文档库 最新最全的文档下载
当前位置:文档库 › 二恶英的危害与防治技术的研究进展

二恶英的危害与防治技术的研究进展

二恶英的危害与防治技术的研究进展
二恶英的危害与防治技术的研究进展

二噁英的危害与防治技术的研究进展

韩猛张存珍

(长安大学环境科学与工程学院,陕西西安710054)

摘要:

二噁英是一种持久性的有机污染物,污染生态环境,危害人类健康。随着近年来二噁英的危害日益严重,二噁英的治理越来越受到人们的重视。本文对二噁英的性质、生成机理及危害等做出概述,提出治理二噁英的一些有效措施以及探讨二噁英治理的新进展。

关键词:二噁英持久性有机污染物防治技术研究进展

Abstract:

The dioxin is a persistent organic pollutants,pollute ecological environment,harm to people's health.With the recent growing dangers of dioxins,dioxin control more and more attention.This article expound the nature of dioxin,Formation mechanism of dioxin,and damage of dioxin.Also present some effective measures of dioxin governance and new progress.

Keywords:dioxin;persistent organic pollutants;control technology;research progress

1 绪论

随着近代工业的发展,环境污染日趋严重,人体健康受到危害。2011年1月,德国多家农场传出饲料遭二噁英污染事件,导致德国当局关闭了近5000家农场,销毁约10万颗鸡蛋,据了解是鸡饲料中含有二噁英。2008年12月葡萄牙检疫部门在从爱尔兰进口的30吨猪肉中检测出二噁英。2005年6月,我国台湾地区的彰化县销毁了130万枚受二噁英类污染的鸭蛋,同时扑杀2万多只蛋鸭。我国在人体血液、母乳和湖泊底泥中都检出了二噁英,说明了二噁英在我国环境中的存在,所以开展二噁英污染调查和控制研究是非常有意义的。本文就二噁英的研究现状和治理新进展做出一些阐述。

2 二噁英的性质及产生机理

2.1二噁英的性质

二噁英类是多氯代二苯并对二噁英(简称PCDDs)和多氯代二苯并呋喃(简称PCDFs)的总称,它们是氯代三环芳香化合物,我国环境标准中把它们统称为二噁英类,由于氯原子的取代数目和位置不同,构成了75种PCDD和135种PCDF。其中有17种(2, 3, 7, 8位全部被氯原子取代的)二噁英类被认为对生态环境和人类健康有巨大的危害,分子结构如图[1]:

图二噁英分子结构

二噁英是一种含Cl的强毒性有机化学物质,大都是白色固体晶体,有较高的熔点和沸点,蒸气压很小,一般不溶于水或者有机溶剂,但有很强的脂溶性,无论存在于空气、水还是土壤中,它都能强烈地吸附于颗粒上,借助于水生和陆生食物链不断富集而最终危害人类。这些物质挥发性很低,除少量气溶胶吸附方式外,大多数都在地面上存留。二噁英这类物质具有较高的热稳定性、化学稳定性和生物化学稳定性,在高温、强酸、强碱、氧化剂作用下都相当稳定,气态二噁英在空气中光化学分解的半衰期为8.3 天,在土壤中降解的半衰期为12年[2],长期食用含二噁英的食品,毒性成份就会越积越多,很难降解或排出体外,其半衰期长达30年,完全降解和排泄则可能要100年[3]。

人类受到二噁英危害的主要途径是吸入空气中带有二噁英的微粒和摄入被二噁英污染的各种食物。二噁英被称为“地球上毒性最强的毒物”,其毒性相当于氰化钾的100倍以上、马钱子碱500倍以上。二噁英具有强烈的致癌、致畸作用外,同时还具有生殖毒性、免疫毒性和内分泌毒性。研究表明,二噁英进入人体后会导致子宫内膜异位症、影响神经系统发育、影响生殖系统发育以及引起免疫毒性。它还有很强的遗传性,有数据表明,母体血液中二噁英遗传给胎儿的转移率为90%[3]。

2.2 二噁英的来源及其生成机理

2.2.1 二噁英的来源

二噁英在自然界中并不是天然存在的,它是通过化学合成的,常以微小的颗粒存在于大气、土壤和水中,主要污染源是化工冶金工业、垃圾焚烧、造纸、含铅汽油的使用、以及生产使用农药。环境中的二噁英90%来源于垃圾焚烧。

另外,在制造农药时,尤其是生产含有氯的农药如杀虫剂、除草剂、木材防腐剂、多氯联苯等产品的过程中派生。电视机不及时清理,电视机内堆积起来的灰尘中,通常也会检测出溴化二噁英。而且含量较高,平均每克灰尘中,就能检测出4.1微克溴化二噁英。还有废旧的电子元件中也含有少量的二噁英类物质。

2.2.2 二噁英的生成机理

研究发现,垃圾焚烧时,二噁英的生成机理如下:

2.2.2.1 前体物合成

二噁英类的前体物形成是从前体物分子(氯酚、氯苯或者氯代联苯等)形成。前体物主要是焚烧过程中不完全燃烧的产物,在高温(大于400℃,最有效的范围是750℃)区域产生,后来在低温区域进一步反应形成二噁英类。这个过程在国内外许多实验室已经被广泛的研究,许多学者甚至提出这是二噁英类在焚烧系统中形成的主要路线,前体物形成的路径通常可分为四步:①生成灰、不完全燃烧产物、CO、挥发酚和有机基团;②通过吸附二噁英类前体物、过渡金属及其盐和氧化物生成表面活性化合物;③发生多种复杂的有机反应生成二噁英类;④从吸附表面部分解析出二噁英类[4]。

另外,燃烧温度偏低,也将导致燃烧不完全,很有可能不仅没有处理掉已有的二噁英类物质,而且还会使废料中的一些其他化合物反应生成二噁英。有关研究表明,不完全燃烧产物浓度与二噁英的生成量密切相关,可用其指示二噁英的生成量[5]。

2.2.2.2 从头合成[2]

二噁英从头合成过程发生在低温区(约250~450℃),需要经飞灰中催化剂的催化。但其原料是大分子碳(残碳)与氧、氯、氢等基本元素。从头合成反应主要包含氧化反应和缩合反应等历程:①氧化反应:氧在碳表面在催化剂作用下进行氧化降解作用,产

生芳香烃氯化物。此外氯在大分子碳结构边缘,以并排的方式进行氯化反应,生成邻氯取代基的碳结构物。②缩合反应:氧化反应提供了二噁英生成所需芳香族羟基的结构,飞灰上的催化金属促使单环官能团芳香族(氯苯及氯酚等)缩合成二噁英。

2.2.2.3 高温合成

由于燃烧或热解不充分,烟气中含有过多的未燃尽的物质(比如碳粒),遇到适当的催化物质(主要是铜),在一定温度下会使已经分解的二噁英又重新生成。

对于以上三种生成机理,有关研究表明,二噁英的生成机理主要是前驱物合成和从头合成,高温合成的重要性不大。而前驱物合成和从头合成,哪一种路径相对重要要取决于运行条件特别是焚烧气体的温度。在更高的运行温度条件下,前体物形成的反应将比从头合成占主导地位。另外一方面,在低温下,从头合成反应变得比前体物形成更快。

3 二噁英的防控措施

3.1 限制污染源

为了减少二噁英对人类健康的危害,最根本的措施是控制环境中二噁英的排放,其中最重要的一条是加强对垃圾的管理。例如限制垃圾总量,采取科学填埋和堆肥处理技术,加强废物的分选回收利用(尤其如聚氯乙烯塑料袋等,焚烧后易产生二噁英),减少其排放量和焚烧量,并对需要焚烧的固体废弃物进行集中处理;对医疗废物处置采用非焚烧的脉动高压蒸气灭菌技术,其设备和运行维护费用均低于焚烧技术,更适合于我国相对小规模医疗废物的处理[6]。减少纸浆和造纸工业的氯气漂白过程中废水废气的排放,注意减少或停止含氯化学品及农药生产使用,对含氯化学品的废弃物处理优先采用资源回收的技术手段,避免焚烧处理。

3.2 减少焚烧过程中的生成

3.2.1 炉内抑制产生及充分分解

加强固体废物焚烧厂的管理,严格控制燃烧条件。采用技术先进的连续焚烧炉,并保证其正常运转。由于二噁英在高温条件下会被分解破坏,所以焚烧炉的烟气温度应高于850℃,停留时间>2 s,利用二次风的充分搅动,使得炉膛内保持过量空气以确保充分燃烧,使得炉内运行在连续及高温状态下尽量抑制二噁英的产生及已合成的二噁英充分分解。为保证垃圾燃烧完全,一般采用两段燃烧技术,即一段燃烧区控制供氧量,使其处于缺氧还原区,温度控制在850℃左右,燃烧烟气继续送入二次燃烧室内彻底氧化分解,二次燃烧室内温度较高,通常在1000℃以上。烟气经二次燃烧室高温燃烧后,二噁英物质基本被完全消除[7]。

另外,研究人员发现在使用煤作为助燃剂可以大幅减少二噁英的排放,添加少量劣质高硫煤可以增强这一效果。研究证明,这是煤中的硫对二噁英的生成有抑制作用,主要机理包括:①二氧化硫通过反应消耗活性氯,减少氯化反应;②硫与金属形成硫酸盐,降低其催化活性;③硫与前驱物形成磺化物,降低其形成二噁英的概率[8]。

3.2.2 改进焚烧技术

斯托克焚烧技术,以及利用斯托克装置进行发电和处理二噁英等有害排放物的新工艺,可以更好地减少二噁英的排放[9];高温热解作为处理医疗垃圾的新工艺可以有效的减少二噁英类的生成,也可以应用于一般城市垃圾的处理[10];新型非焚烧医疗废物处置

技术—脉动高压蒸气灭菌-破碎,该技术可以避免传统焚烧技术的二噁英等二次污染问题,设备和运行维护费用均低于焚烧技术,更适合于我国相对小规模医疗废物的处理[6]。

3.3 尾气净化装置进一步去除

3.3.1烟气冷却[11]

