文档库 最新最全的文档下载
当前位置:文档库 › 补码与有符号数

补码与有符号数

补码与有符号数
补码与有符号数

无符号数、有符号数与补码

计算机中的整数数据分成有符号数和无符号数。无符号数是用所有的数据位表示数值,而有符号数则是用最高位表示数据的正负性,其余位表示数值。

例如:对于八位数无符号数,所有8位均是数据位,编码00000000-11111111表示0-255。而八位有符号数,其最高位代表符号,第7位表示数据。符号位是0代表正数,是1代表负数。

对于有符号数而言:当最高位为0时,代表正数,低7位就是这个正数的编码,如01111111,0表示正数,1111111表示其数值127,表示+127;当最高位为1时,代表负数,第7位的含义与编码方式有关。一般的计算机系统采用的是补码编码。

补码是针对有符号的负数的。它的数据位是由对应的正数编码取反加1而来的。例如:-100是个负数,最高位为1。其余位是+100的编码取反加1得到的。+100的7位编码是1101000,取反后7位变成0010111,再加1后7位变成0011000。则-100的补码形式为10011000

也可以直接将对应正数的8位进行取反加1,结果一致。

虽然,对负数的编码存在原码、反码与补码三种形式,但是真正用于计算机系统的只有补码。想C/C++等语言中的负数都是补码形式的。

C/C++语言中,用unsigned 表示无符号数,用signed或缺省表示有符号数。如unsigned int表示32位的无符号数,char表示8位有符号数。

不过,在C/C++语言中,给无符号数或有符号数赋值时,编译器并不严格地判断是否超过了范围。例如:char c=200;

c是用char定义的,是由符号数,而8位有符号数的表示范围是-128-127,200超过了这个范围。编译时没有错误。那么,究竟给c的是什么数?

其实,C/C++在将数据保存到某个变量时,只是把这个变量所需要的数据位给他,不关心其中是否包含符号位。作为一个有符号数,200在内存里的格式为11001000,将它存放到变量c所申请的内存单元中,由于c变量是有符号的,最高位的1代表是个负数。11001000作为补码形式的负数,就是-56。所以,c的实际数值就是-56。

对于补码表示的机器数,如果求出其真值?还是取反加1。11001000取反变成00110111,再加1变成00111000,表示56,最高位是1,是个负数,结果为-56。

C语言有符号数与无符号数之间的转换

C语言有符号数与无符号数之间的转换 无符号数:不存在正负之分,所有位都用来表示数的本身。 有符号数:最高位用来表示数的正负,最高位为1则表示负数,最高位为0则表示正数。 1.无符号数--->有符号数 看无符号数的最高位是否为1,如果不为1(为0),则有符号数就直接等于无符号数;如果无符号数的最高位为1,则将无符号数取补码,得到的数就是有符号数。 以unsigned char 和char为例子: 1.1将无符号数2转为有符号数 2的原码是:0000 0010,可知最高位不为1,因此转为有符号数之后也是2。 程序: 1 #include 2 3int main(void) 4{ 5 unsigned char i = 2; 6 7 printf("%d/n",(char)i); 8 9return0;10} 运行结果: 1.2将无符号数130转为有符号数 130的原码是:1000 0010,可知最高位为1,因此需要取它的补码,补码为1111 1110,这是一个负数,取最高位作为-号,取最低7位作为数值得到的结果是-126。 程序: 1 #include 2 3int main(void) 4{ 5 unsigned char i = 130; 6 7 printf("%d/n",(char)i); 8 9return0;10 } 运行结果: 2.有符号数--->无符号数 看有符号数的最高位是否为1,如果不为1(为0),则无符号数就直接等于有符号数;如果有符号数的最高位为1,则将有符号数取补码,得到的数就是无符号数。 以char 和unsigned char为例子: 2.1将有符号数3转为无符号数 3的原码是:0000 0011,可知最高位不为1,因此转为无符号数之后也是3。 程序: 1 #include 2 3int main(void) 4{ 5char i = 3; 6 7 printf("%u/n",(unsigned char)i); 8 9return0;10 } 运行结果: 2.2将有符号数-7转为无符号数 -7的原码是:1000 0111,可知最高位为1,因此需要取它的补码,补码为1111 1001,这是一个正数,因此整个数的值就是249。 程序: 1 #include 2 3int main(void) 4{ 5char i = -7; 6 7 printf("%u/n",(unsigned char)i); 8 9return0;10 } 运行结果:

