 PID控制结构框图 其中s K s K K s KD D I P + + =)( 此次实验只考虑控制摆杆的角度,小车的位置是不受控的,即摆杆角度的单闭环控制,立起摆杆后,会发现小车向一个方向运动直到碰到限位信号。那么要使倒立摆稳定在固定位置,还需要增加对电机位置的闭环控制,这就形成了摆杆角度和电机位置的双闭环控制。立摆后表现为电机在固定位置左右移动控制摆杆不倒。

实验步骤: 1、使用MATLAB/Simulink 仿真软件建立以下控制模型: 图2 PID 控制模块组成 2、按照PID 参数整定方法调整PID 参数,设计PID 控制器。 3、在倒立摆教学实验软件中进行PID 控制器的仿真验证。 实验结果: 1、PID 参数整定: 设置PID 控制器参数,令Kp=1,Ki=0,Kd=0,仿真得到以下图形: 012345678910 00.5 1 1.5 2 2.53 3.5 4 4.5 x 1030时间t/s 摆杆角度Kp=1,Ki=0,Kd=0 从图中看出,曲线发散,控制系统不稳定。令Kp=20,Ki=0,Kd=0,仿真得到以下图形: 0246810 00.5 1 1.5 22.533.5 4 时间t/s 摆杆角度 Kp=20,Ki=0,Kd=0

自控原理设计第4题,

得分评卷教师自动控制原理课程设计 姓名: 分院:机电工程学院 专业:电气工程及其自动化 学号:14160134 指导教师:张炯 二0一六年六月二十四日

课程设计任务书 学生姓名: 专业班级: 14级电气01班 指导教师: 工作单位: 机电工程学院 题 目: 用MATLAB 进行控制系统的校正设计。 初始条件:已知一单位反馈系统的开环传递函数是 ) 1.01.0(400 )(20+= s s s G 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、画出未校正系统的Bode 图,分析系统是否稳定。(手工加程序) 2、设计一个调节器进行串联校正。要求校正后的系统满足指标: (1)在单位斜坡信号作用下,系统的稳态误差<0.05 (2)超调量%15<σ,调节时间345γ 3、计算校正后系统的截止频率和穿越频率。 4、给出校正装置的传递函数。 5、在SIMULINK 中建立系统的仿真模型。 6、分别画出系统校正前、后的单位阶跃,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响。 时间安排: 任务 时间(天) 审题、查阅相关资料 1 分析、计算 1 编写程序、调试 4 仿真分析 1 撰写报告 2 论文答辩 1 指导教师签名: 年 月 日 教研室主任签名: 年 月 日

目录 1控制系统的Bode图设计法设计介绍 (1) 2校正前系统分析 (1) 3校正网络设计 (3) 3.1校正前参数确定 (3) 3.2校正设计 (3) 4校正前后系统性能对比分析 (6) 4.1校正前后系统的Bode图对比分析 (6) 4.2校正前后系统单位阶跃响应曲线对比分析 (7) 5 SIMULINK中校正前后系统的仿真模型及对比分析 (9) 6设计总结 (11) 收获与体会 (12) 参考文献 (13)

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

自控实验报告第四次_陈尧

成绩北京航空航天大学 自动控制原理实验报告 学院仪器科学与光电工程学院 专业方向惯性技术与导航仪器 班级 学号 学生姓名尧爸爸 指导教师 自动控制与测试教学实验中心

实验四控制系统数字仿真 目录 一、实验目的 (3) 二、实验内容 (3) 三、理论计算 (3) 1.求解ζ和主导极点所对应角度β (3) 2.用matlab绘制系统的根轨迹并找到主导极点 (3) 3.求解K值 (4) 四、计算机仿真 (5) 1. 实验程序 (5) ①四阶龙格库塔计算函数:RgKta.m (5) ②stepspecs.m (5) ③主程序test.m (7) 2. 超调量和ts (8) 3.阶跃响应曲线 (8) 五.实验总结 (9)

一、 实验目的 通过本实验掌握利用四阶龙格——库塔法进行控制系统数字仿真的方法,并分析系统参数改变对系统性能的影响。 二、 实验内容 已知系统结构如图4-1 : 图4-1 若输入为单位阶跃函数,计算当超调量分别为5%,25%,50%时K 的取值(用主导极点方法估算),并根据确定的K 值在计算机上进行数字仿真。 三、 理论计算 1.求解ζ和主导极点所对应角度β ①根据公式:%100%e πξσ-=?,可以解得相应的ξ 2.用matlab 绘制系统的根轨迹并找到主导极点 由cos β=ξ,过原点做倾角为180-β的直线,与系统根轨迹的交点即为系统主导极点。

代码如下: %%绘制跟轨迹和主导极点所在位置 % hold on; num=[1]; dun=[1,10,25,0]; rlocus(num,dun) t=-4:0.001:0; y1=-t*tan(46.37/57.3); y2=-t*tan(66.19/57.3); y3=-t*tan(77.555/57.3); plot(t,y1,t,y2,t,y3); 3.求解K值 由模值方程K?=s?p1|s?p2||s?p3|可解K