二噁英合成的最适温度为250℃~450℃,所以在烟气处理过程中采用急冷技术可以有效抑制二噁英的生成。

3.3.2活性炭吸附法[11]

一部分二噁英会吸附在烟气上随烟气排出,所以采用喷雾状活性炭粉末吸附法,在除去烟气的同时也降低了二噁英的排放量。

3.3.3脱氯

氯是生成二噁英必不可少的物质,可以在烟气中喷洒碱性溶液进行脱氯处理,减少二噁英的生成几率。

近年来出现一种新型高效烟气净化处理技术[12],本技术是一种集急冷、脱氯、活性炭吸附、布袋除尘于一体的烟气闪速冷却净化塔。其工艺流程如下:

烟气→急冷洗涤塔→消石灰喷射器→活性炭喷射器→布袋除尘器→烟道→排放

3.3.4催化降解法[13]

近年来有人在含有二噁英的溶液中加入0.3%的双氧水,二噁英的光解速度大大提高;日本名古屋国家工业研究院利用二氧化钛加紫外光催化分解二噁英,二噁英去除率高达98.6%;Skimobaira在其所设计的设备中将含有二噁英的焚烧炉飞灰在低于250℃的环境里,与O3、半导体物催化剂拌匀,在紫外线照射下,二噁英被分解掉且不会重新生成。

3.3.5其他方法

美国密执安大学化学工程系用多壁碳纳米管清除二噁英的效率较高。在袋式除尘器过滤含尘气体,降低垃圾焚烧后飞灰中的二噁英类物质的浓度,中德环保科技股份公司应用活性碳纤维毡与布袋除尘器组合方式有效去除烟气中的飞灰和气相二噁英类[14]。Remedia?催化过滤系统是“表面过滤”与“催化催化”完美结合的催化氧化技术。该技术能长期稳定高效的去除二噁英[15]。

3.4其他防控措施

3.4.1饮食控制

研究表明,二噁英对人体造成危害主要是通过膳食进入人体,所以要建立科学先进的食品安全检测机制,必须保证二噁英不超过规定的容许量。直接实时分析-质谱(DART-MS)技术具有快速、实时、绿色的优点,可以根据需要改进DART-MS技术,将该方法运用到食品中二噁英类化合物的检测[16]。人们日常生活中要注意膳食平衡,不只吃同类食物,适当增加蔬菜水果和谷物摄入量也可相应减少动物性脂肪摄入量。日本研究表明,膳食纤维和叶绿素有助于体内二噁英的排出[17]。

3.4.2完善监测机制、改进监测方法

参考国外先进的检测技术,根据我国国情建立适合我国环境现状的监测机制,使二噁英的污染状况透明化,为二噁英的治理提供有效的数据。比如,上面提及的直接实时分析-质谱技术,高分辨气相色谱/高分辨质谱定量测定旧机电产品中的二噁英类技术[18],基于多环芳烃受体的纳米金生物条形码二噁英检测技术[19]等,都可以加以改进,应用到二噁英的监测上来。

3.4.3 制定相关法律法规

吸取国外的经验教训,由国家相关部门、行业协同共同制定与我国现状相适应的检测标准,制定相关法律,根据监测部门提供的数据,对严重超标的工厂企业依法取缔,对轻微污染的工厂企业责令整顿,并做到早发现、早报告、早治理。同时,应像防“非典”一样,建立和完善重大环境污染突发事件的及时报告制度和应急机制。我国应把环境污染突发事件和其他突发事件一样纳入法律框架内,切实予以重视,切实做到有法可依、有法必依、执法必严、违法必究。

3.4.4加强宣传教育

增强全民环保意识,普及防护知识,尤其是像二噁英这样对人体及环境危害大、难治理的这种污染物的认识,让人民自觉参与到环保工作中来。

4 总结与展望

随着我国环保标准的严格,相关法律的完善,人们环保意识的兴起,二噁英控制技术必将得到进一步的发展。控制和减少垃圾焚烧炉烟气中二噁英的生成和排放,主要有以下几种措施:①在源头减少能产生二噁英的物质;②减少二噁英在炉内的生成量;③使用有效技术去除已生成的二噁英。

如今,二噁英类环境污染日益显著,人们也开始注意到二噁英的给人类和环境带来的危害。二噁英的生成及降解是当今世界环保工作者研究的重要课题,对二噁英类污染物的治理具有重要意义。但是从目前国内外的研究进展来看,二噁英的生成机制,复合毒性,以及毒理效应尚未明朗,有待深入探讨。由于各地区环境状况不同,经济发展各异,产业结构有别,许多治理方法缺乏普及性,所以研究具有地域特色的二噁英的生成、降解机制,是今后各国环境学者研究的一个重要课题。

参考文献:

[1]高丽荣,郑明辉。二噁英类污染事件为什么会此起彼伏[J]。大学化学,2009,24(1):19-23

[2]张弘,贾志慧,王丽萍。垃圾焚烧中的二噁英污染及其防治措施的研究进展[J]。环境科技,2010,23(2):148-151

[3]厉巍,李静,杜文旭。二噁英的研究进展[J]。北方环境,2011,23(7):70-71

[4]金宜英,田洪海,聂永丰。垃圾焚烧系统中二噁英类形成机理及影响因素[J]。重庆环境科学,2003,25(4):14-16

[5]钟声,赵士彬。焚烧烟气中二噁英的产生与控制[J]。中小企业管理与科技,2008(26):192-193

[6]王堤,吕刚,孙书勇。新型非焚烧医疗废物处置技术—脉动高压蒸气灭菌-破碎[J]。节能与环保,2005(11):20-22.