简单16位CPU的设计

简单CPU的设计 设计步骤: 1)确定CPU功能 2)拟定指令系统(采用MIPS) 3)分析指令系统,为数据通路选择合适的组件,并给出组件 所需的控制信号,连接组件建立数据通路 4)详细分析指令在多周期通路中的执行过程,给出指令执行 的流程图 5)依据指令执行的流程图,分析控制信号的取值,生成相应 的状态转换图 一、确定CPU功能 M[2]←M[0]+M[1] 二、拟定指令系统 J类型

4位12位 指令格式中的op(opcode)是指令操作码。rs(register source)是源操作数的寄存 器号。rd(register destination)是目的寄存器号。rt(register target)即可作为源寄 存器号,又可作为目的寄存器号,有具体的指令决定。func(function)可被认为 是扩展的操作码,Target表示一下个地址开始 注:操作码4位,寄存器字段rs,rt,rd各三位,Fun功能字段3位,Imm立即值字段6位;一共8个寄存器,R0只读不可写,恒为0。 R类型的指令 ADD Rd,Rs,Rt SUB Rd,Rs,Rt AND Rd,Rs,Rt OR Rd,Rs,Rt XOR Rd,Rs,Rt I类型的指令 LW Rt, Rs,imm6 SW Rt, Rs,imm6

存放在ROM中的汇编指令,完成M[2]←M[0]+ M[1] LW R1,0(R0);R1←M[R[0]+0],由于R(0)内容为0,即R1←M[0] LW R2,1(R0);R1←M[R[0]+1],由于R(0)内容为0,即R1←M[1] ADD R3,R1,R2 ; R3←R1+R2 SW R3,2(R0) ; M[R[0]+2]←R3 下面地址对应着rom模块里面

定点补码一位乘法器方案

个人资料整理仅限学习使用 课程设计报告 课程设计名称:计算机组成原理课程设计 课程设计题目:定点补码一位乘法器的设计 院<系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2018年1月15日

目录第1章总体设计方案1 1.1设计原理1 1.2设计思路2 1.3设计环境4 第2章详细设计方案5 2.1顶层方案图的设计与实现5 2.1.1创建顶层图形设计文件5 2.1.2器件的选择与引脚锁定6 2.2功能模块的设计与实现7 2.2.1求补电路模块的设计与实现7 2.2.2 控制电路模块的设计与实现8 2.2.3选择器模块的设计与实现10 第3章编程下载与硬件测试12 3.1编程下载12 3.2硬件测试及结果分析12 参考文献14 附录<电路原理图)15

第1章总体设计方案 1.1设计原理 <1)用[X]补×[Y]补直接求[X×Y]补 讨论当相乘的两个数中有一个或二个为负数的情况,在讨论补码乘法运算时,对被乘数或部分积的处理上与原码乘法有某些类似,差别仅表现在被乘数和部分积的符号位要和数值一起参加运算。 若[Y]补=Y0Y1Y2…Yn 当Y0为1时,则有Y=-1+Yi×2-i 故有X×Y=X×Yi×2-1-X当Y为负值时,用补码乘计算[X×Y]补,是用[X]补乘上[Y]补的数值位,而不理[Y]补符号位上的1,乘完之后,在所得的乘积中再减X,即加-[X]补。实现补码乘法的另一个方案是比较法,是由BOOTH最早提出的,这一方法的出发点是避免区分乘数符号的正负,而且让乘数符号位也参加运算。技巧上表现在分解乘数的每一位上的1为高一位的一个+1和本位上的一个-1:X×Y=X×<-1+Yi×2i)<逐项展开则得)=X×[-Y0+Y1×2-1+Y2×2-2+…+Yn×2-n]=X×[-Y0+(Y1-Y1×2-1>+(Y2×2-1-Y2×2-2>+…+(Yn×2-(n-1>-Yn×2-n>]<合并相同幂次项得)=X×[(Y1-Y0>+(Y2-Y1> ×2-1+…+(Yn-Yn-1> ×2-(n-1>+(0-Yn> ×2-n]=X× ×X]补 P2=[2-1(P1+(Yn-Yn-1> ×X>]补 … Pi=[2-1(Pn-i+(Yn-I+2-Yn-I+1> ×X>]补 … Pn=[2-1(Pn-1+(Y2-Y1> ×X>]补 Pn+1=[ (Pn+(Y1-Y0> ×X>]补 则最终补码乘积为[X*Y]补=[Pn+1]补