2018年自控原理实验报告 修改-范文模板 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 自控原理实验报告修改 实验报告 课程自动控制原理实验报告专业学号 指导教师姓名 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节{ EMBED Equation.3 |G1(s)?1和; ② 惯性环节和 ③ 积分环节 ④ 微分环节 ⑤ 比例+微分环节(PD)和 ⑥ 比例+积分环节(PI)和 三、实验结果及分析 实验过程

① 比例环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 1、比例环节是一条平行于实轴的直线。 2、比例系数越大,越远离实轴。 ② 惯性环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 惯性环节s因子系数越小,系统越快速趋于稳定。 ③ 积分环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 ④ 微分环节 相应的SIMULINK仿真模型及其单位阶跃响应波形如图所示。 分析知: 积分环节先趋于稳定,后开始开始不稳定。 微分环节开始稳定中间突变而后又趋于稳定。 ⑤ 比例+微分环节(PD)

自控原理实验

实验八典型非线性环节的静态特性 一、实验目的 1. 了解典型非线性环节输出—输入的静态特性及其相关的特征参数; 2. 掌握典型非线性环节用模拟电路实现的方法。 二、实验内容 1. 继电器型非线性环节静特性的电路模拟; 2. 饱和型非线性环节静特性的电路模拟; 3. 具有死区特性非线性环节静特性的电路模拟; 4. 具有间隙特性非线性环节静特性的电路模拟。 三、实验原理 控制系统中的非线性环节有很多种,最常见的有饱和特性、死区特性、继电器特性和间隙特性。基于这些特性对系统的影响是各不相同的,因而了解它们输出-输入的静态特性将有助于对非线性系统的分析研究。 1. 继电型非线性环节 图7-1为继电器型非线性特性的模拟电路和静态特性。 图8-1 继电器型非线性环节模拟电路及其静态特性 继电器特性参数M是由双向稳压管的稳压值(4.9~6V)和后级运放的放大倍数(R X/R1)决定的,调节可变电位器R X的阻值,就能很方便的改变M值的大小。输入u i信号用正弦信号或周期性的斜坡信号(频率一般均小于10Hz)作为测试信号。实验时,用示波器的X-Y显示模式进行观测。 2. 饱和型非线性环节 图7-2为饱和型非线性环节的模拟电路及其静态特性。 图8-2 饱和型非线性环节模拟电路及其静态特性 图中饱和型非线性特性的饱和值M等于稳压管的稳压值(4.9~6V)与后一级放大倍数的乘积。线性部分斜率k等于两级运放增益之积。在实验时若改变前一级运放中电位器的阻值

可改变k 值的大小,而改变后一级运放中电位器的阻值则可同时改变M 和k 值的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 3. 具有死区特性的非线性环节 图7-3为死区特性非线性环节的模拟电路及其静态特性。 图8-3 死区特性非线性环节的模拟电路及其静态特性 图中后一运放为反相器。由图中输入端的限幅电路可知,当二极管D 1(或D 2)导通时的临界电压U io 为 E 1E R R u 2 1io α α -±=±=(在临界状态时: E R R R u R R R 2 11 0i 212+±=+) (7-1) 其中,2 11 R R R +=α。当0i i u u >时,二极管D 1(或D 2)导通,此时电路的输出电压 为 ))(1()(2 12 io i io i o u u u u R R R u --±=-+± =α 令)1(α-=k ,则上式变为 )(io i o u u k u -±= (7-2) 反之,当0i i u u ≤时,二极管D 1(或D 2)均不导通,电路的输出电压o u 为零。显然,该非 线性电路的特征参数为k 和io u 。只要调节α,就能实现改变k 和io u 的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 4. 具有间隙特性的非线性环节 间隙特性非线性环节的模拟电路图及静态特性如图7-4所示。 由图7-4可知,当E u i α α -< 1时,二极管D 1和D 2均不导通,电容C 1上没有电压,即U C (C 1两端的电压)=0,u 0=0;当E u i α α->1时,二极管D 2导通,u i 向C 1充电,其电压为 ))(1(io i o u u u --±=α 令)1(α-=k ,则上式变为 )(io i o u u k u -±=

PID控制实验报告

实验二 数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k ==,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3 设被控对象为一个电机模型传递函数Bs Js s G +=21)(,式中J=,B=。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则

?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数如下 function dy = ex3f(t,y,flag,para) u=para; J=;B=; dy=zeros(2,1); dy(1) = y(2); dy(2) = -(B/J)*y(2) + (1/J)*u; 控制主程序 clear all; close all; ts=; %采样周期 xk=zeros(2,1);%被控对象经A/D 转换器的输出信号y 的初值 e_1=0;%误差e(k-1)初值 u_1=0;%控制信号u(k-1)初值 for k=1:1:2000 %k 为采样步数