[7]刘青,黄伟立。生活垃圾焚烧的二噁英污染现状及减排建议[J]。科技资讯,2011,17:137

[8]彭恩泽,李晶晶。二噁英类物质污染及综合防治措施[J]。工业安全与环保,2005,31(2):19-21.

[9]向素平,冯良。垃圾热处理新技术—斯托克焚烧技术[J]。工业炉,2006,28(3):12-15

[10]谢荣,李捷,陆继东。医疗垃圾焚烧技术的探讨[J]。锅炉技术,2009,40(5):73-78

[11]施敏芳,邵开忠。垃圾焚烧烟气净化和二噁英污染物的控制技术[J]。环境科学与技术,2006,29(9):78-79

[12]张记市,谢刚,王华。垃圾焚烧烟气净化处理技术[J]。环境技术,2002,6:26-30

[13]段磊,杨胜科,王文科,冯秀芳。环境中二噁英的浓度水平及其控制技术[J]。地球科学与环境学报,2006,28(2):84-88

[14]陈泽峰,汪建国。垃圾焚烧厂二噁英达标排放探讨[J]。中国环保产业,2010

[15]胡斌,刘小峰,孙宏。Remedia?滤袋-一种去除二噁英的新技术[J]。中国环保产业,2010

[16]廖桢葳,罗明标,李建强,彭真,常阳。食品中二噁英类化合物痕量检测研究进展[J]。食品研究与开发,2011,32(9):231-234

[17]郑丹星,常元勋。为了您和孩子--阻击二噁英[M]。北京:化学工业出版社,1999:45-54

[18]丁罡斗,李翔,张垚,孙毅之,刘汉霞,王星,仲维科。旧机电产品中二噁英类多氯联苯的测定[J]。检验检疫学刊,2009,2:19-21

[19]赵立凡,李媛媛,徐顺清。纳米金生物条形码技术检测痕量二英类化合物[J]。中国生物化学与分子生物学报,2009,25(2):188-192

二恶英对环境的污染及对人类的危害

二恶英对环境的污染及对人类的危害 人类对二恶英的认识 1999 年5 月比利时的二恶英污染事件, 引起全球震惊,美国、加拿大、中国、日本、香港等40 多个国家和地区的政府禁止进口和销售比利时、法国等四国可能受污染的食品。这一事件造成巨大的经济损失和社会影响, 被认为是本世纪最大的化学毒物污染食品事件。 二恶英是一类有机氯化合物的俗称, 美国环保局确认的二恶英类物质有30 种, 其中包括多氯二苯二恶英(PCDDs) 7种、多氯二苯呋喃(PCDFs) 10 种、多氯联苯(PCBs) 13 种, 以 毒性大、致癌作用强的2 , 3 , 7 , 82四氯双苯并二恶英( TCDD)为代表。 50 年代, 人类首次发现二恶英类化合物能引起一系列的健康问题,但那仅仅是在一些生产杀虫剂的生产工人中发现。60~70 年代,以DD T 、六六六为代表的杀虫剂被广泛使用。一种称为“橙剂”的化合物作为落叶剂在越南战场上使用。然而人们很快发现由于这类化合物在环境中能长期存在, 不被破坏,对人类有难以估计的危害。1962 年,美国的卡松女士在她 的《寂静的春天》一书中叙述了这样一个事实: 美国密西根州东兰辛市为了杀灭榆树上的甲虫,用DD T 喷洒杀虫。秋天树叶落在地上, 蠕虫吃了树叶, 来年春天, 树上的知更鸟吃了蠕 虫, 一周之内, 全市的知更鸟几乎全部死光。卡松女士描写的使用有机氯杀虫剂后荒芜、寂静的地球景象震惊了整个世界。这一举动直接导致了美国环境保护局的成立,同时使有机 氯杀虫剂被世界大多数国家禁止生产和使用。80 年代, 人们发现二恶英不仅仅来源于杀虫剂, 而更广泛来源于其它含氯的工业品。例如用氯漂白的纸张、妇女用卫生棉条、婴儿用纸尿布, 以及PVC(聚氯乙烯) 塑料制成的一次性输液用品、儿童玩具、餐具等等。上述工业品使用后的废弃物,作为垃圾被焚烧时产生有强毒性和致癌性的TCDD ,污染空气、水体、土壤和野生动植物,从局部的农场到海洋深处,甚至北极,无所不在。到80 年代末,世界上的每一个人都暴露在二恶英的污染之下。直到90 年代, 二恶英对人类健康和环境的危害才有了较明确的定论。1994 年美国环保局EPA 发布了人们期待已久的“二恶英再评估”报告( EPA 1994a ,1994b) 。这一报告的起源是由于美国的化学和造纸工业认为随着有机氯杀虫剂被禁用,二恶英通常的污染源已经减少,因而要求政府修改、调低对二恶英的毒性和污染的评估。然而与化学和造纸业的观点相反, EPA 的重新评估报告认为二恶英能引起公众健康长时间、大范围的损害。