理解C语言有符号数和无符号数

声明网上看到的文章,原文找不到了,原文被转载的不成样子,重复很多,整理花了很长时间,在翻看了维基百科后发现,原文中对于负数原码和补码存在一些问题,修改了一部分,原作者看到后可以联系我。 1、你自已决定是否需要有正负。 就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。 在计算机中,可以区分正负的类型,称为有符类型(signed),无正负的类型(只有正值),称为无符类型。(unsigned)数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有符类型。字符类型也分为有符和无符类型。比如有两个量,年龄和库存,我们可以定前者为无符的字符类型,后者定为有符的整数类型。 2、使用二制数中的最高位表示正负。 首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。 (红色为最高位) 单字节数:11111111 双字节数: 11111111 11111111 四字节数:11111111 11111111 11111111 11111111 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。 当我们指定一个数量是无符号类型时,此时,最高数称为“符号位”。为1时,表示该数

为负值,为0时表示为正值。 3、无符号数和有符号数的范围区别。 无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比: 无符号数:11111111 值:255 1* 27 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 有符号数:01111111 值:127 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。 不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比: 无符号数:0 ----------------- 255 有符号数:-128 --------- 0 ---------- 127 同样是一个字节,无符号的最小值是0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。 一个有符号的数据类型的最小值是如何计算出来的呢? 有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1* 26 + 1* 25 的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,

定点补码一位乘法器的设计与实现

课程设计报告 课程设计名称:计算机组成原理课程设计 课程设计题目:定点补码一位乘法器的设计与实现 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2012年1月13日

目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (1) 1.3设计环境 (2) 第2章详细设计方案 (3) 2.1顶层方案图的设计与实现 (3) 2.1.1创建顶层图形设计文件 (3) 2.1.2器件的选择与引脚锁定 (4) 2.1.3编译、综合、适配 (5) 2.2功能模块的设计与实现 (5) 2.2.1 取补模块的设计与实现 (5) 2.2.2选择器模块的设计与实现 (7) 2.2.3 乘数补码移位寄存器模块的设计与实现 (11) 2.2.4 部分积移位寄存器模块的设计与实现 (13) 2.3仿真调试 (14) 第3章编程下载与硬件测试 (16) 参考文献 (17) 附录(电路原理图) (18)

第1章总体设计方案 1.1 设计原理 在计算两个补码相乘时,可以通过Booth算法来实现定点补码一位乘的功能。布斯(Booth)算法采用相加和相减的操作计算补码数据的乘积,Booth算法对乘数从低位开始判断,根据后两个数据位的情况决定进行加法、减法还是仅仅进行移位操作。讨论当相乘的两个数中有一个或二个为负数的情况,在讨论补码乘法运算时,对被乘数或部分积的处理上与原码乘法有某些类似,差别仅表现在被乘数和部分积的符号位要和数值一起参加运算。 Booth乘法规则如下: 假设X、Y都是用补码形式表示的机器数,[X]补和[Y]补=Ys.Y1Y2…Yn,都是任意符号表示的数。比较法求新的部分积,取决于两个比较位的数位,即Yi+1Yi 的状态。 首先设置附加位Yn+1=0,部分积初值[Z0]补=0。 当n≠0时,判断YnYn+1, 若YnYn+1=00或11,即相邻位相同时,上次部分积右移一位,直接得部分积。若YnYn+1=01,上次部分积加[X]补,然后右移一位得新部分积。 若YnYn+1=10,上次部分积加[-X]补,然后右移一位得新部分积。 当n=0时,判YnYn+1(对应于Y0Y1),运算规则同(1)只是不移位。即在运算的最后一步,乘积不再右移。 1.2 设计思路 首先要采用原码值输入,乘数和被乘数皆为8位。而且根据补码一位乘法运算规则:(1) 如果yn = yn+1,部分积[ zi ] 加0,再右移一位;(2) 如果yn yn+1 = 01,部分积加[ x ]补,再右移一位;(3) 如果yn yn+1 = 10,部分积加[ - x]补,再右移一位;这样重复进行n+1 步,但最后一步不移位。包括一位符号位,所得乘积为2n+1 位,其中n 为尾数位数。 设计一个二输入三选一选择器对可能的三种情况进行选择。当选择器中输入