自控原理系列实验

自控原理系列实验 课程负责人:熊晓君开课部门:光电信息与计算机工程学院编写时间:2009 年4 月课程代码学分0.5 总学时16 理论学时0 实验(实践)学时16 上机学时0 课程英文名称Experiment of Automatic Control Theory 课程性质专业课程 面向对象电气工程及其自动化专业、自动化专业、电子信息科学与技术专业 前修课程或要求《模拟电子技术》、《自动控制原理》、《控制系统MA TLAB程序设计》、《电机及拖动基础》等专业基础课。 一、课程内容简介 《自控原理系列实验》课程是《自动控制原理》理论课程的同步课程,要求学生在学习理论知识的基础上,掌握自动控制系统的设计和分析的实验方法,具有很强的理论性和工程性,因而该实验课程是电类专业本科教育一个必不可少的重要环节。自动控制原理实验课程主要包括控制系统的数学模型、时域分析、根轨迹设计、频域分析、控制系统校正设计等实验,要求学生初步掌握自动控制系统及其各环节的电路模拟设计与分析和利用MATLAB/Simulink软件进行仿真设计的方法。 二、实验教学目的与任务 本课程的教学目的是使学生通过实验进一步理解自动控制系统的设计和分析方法,综合应用所学的专业基础知识,具有能应用控制理论初步解决实际问题的能力,从自动控制工程的角度自觉地建立系统的思维方法。通过多个综合设计型实验系统地培养学生工程设计和系统调试能力,培养管控一体化自动化测量、控制系统的独立设计与研究开发能力。逐步培养学生具有扎实的基础理论知识、较强的实践动手能力与创新能力,计算机与系统相结合、信息与控制相结合的宽口径的自动化管理、监控系统高级专门人才。 本课程的教学任务是使学生掌握反馈控制系统的数学模型建立方式,掌握线性系统时域分析、根轨迹法、频域分析等基本的分析方法,并在正确分析性能的基础上进行系统校正。学会用MATLA软件进行控制系统分析与设计,加深理解控制理论的基本概念,提高和培养学生的动手实验能力。 三、实验教学的基本要求 1.了解自动控制实验系统的组成、实验技术、实验手段及实验方法,在完成教师指导的实验后,学生能够自主设计实验,自己利用实验设备和现有的实验条件去求证难点,突破重点。2.通过模拟电路实验,学生能够通过列写电路微分方程和电路动态响应曲线建立系统(或环节)的传递函数,应用MATLAB软件建立线性系统的数学模型。 3.掌握线性系统的时域分析法、根轨迹法和频域分析法的使用特点,灵活地互补使用,分析系统的稳定性、稳态和动态性能。 4.掌握线性系统的基本控制规律,正确运用根轨迹法和频率特性法对系统进行校正,改善系统性能。 5.教学过程中要求实验前学生必需进行预习,设计报告经教师批阅后,方可进入实验室进行实验;在规定的时间内,由学生独立完成,教师引导学生独立分析解决;每项实验结果,需经教师认可后。 (二)实验教学部分

计算机控制PID实验报告

实验报告实验名称:积分分离PID控制算法课程名称:计算机控制系统 姓名:蓝娜 学号:12062115 班级:电气2班 指导老师:陈雪亭 日期:2014年11月11日

实验背景:在数字控制系统中,积分控制分量的引入主要是为了消除静差,提高系统的精度。但在过程启动、停车或大幅度改变设定值时,由于产生较大的偏差,加上系统本身的惯性和滞后,在积分作用下,计算得到的控制量将超出执行机构可能的最大动作范围对应的极限控制量,结果产生系统输出的较大超调,甚至引起系统长时间的振荡,这对大多数的生产过程是不允许的,由此引进积分分离PID 算法,既保持了积分作用,又可减少超调量,使系统的控制性能得到较大的改善。 实验基本思想:在偏差e(k)较大时,暂时取消积分作用;当偏差e(k)小于某个阈值时,才将积分作用投入。 1)根据实际需要,设定一个阈值ε>0。 2)当|e(k)|>ε,即偏差较大时,采用PD 控制,可避免大的超调,又使系统有较快的响应。 3)当|e(k)|<=ε,即偏差较小时,采用PID 控制或PI 控制,可保证系统的控制精度。 积分分离形式:u(k)=Kp{e(k)+)]1()([)(0--+∑=k e k e T Td j e Ti T k j β} 式中β=1(|e(k)<=ε|) 或β=0 (|e(k)|>ε) 实验目的:利用Simulink 设计数字PID 控制器,加入模块Switch ,通过调整阈值实现积分分离,并通过Simulink 仿真与标准PID 控制进行比较。 实验线路图: 普通PID 控制线路:上次实验得到较好系统性能的整定后的参数为Kp=600,Ki=450,Kd=26。此次实验会在上次实验的基础上作进一步的改进,引入积分分离。

相关文档
相关文档 最新文档