新的毒理和内分泌学研究证明,二恶英除对人和动物具有致癌作用外,极小剂量的二恶英也可能造成激素分泌的紊乱, 影响青春期发育和引起神经、免疫系统的损害。全球性的二恶英污染 二恶英类化合物由于两个方面的原因造成对环境的特殊影响: 首先,二恶英具有超常的物理、化学、生物学降解期,需要几十年甚至更长时间(Paustenbach et al . , 1992 ; Webster and Commoner ,1994) 由于在环境中长时间的积累,结果是能在水体沉淀物和食物链中达到非常高的含量水平。由于它们非常长的半衰期以及能通过大气长距离的转移, 因此可以说二恶 英无处不在(Schecter ,1991 ;Brzuzy and Hites ,1996) 。例如,在加拿大北极地区, 由于工业污染和食物链的传递作用, 出现二恶英、呋喃类、多氯联苯(PBCs) 的最高含量的机体。其次, 二恶英是高脂溶性而非水溶性, 可在脂肪组织中生物积累, 在食物链上浓度不断上升。在食物链的高层, 高二恶英蓄积的机体中的浓度高出周围空气、土壤和沉淀物中含量几百万倍( Environment Canada ,1992) 。二恶英同样在人体组织中蓄积,在人体的半衰期是5~10 年( EPA ,1994) 。二恶英对人体的污染主要通过食物链, 几乎所有的人均由于食物而受到二恶英污染, 二恶英主要污染鱼、肉、蛋及奶制品。作为食物链的最顶端,人体的污染是相当严重的。人体脂肪组织、血液和母乳常常受到二恶英类化合物的污染(Schecter ,1991) 。人体二恶英的另一个污染途径是通过母婴传递, 胎儿通过胎盘从母体获得, 而婴儿通过母乳受到污染(Schecter ,1991) 。在美国, 一个婴儿每天的获得量是成人平均水平的10~20 倍。所以婴儿在生命的第一年中将得到他一生中所得到的总量的10 %( EPA ,1994a) 。借助高灵敏度的仪器, 正常人体中可测得一定量的二恶英, 只是含量非常低, 一般血清中其质量分数的数量级为10 - 12 。到目前为止,人类TCDD 中毒并没有针对性的解毒药物。由于TCDD 的蓄积性,人体的排泄速度很慢,目前也没有有效的促进其排泄的手段。 二恶英的主要来源有如下两个方面。在美国, 根据EPA 的调查, 90 %的二恶英主要来源于含氯。

二恶英

二噁英 摘要:介绍了什么是二噁英,总结了二噁英的性质,结构。介绍了二噁英的来源和产生机理,介绍了二噁英的污染现状以及分布状况,介绍了二噁英污染的修复技术,介绍了二噁英的排放标准和质量标准,介绍了二噁英对人体的危害,最后介绍了如何抑制二噁英的产生和如何处理二噁英。 一、二噁英的介绍 1、通常所说的二噁英是指二噁英类化合物,由2个或1个氧原子联接2个被氯原子取代的苯环而构成的芳香族有机化合物的统称,包括多氯二苯并-对-二噁英(Polychlorinated Dibenzopdioxins,简称PCDDs)和多氯二苯并呋喃(Polychlorinated Dibenzopfuran,简称PCDF,复数表示为PCDFs)。由于其周围能结合1~8个氯原子,根据氯的个数和置换位置,二噁英总共存在75种异构体。聚合氯代二苯并呋喃(PCDFs)具有和PCDDs类似的性质,它由两个苯环和1个氧结合而成,由于其周围同样能结合1~8个氯原子,所以总共存在135种异构体。二噁英分子结构见图1。我们通常所说的二噁英类主要是指含有4个氯原子以上的PCDDs、PCDFs及Co-PCB,在常温下为无色晶体状态,低温下化学性质很稳定,但是温度超过750℃时,容易分解。二噁英熔点高、沸点高,不仅对酸碱,而且在氧化还原作用下都很稳定。在紫外线的照射下也容易被分解,而在生物作用下则分解得很缓慢,极易被土壤吸附,在环境中常常对大气、土壤、河流、湖泊、海洋等造成严重污染。在水中的溶解度非常低,虽然显示亲油性,但在有机溶剂中的溶解度仍然较低,极易溶于脂肪,容易在人体内积累。二噁英最大的危害是具有致畸、致癌、致突变性。二噁英是目前已经认识的环境荷尔蒙中毒性最大的一种,干扰其内分泌系统和生殖功能系统,影响后代的生存和繁衍。二噁英持久性较强,在环境中持久存在并不断富集,一旦摄入生物体就很难分解或排出,其潜伏期有可能影响到人类的子孙后代。【3】 2、二噁英的结构、性质、毒性。二噁英是一类化合物的总称,其中包含75种多氯二苯并二噁英(PolyChlorinatedDbenzo-Diox-inx,PCDDs)、135种多氯二苯并呋喃