无符号数、有符号数、原码、反码、补码——数据在计算机内部的表示

数据在计算机内部的表示与存储 作者:刘英皓 2013/4/17 今天在做单片机实验的时候,突然对一个问题产生了浓厚的兴趣:数据在计算机内部是怎么表示的?晚上查阅了大量的资料,终于把其中的玄机弄明白了。 资料来源甚广,在此就不一一声明了,感谢!! 数据是什么?它是用来表示信息的。是信息的载体。比如数值、文字、语言、图形、影像等都是不同形式的数据。而在计算机中,无论是数值型数据还是非数值型数据,它们都被表示成了0和1。 既然都变成了0和1,那计算机怎么区别这些不同的信息呢?别担心,它们各在有各自的编码规则。非数值型数据的编码主要有ASCII 码和汉字编码。这里不深究。 数值型数据:它主要有两种形式,有符号数和无符号数 1、有符号数和无符号数 它们的定义估计你都听腻了,我就不重复了,我只强调两点: a.计算机不区分有符号数和无符号数。 b.只有有符号数才有原码、反码和补码。 2、原码、反码和补码 还是两点:

a.正数的原码、反码和补码都一样。 b.负数的反码为原码除符号位的按位取反,补码为反码加1. 注意两点: b1.反码1111 1111的补码是0000 0000. b2.补码1000 0000没有对应的原码和反码,它表示-128,这是规定 3、计算机存储单元中的数据 这个要分两种情况: a.无符号数:直接以对应的二进制表示。 b.有符号数:补码形式表示,无论是计算还是存取。 比如在内存单元中有一个数据为FEH,那么它到底是表示什么?254还是-2?没关系,你说是什么就是什么。因为计算机是不会区分这个数是有符号数还是无符号数的。在你写程序的时候,指定这个量是有符号的,FEH就是一个补码,可以计算得它的真值就是-2,如果指定它是无符号的,那么它就是254。不同的形式在程序中便会有不同的体现。要注意的是在计算中不要超出了数值的范围,以免发生错误。 如有疑问请联系:yinghao1991@https://www.wendangku.net/doc/5313748384.html,

16位(8x8)硬件乘法器设计报告

EDA课程设计16位(8x8)硬件乘法器设计学校:华侨大学 学院:信息与工程学院 班级:10集成 姓名:项传煜 学号:1015251031 老师:凌朝东

目录 摘要 一.设计要求 二.正文 2.1. 系统设计 2.1.1 系统设计方案 (3) 2.1.2 系统设计原理 (4) 2.2. 各子模块设计 2.2.1 十进制加计数器设计 (5) 2.2.2 BCD码转二进制码BCD_B的设计 (5) 2.2.3 8位移位寄存器reg_8的设计 (6) 2.2.4 8位加法器adder_8的设计 (7) 2.2.5 1位乘法器multi_1的设计 (7) 2.2.6 16位移位寄存器reg_16的设计 (8) 2.2.7 16位二进制转BCD码B_BCD的设计 (9) 2.3. 软件设计 2.3.1 设计平台和开发工具 (10) 2.3.2 程序流程方框图 (10) 2.3.3 实现功能 (11) 2.3.4 8位乘法器的顶层设计 (11) 2.4. 系统测试 2.4.1 乘法器使用 (13) 2.4.2 仪器设备 (13) 2.4.3 测试数据 (14) 2.5. 结论 (14) 三.测试结果仿真图 (14) 四.参考文献 (15) 五.附录:设计说明书及使用说明书 (15)

摘要 本设计通过对一个8×8的二进制乘法器的设计,学习利用VHDL语言来描述简单的算法,掌握利用移位相加方法实现乘法运算的基本原理。在此次设计中该乘法器是由十进制计数器,BCD码(输入)转二进制码,8位寄存器,8位加法器,16位寄存器,8x1乘法器,二进制码转BCD码(输出显示)7个模块构成的以时序方式设计的8位乘法器,采用逐项移位相加的方法来实现相乘。设计中乘数,被乘数的十位和个位分别采用cnt10(十进制加法器)来输入,经拼接符“&”拼接成8位BCD码,再由BCD_B(BCD码转二进制码)转化成二进制码后计算,计算结果由B_BCD(二进制转BCD码)转化成BCD码输入到数码管中显示。此次设计的创新点在于cnt10,BCD_B,B_BCD的设计,使得电路的输入简单,显示方式为十进制,符合人们的习惯。使用中只要输入乘数,被乘数,按下键3(脉冲)就可以直接得出结果,显示结果稳定。可以满足两位十进制乘法的计算。 一.设计要求 设计一个十六位(8*8)硬件乘法器(难度系数1.0) 要求:2位十进制乘法;能同时显示乘数,被乘数和积的信息(LED数码管)。 二.正文 2.1. 系统设计 2.1.1 系统设计方案 方案一:直接生成乘法器,再配合输入,输出电路,构成2位十进制乘法器,该方案简单,原理清晰明了,但占用资源比较多,且不易于了解内部结构,及其乘法原理。 方案二:移位相加方法实现乘法运算再配合输入,输出电路,构成2位十进制乘法器,该方案原理简单,占用资源少,易于初学者掌握移位相加方法实现乘法运算的原理,但电路模块较多。方案选择:由于现在属初学阶段,掌握原理较为重要,故经小组讨论,一致同意采用方案二。