二恶英检测分析方法比较

二恶英检测方法比较 二恶英化合物(简称二恶英)是剧毒有机污染物。人体长期低剂量接触,会导致癌症、雌性化、胎儿畸形、糖尿病等疾病。自比利时发生二恶英食品污染事件和《POPs公约》在瑞典斯德哥尔摩签署以来,二恶英检测与污染防治在国际上受到越来越广泛的关注[1]。二恶英检测属超痕量、多组分检测,对特异性、选择性和灵敏度要求极高,被认为是当代化学分析领域的一大难点。 美国较早开展二恶英检测研究,现已制定出一系列的检测标准。欧洲和日本也相继研究和制定了二恶英检测标准方法。我国目前正处于二恶英基础研究的起步阶段,尚未提出相关检测标准和方法,因此亟待建立符合我国国情的二恶英检测方法和体系。 2 二恶英检测方法 2.1化学仪器分析方法 在200余种异构体中分离出17种有明显毒性的二恶英,分别测定其浓度或含量。将浓度或含量乘以每种二恶英的毒性因子(TEF)就可以得到总毒性当量(TEQ)。该方法的一般程序包括采样、提取、净化、定性定量。 2.1.1 采样 样品的取样量由样品类型、污染水平和方法的检测限而定。各国对采样程序都单独编制了标准方法。 2.1.2 提取 为了测定提取净化效率和校正分析丢失,首先加入17种13C-PCDD/Fs采样内标和37Cl-2,3,7,8-TCDD净化内标。溶剂选择和提取步骤取决于样品类型和净化方法,如在处理废弃物焚烧飞灰时溶剂选取石油醚/甲苯/二氯甲苯,在处理脂肪样品时溶剂选取二氯甲烷/己烷。提取步骤一般包括溶解、振荡、混匀和萃取。索氏萃取是传统的提取方法,广泛应用于检测飞灰、鱼、牛乳和脂肪组织样品中的二恶英。目前,超临界流体萃取装置(SFE)、加压加热型的高速溶剂萃取装置(ASE)和微波萃取方法也用于提取样品中的二恶英,并有大量对比实验证明了这些方法的有效性[3,4]。 2.1.3 净化 为了除去大量干扰物质,目前大多采用色谱法进行净化。色谱法通常将分配处理柱和色谱柱串联使用,包括酸或碱处理、硅胶柱、氧化铝柱、佛罗里柱和活性炭柱的二次净化,具体操作因样品类型和基质性质而异。目前,一些实验室正在开发一次性多层柱(如微型氧化铝柱)和HPLC净化方法来简化净化过程。净化后要加入15种13C-PCDD/Fs定量内标和2个13C 标记的用于确定色谱保留时间的内标[5]。 2.1.4 定性定量 通常定性检测采用2类不同极性的色谱柱。首先用非极性或弱极性固定相将氯原子取代数相同的二恶英化合物分为1组,然后用极性固定相分离其中的异构体,最后通过对17 种标记的和未标记的标准样品实施比较,获取保留时间。定量检测主要采用选择离子监测技术(SIM),以13C稳定同位素为内标,根据测量目的用质量校正程序校正质谱模式、分辨率

二恶英的种类、产生机理及消除方法

二恶英的种类、产生机理及消除方法 一、种类 氯代二苯并二恶英(PCDDS)和氯代二苯并呋喃(PCDFS)通常总称为氯代二恶英或二恶英类。它们是三环氯代芳香化合物,具有相似的物化性质和生物效应。主要来源于焚烧和化工生产,前者包括氯代有机物或无机物的热反应,如城市废弃物、医院废弃物及化学废弃物的焚烧,钢铁和某些金属冶炼以及汽车尾气排放等;后者主要来源于氯酚、氯苯、多氯联苯及氯代苯氧乙酸除草剂等生产过程、制浆造纸中的氯化漂白及其它工业生产中。其75个PCDD和135个PCDF同类物中,只是侧位(2,3,7,8-位)被氯取代的那些化合物才具有很强的毒性,尤以2,3,7,8-四氯二苯并二恶英(TCDD)为甚,被认为是最毒的有机化合物。 二、二恶英的生成机理 二恶英的生成机理特别是城市废弃物焚烧过程中的生成机理,已成为二恶英研究内容中的重要组成部分。人们普遍认为PCDD/FS既可由碳和无机氯化物在金属催化剂存在的条件下生成,也可由PCDD/FS 的前生体有机氯化物产生。从目前的研究来看,在城市废弃物焚烧过程中二恶英的生成有以下几种原因:

1.焚烧了含有微量PCDD垃圾,在排出废气中含有PCDD。 2.在有两种或多种有机氯化物(如氯酚)存在的情况下,由于二聚作用,在适当的温度和氧气条件下就会结合成PCDD。 3.多氯化二酚、多氯联苯等一类化合物的不完全燃烧生成PCDD。 4.由于氯及氯化物的存在,破坏了碳氢化合物(芳香族)的基本结构,而与木质素,如木材、蔬菜等废弃物相结合,促使生成PCDD、PCDF(多氯二苯呋喃)的化合物。 一般认为在低于900℃焚烧PCB时会产生二恶英,而二恶英在700℃以下对热稳定,高温时开始分解。另外在其它领域二恶英的生成有以下两种: (一)六六六热解生产中易产生二恶英 其六六六热解生产产生二恶英的机理又有以下两种: 1.Fe和FeCl3存在下二恶英的生成

生活垃圾焚烧中二恶英的产生和控制|垃圾焚烧产生的二恶英

生活垃圾焚烧中二恶英的产生和控制 班级环境08本(一)班姓名彭申勇学号80813024 摘要: 采用焚烧法处理城市生活垃圾, 在我国正得到广泛的推广应用, 但焚烧也带来二恶英污染, 它严重威胁着人类的健康, 世界各国正在采取积极措施控制。文章介绍了二恶英的结构、性质和形成机理, 从焚烧前、焚烧中、焚烧后三个方面评述了国内外近年来所发展的对二恶英污染物的控制技术。 关键词: 城市生活垃圾; 焚烧; 二恶英; 控制 1 前言 随着我国城市人口不断增加, 城市生活垃圾日益增多, 人均日产量为2kg 左右, 并且以每年7%的速度递增, 2004年我国城市垃圾清运量已达14857万t[1]。目前我国城市垃圾无害化处理不足50%, 累积堆存量60亿t, 占地2万hm2; 这些垃圾裸露堆埋, 污染水质、土壤、大气, 传播疾病、威胁人类的生命安全。因此,垃圾无害化处理已成为社会普遍关注的问题。我国城市垃圾处理逐渐淘汰堆埋法而采用具有显著减量化、无害化、稳定化和资源化的垃圾焚烧处理技术。然而, 垃圾焚烧易带来二次污染, 其中, 危害严重的是二恶英污染。二恶英是迄今为止人类无意识合成的毒性最强的副产品,它的理化性质稳定,很难自然降解,对人体健康和生态环境存在着巨大的安全隐患。固体废物焚烧,是其主要产生源之一,据统计,其贡献率可达到50%-80%。由于我国在二恶英控制技术方面的研究工作起步较晚,因此在二恶英控制方面面临着严峻的形式,从技术的层面而言,主要存在着现有焚烧设施技术水平低和缺乏成熟有效的控制技术,难以满足标准的要求两个方面的问题。针对上情况,本文结合近年来国内外的最新研究成果,通过了解和掌握二恶英的合成机制,提出了二恶英污染防治的全过程控制措施。 2 二恶英的危害 生物化学研究认为: 二恶英具有类似人体激素的作用, 称为“环境激素”。二恶英可以通过细胞膜进入细胞内,通过调控基因活性,调节机体的生长和自我调节过程。任何一个二恶英类分子能与细胞内的特殊蛋白受体结合成复合物, 这一复合物能进入细胞核,作用于DNA ,影响某些基因的表达。这一变化的结果可激发一连串的生物化学反应, 包括激素的合成和分泌,还影响激素受体、酶、生长因子和其它物质。然而,二恶英不像天然激素, 它不被代谢和降解, 对受体有高亲合力, 因此非常小剂量的“错误信号”能对激素调控产生极大的影响作用, 包括影响细胞分裂, 组织再生, 生长发育、代谢和免疫功能。因此,二恶英被称为“毒素传递素”,影响和危害正常人体系统,如内分泌、免疫、神经系统等。二恶英主要污染空气、土壤和水体, 进而污染动物、植物和水生生物。人主要是通过空气、饮水、食物而受害。据调查, 人类90% 以上的受害来自于膳食, 其中动物性食品是主要来源。二恶英的生物富集作用非常强, 由于二恶英从土壤→植物→动物的逐级富集, 愈是高级的生物体内含量愈高, 所以人类受危害程度最大, 而人体没有分解二恶英的能力, 所以人体一旦摄入, 就不易排出。最新研究表明: 人体摄入即使在很微量的情况下, 长期摄取也会引起癌症、皮肤病、肝肾疾病、生殖障碍、畸形等顽症。日本学者研究发现, 用二恶英含量较高的乳汁喂养婴儿, 往往会造成婴儿甲状腺激素含量过低, 影响婴儿智力发育。 3 二恶英的产生和排放