有符号数与无符号数

1、你自已决定是否需要有正负。 就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。 在计算机中,可以区分正负的类型,称为有符类型,无正负的类型(只有正值),称为无符类型。 数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有符类型。 字符类型也分为有符和无符类型。 比如有两个量,年龄和库存,我们可以定前者为无符的字符类型,后者定为有符的整数类型。 2、使用二制数中的最高位表示正负。 首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。 (红色为最高位) 单字节数:1111 1111 双字节数:1111 1111 1111 1111 四字节数:1111 1111 1111 1111 1111 1111 1111 1111 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。 当我们指定一个数量是无符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。 3、无符号数和有符号数的范围区别。 无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示

正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比: 无符号数: 1111 1111 值:255 1* 27 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 有符号数: 0111 1111 值:127 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。 不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比: 无符号数: 0 ----------------- 255 有符号数: -128 --------- 0 ---------- 127 同样是一个字节,无符号的最小值是 0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255 这256个数,后者表达的是-128到+127这256个数。 一个有符号的数据类型的最小值是如何计算出来的呢? 有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1* 26+ 1* 25的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这些内容我们将在第六章中的二进制知识中统一学习。 这里,先直观地看一眼补码的形式: 以我们原有的数学经验,在10进制中:1 表示正1,而加上负号:-1 表示和1相对的负值。 那么,我们会很容易认为在2进制中(1个字节): 0000 0001 表示正1,则高位为1后:1000 0001应该表示-1。 然而,事实上计算机中的规定有些相反,请看下表:

16位除8位有符号数的VHDL设计

library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; Entity Divider is port( clk: in std_logic; --reset: in std_logic; start: in std_logic; word1: in std_logic_vector(15 downto 0);--被除数 word2: in std_logic_vector(7 downto 0);--除数 data_out: out std_logic_vector(15 downto 0)--商 ); end Divider; Architecture Divider_arc of Divider is type states is(S_Idle,S_Adivr,S_Adivn,S_div); signal state,next_state:states; signal dividend:std_logic_vector(16 downto 0); signal comparison:std_logic_vector(8 downto 0); signal divisor:std_logic_vector(7 downto 0); signal load_words,shift_divisor,shift_dividend,subtract:std_logic; signal num_shift_divisor,num_shift_dividend:integer range 0 to 16; signal quotient:std_logic_vector(15 downto 0); begin process(state,dividend,divisor) begin case state is when S_Adivr => if divisor(7)='0' then comparison<='1'&(not(divisor(6 downto 0)&'0')) +"000000001"+dividend(16 downto 8); else comparison<='1'&(not divisor) +"000000001"+dividend(16 downto 8); end if; when others => comparison<='1'&(not divisor) +"000000001"+dividend(16 downto 8); end case; end process; process(clk,start) begin

有符号数与无符号数的探讨

有符号数与无符号数的探讨 这个问题,要是简单的理解,是很容易的,不过要是考虑的深了,还真有些东西呢。 下面我就把这个东西尽量的扩展一点,深入一点和大家说说。 一、只有一个标准! 在汇编语言层面,声明变量的时候,没有si g ned和u nsi gn d e之分,汇编器统统,将你输入的整数字面量当作有符号数处理成补码存入到计算机中,只有这一个标准!汇编器不会区分有符号还是无符号然后用两个标准来处理,它统统当作有符号的!并且统统汇编成补码!也就是说,d b-20汇编后为:EC,而d b236汇编后也为EC。这里有一个小问题,思考深入的朋友会发现,db是分配一个字节,那么一个字节能表示的有符号整数范围是:-128~+ 127,那么d b236超过了这一范围,怎么可以?是的,+236的补码的确超出了一个字节的表示范围,那么拿两个字节(当然更多的字节更好了)是可以装下的,应为:00EC,也就是说+236的补码应该是00EC,一个字节装不下,但是,别忘了“截断”这个概念,就是说最后汇编的结果被截断了,00EC是两个字节,被截断成EC,所以,这是个“美丽的错误”,为什么这么说?因为,当你把236当作无符号数时,它汇编后的结果正好也是EC,这下皆大欢喜了,虽然汇编器只用一个标准来处理,但是借用了“截断”这个美丽的错误后,得到的结果是符合两个标准的!也就是说,给你一个字节,你想输入有符号的数,比如-20那么汇编后的结果是符合有符号数的;如果你输入236那么你肯定当作无符号数来处理了(因为236不在一个字节能表示的有符号数的范围内啊),得到的结果是符合无符号数的。于是给大家一个错觉:汇编器有两套标准,会区分有符号和无符号,然后分别汇编。其实,你们被骗了。:-) 二、存在两套指令! 第一点说明汇编器只用一个方法把整数字面量汇编成真正的机器数。但并不是说计算机不区分有符号数和无符号数,相反,计算机对有符号和无符号数区分的十分清晰,因为计算机进行某些同样功能的处理时有两套指令作为后备,这就是分别为有符号和无符号数准备的。但是,这里要强调一点,一个数到底是有符号数还是无符号数,计算机并不知道,这是由你来决定的,当你认为你要处理的数是有符号的,那么你就用那一套处理有符号数的指令,当你认为你要处理的数是无符号的,那就用处理无符号数的那一套指令。加减法只有一套指令,因为这一套指令同时适用于有符号和无符号。下面这些指令:m ul di v m ovz x…是处理无符号数的,而这些:i m ul i di v

有符号5位整数乘法器设计与制作

哈尔滨工业大学(威海) 信息科学与工程学院 EDA课程设计报告 有符号5位整数乘法器设计与制作 指导老师:胡屏 学生班级:0802102 学生姓名:傅愉 学生学号:080210210 2009年11月10日

目录 1.课程设计的性质、目的和任务 (1) 2.题目要求 (1) 3.总体设计 (1) 3.1算法设计 (1) 3.2整体框图及原理 (2) 4.电路设计 (4) 4.1 乘法器总体电路原理图: (4) 4.2分时输入模块电路图: ........................................................... - 5 - 4.3乘法运算电路图: (6) 4.4阀门控制模块电路: ............................................................... - 9 - 4.5计数单元电路图: ................................................................. - 12 - 4.6数码管显示单元电路: ......................................................... - 14 - 4.7报警电路示意: ......................................... 错误!未定义书签。 5.调试过程中出现的问题以及解决办法 .......................................... - 19 - 6.心得体会........................................................................................... - 20 - 7.建议:............................................................................................... - 21 - 1.课程设计的性质、目的和任务 创新精神和实践能力二者之中,实践能力是基础和根本。这是由

无符号数除法

在Verilog HDL语言中虽然有除的运算指令,但是除运算符中的除数必须是2的幂,因此无法实现除数为任意整数的除法,很大程度上限制了它的使用领域。并且多数综合工具对于除运算指令不能综合出令人满意的结果,有些甚至不能给予综合。对于这种情况,一般使用相应的算法来实现除法,分为两类,基于减法操作和基于乘法操作的算法。[1] 基于减法的除法器的算法: 对于32的无符号除法,被除数a除以除数b,他们的商和余数一定不会超过32位。首先将a转换成高32位为0,低32位为a的temp_a。把b转换成高32位为b,低32位为0的temp_b。在每个周期开始时,先将temp_a左移一位,末尾补0,然后与b比较,是否大于b,是则temp_a减去temp_b将且加上1,否则继续往下执行。上面的移位、比较和减法(视具体情况而定)要执行32次,执行结束后temp_a的高32位即为余数,低32位即为商。 Verilog HDL 代码 /* 功能:32位除法器 输入参数:被除数a,除数b 输出参数:商yshang,余数yyushu 备注:采用移位、比较和减法(从高位开始)实现的除法运算 本例实现的是32位除法器的例子 */ module division(a,b,yshang,yyushu); input[31:0] a; //被除数 input[31:0] b; //除数 output[31:0] yshang; // output[31:0] yyushu; // reg[31:0] yshang; reg[31:0] yyushu; reg[31:0] tempa; reg[31:0] tempb; reg[63:0] temp_a; reg[63:0] temp_b; always @(a or b) begin tempa <= a; tempb <= b; end integer i;

计算机组成原理_计算机的运算方法_61 无符号数和有符号数_

6.1 无符号数和有符号数

寄存器的位数 反映无符号数的表示范围 8 位 0 ~ 255 16 位 0 ~ 65535

带符号的数 符号数字化的数 + 0.10110 1011小数点的位置+ 11000 1100 小数点的位置– 1100 1 1100 小数点的位置 – 0.10111 1011 小数点的位置真值 机器数 1. 机器数与真值

2. 原码表示法—整数 带符号的绝对值表示 x 为真值n 为整数的位数 如x = +1110 [x ]原 = 0 , 1110 [x ]原 = 24 + 1110 = 1 , 1110 x = 1110[x ]原 = 0,x 2n > x ≥ 0 2n x 0 ≥ x > 2 n 用 逗号 将符号位和数值部分隔开

x 为真值 如x = + 0.1101 [x ]原 = 0 . 1101 x = – 0.1101[x ]原 = 1 – (–0.1101) = 1 . 1101 x 1 > x ≥ 0 [x ]原 = 1 – x 0 ≥ x >–1 x = – 0.1000000 [x ]原 = 1 – (– 0.1000000) = 1 . 1000000 x = + 0.1000000[x ]原 = 0 . 1000000 用 小数点 将符号位和数值部分隔开 用 小数点 将符号位和数值部分隔开 2. 原码表示法—小数

例 6.1 已知 [x ]原 = 1.0011 求 x 解:例 6.2 已知 [x ]原 = 1,1100 求 x 解:x = 1 – [x ]原 = 1 – 1.0011 = –0.0011 x = 24 – [x ]原 = 10000 – 1,1100 = –1100 – –0.0011 1100由定义得 由定义得

16位乘法器芯片设计 3月9日

16位乘法器芯片设计 1.方法 乘法器的设计方法有两种:组合逻辑设计方法和时序逻辑设计方法。 采用组合逻辑设计方法,电路事先将所有的乘积项全部算出来,然后做加法运算。 采用时序逻辑设计方法,电路将部分已经得到的乘积结果右移,然后与乘积项相加并保存和值,反复迭代上述步骤直到计算出最终积。 2.组合逻辑的实现 可以以16*3位的乘法器为例做出如下设想: A为16位二进制乘数,B为3位二进制乘数,C为A与B相乘的积。则: C的结果实际上只能为如下值中的一个: 0,A,2A,3A,4A,5A,6A,7A 因为B为3位二进制,则B只能是000,001,010,011,100,101,110,111中的一个。 初步设想符合现实,由于要实现ASIC芯片的生产,所以对各端口定义如下: reset:芯片复位、清零信号。值为0,芯片复位。 start:芯片使能信号。值为1,芯片读入乘数和被乘数,并将乘积复位清零。 ain:被乘数,16bit。 bin:乘数,3bit。 yout:乘积输出,19bit。 done:芯片输出标志信号,值为1,乘法运算完成,yout端口的数据稳定,得到最终的乘积;值为0,乘法运算未完成,yout端口数据不稳定。 编写的Verilog程序如下: Module mult16(reset,start,ain,bin,done,yout); Parameter N=16; Input reset; Input start; Input [N-1:0] ain; Input [2:0]bin; Output [N+3:0] yout; Output done; Integer aa,ab,ac,temp; Integer su; Reg done; Always @(ain) Begin If(start&&!reset) Begin aa=ain; ab=ain+ain; ac=ab+ab;

无符号大整数计算器

C语言及面向对象程序设计实验石家庄铁道大学信息学院 A 数学类 1.题目要求: 高斯消元法求解线性方程组:在线性代数中,学习过用高斯消元法求解线性方程组,用类来实现该方法,并在主函数中进行测试; 2.解题思路: 通常应用高斯消元法的时候,不会直接写出方程组的等式来消去未知数,反而会使用矩阵来计算,将其转化为行阶梯式矩阵,所以程序的算法即线性代数中的矩阵变换为行阶梯式矩阵步骤,所以用一个二维数组存放系数矩阵,一个一维数组存放解值。 3.类的结构(数据和函数); //gauss.h #pragma once #include #include #define N 100 using namespace std; class gauss { private: double a[N][N],b[N]; public: gauss(void); void setvalue(int ); ~gauss(void); }; //gauss.cpp #include "gauss.h" gauss::gauss(void) { }

void gauss::setvalue(int n) { int i,j,k; double a[N][N]; cout<<"请输入"<>a[i][j]; double o,b[N]; for (i=1;i<=n;i++) for (j=i+1;j<=n;j++) if (fabs(a[j][i])>1e-7) { o=a[i][i]/a[j][i]; for (k=i;k<=n+1;k++) a[j][k]=a[j][k]*o-a[i][k]; } for (i=n;i>0;i--) { b[i]=a[i][n+1]/a[i][i]; for (j=i-1;j>0;j--) a[j][n+1]=a[j][n+1]-b[i]*a[j][i]; } cout<<"解得:"< #include #include "gauss.h" using namespace std; void main() { int n; cout<<"请输入未知数个数:"<

16位vhdl乘法器详解,加仿真图

控制模块: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity cont_modu is port( Clk : in std_logic ; Start : in std_logic; //数据输入开始信号 en_sig : out std_logic; //控制运算信号,为‘1’运算数据 out_sig : out std_logic // 运算完成信号 ); end entity; architecture rlt_cont_modu of cont_modu is signal cnt :integer range 0 to 15 :=0;//定义从0到15 type state is(S_idle,S_work,S_1d,S_2d);//运算状态信号,状态机 signal st_ty : state :=S_idle; begin process(Clk) begin if rising_edge(Clk) then case st_ty is选择语句;S_idle为空闲状态,当输入数据后Start信号为1就开始工作 when S_idle => if Start ='1' then如果为1就跳转到S_work状态,并且使能信号置1 st_ty <= S_work; en_sig <='1'; else不然继续在S_idle状态 st_ty <= S_idle; en_sig <='0'; end if; out_sig <='0'; when S_work => if cnt =15 then在S_work状态下,cnt信号一直加1,加满16个数就跳转到S_1d,然后使能信号en_sig 就为0。 st_ty <= S_1d; cnt <= 0; en_sig <='0'; else如果没到16个数继续加1 st_ty <= S_work;

Verilog带符号数运算

Verilog带符号数运算 摘要:介绍了Verilog带符号数的不同运算。因为Reg和Wire数据默认情况下是无符号的,而在数据处理的情况下,Verilog既要对带符号数据进行各种运算,也要对无符号数和带符号数进行运算,所以简单使用Verilog提供的运算符是不够的。因此研究不同类型数据运算的通用方法是必要的。 关键词:Verilog;带符号数;补码;算术运算 中图分类号:TN911?34 文献标识码:A 文章编号:1004?373X(2015)03?0160?03 Operation of numbers with symbols by Verilog HUI Wei?jun,SHEN Zhao?jun (Yancheng Institute of Technology,Yancheng 224051,China) Abstract:Different operations of data with symbols by Verilog are introduced. Reg and Wire data in the case of default is unsigned,but in the case of data processing,a variety of operations of data with symbols are performed by Verilog,and the unsigned and signed with numbers need to be processed. However,it is not enough to use the operation symbols provided by Verilog. It is necessary to research the general

【推荐】C语言中有符号数与无符号数解析

C语言中有符号数,与无符号数的辨析 关于有符号数,无符号数,你可能听过两种不同的回答。一种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,这一些我们需要在第6章中用一章的篇幅讲2进制的一切。再者,用“补码”表示负数,其实一种公式,公式的作用在于告诉你,想得问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以和答案? 另一种是一些程序员告诉你的:用二进制数的最高位表示符号,最高位是0,表示正数,最高位是1,表示负数。这种说法本身没错,可是如果没有下文,那么它就是错的。至少它不能解释,为什么字符类型的-1用二进制表示是“1111 1111”(16进制为FF);而不是我们更能理解的“10000001”。(为什么说后者更好理解呢?因为既然说最高位是1时表示负数,那10000001不是正好是-1吗?)。 让我们从头说起。 1、你自已决定是否需要有正负。 就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。在计算机中,可以区分正负的类型,称为有符类型,无正负的类型(只有正值),称为无符类型。 数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有有符类型。 字符类型也分为有符和无符类型。 2、使用二制数中的最高位表示正负。 首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。 (红色为最高位) 单字节数:11111111 双字节数:1111111111111111 四字节数:11111111111111111111111111111111 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。 当我们指定一个数量是无符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。 3、无符号数和有符号数的范围区别。 无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比:

相关文档
相关文档 最新文档