二恶英的执行标准

一、执行标准现状 1. 国家标准是《危险废物焚烧污染控制标准(GB18484-2001)》,二噁英排放标准是0.5 ng TEQ/Nm3; 《生活垃圾焚烧污染控制标准(GB18485-2001)》二噁英排放标准是1.0 ng TEQ/Nm3;2. 欧盟标准是《DIRECTIVE 2000/76/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 December 2000 on the incineration of waste DIRECTIVE》, 二噁英排放标准是0.1 ng TEQ/Nm3; 3. 北京市地方标准是《生活垃圾焚烧大气污染物排放标准(DB11/502-2007)》、 《危险废物焚烧大气污染物排放标准(DB11/503-2007)》,二噁英排放标准是0.1 ng TEQ/Nm3; 4. 上海市地方标准是《生活垃圾焚烧大气污染物排放标准(DB31/ xxxx—2013)》, 二噁英排放标准是0.1 ng TEQ/Nm3;该标准已出意见稿,尚未敲定实施。 5. 广州标准正在制定当中,其它省份、直辖市未出台该类标准。环测评定时,二噁英依据标准,根据垃圾焚烧单位所在在而定,首先依据地方标准,如无地方标准则依据国家标准。 二、二噁英排放标准是0.1 ng TEQ/Nm3依据 通常评价二噁英时采用每日可耐受摄入量(TDI)的概念,即从人体健康的角度出发,把人一生所能耐受的二噁英总量分解为1日/kg体重所能摄取的量。2001年世界卫生组织根据所取得的最新毒理学研究成果,尤其是对神经系统和内分泌系统的毒性效应研究成果,对外公布的二噁英人体安全摄入量的标准TDI值为1~4 pg/(kg?d)(1 pg=10-12 g)。按每人生存70年,对人体健康无明显危害的摄入量为:成人体重70公斤体重算,每月摄入量不大于4.9 ng,每年摄入量不大于59 ng,儿童按15公斤体重算,每年摄入量不大于10 ng。1997年日本制定了“特别行动法”,当年把烟气排放浓度高于80 ng TEQ/Nm3的烧炉立即关闭,对焚烧炉周边饮用水源、农作物、食品、人体健康进行了深入细致的研究工作,研究成果报告多达3300项。这些报告中提到,当二噁英浓度在0.5~0.1 ng TEQ/Nm3之间时,未发现焚烧炉烟气中“二噁英”的排放对焚烧炉周边饮用水源、农作物、食品和人体健康造成的危害。 欧盟对人体健康的要求比较高,制定标准也比较严格,将二噁英排放标准定为0.1 ng TEQ/Nm3是目前世界上学术界无争议的、无害的、最安全的标准。2002年我国制定《生活垃圾焚烧污染控制标准》时,结合国内外的研究成果和国内焚烧水平,垃圾焚烧烟气二噁英排放浓度选用了公认的安全值1.0ng TEQ/Nm3。目前,北京、上海新建焚烧厂采用欧盟排放标准。 三、我国垃圾焚烧二噁英排放现状 来自中国科学院大连化学物理研究所的陈吉平研究员带领的研究团队历时一年,对中国19个市政生活垃圾焚烧炉的二噁英排放进行检测和分析后发现,19个企业的二噁英物质的排放量变化在0.042~2.461 ng TEQ/Nm3间,平均值为0.423 ng TEQ/Nm3,远高于欧盟标准。在受调查的19个企业中,16个企业的二噁英排放达到中国《生活垃圾焚烧污染控制标准(GB 18485-2001)》,即不超过1.0 ng TEQ/Nm3,所占比率为84%,其中6个企业的二噁英排放达到欧盟排放标准。还有3家企业二噁英排放超标。按照目前国内焚烧厂有300家计算,二噁英排放符合欧盟标准的有95家,仅符合国标的有158家,超标的有47家。

垃圾焚烧发电 炉排炉与气化燃烧技术的对比

MBRE垃圾再生燃料气化发电技术 与传统技术的对比 在垃圾处理/焚烧发电的技术发展进程中,炉排炉技术、循环流化床技术均为原生垃圾直接焚烧,属于第二代技术。 第一代是垃圾填埋处理; 第二代是原生垃圾焚烧处理: 垃圾不经分选直接焚烧导致焚烧不完全,产生严重次生污染问题,为此德国于2000年颁布了《德国生活垃圾处理技术条例》,自2005年起全面禁止直接焚烧原生垃圾。

第三代是RDF衍生燃料发电技术: 德国率先开发了第三代垃圾处理技术:将垃圾进行分选处理,剔除不可燃杂质并充分提取出可回收资源,将垃圾制成再生能源燃料RDF(绿色煤炭),实现高效、清洁能源利用。 第四代技术-MBRE气化湍流燃烧技术 技术核心是以无毒无害的微生物技术对自动分拣后的垃圾进行无害燃料化处理,制作成衍生燃料RDF,然后用先进的美国RDF气化湍流燃烧锅炉进行清洁气相燃烧发电,垃圾的减量化达到90%以上。 一、炉排炉 炉排炉的技术基础是煤燃烧领域中的链条炉,针对垃圾的特点加以改进,适应了垃圾处理的技术要求。炉排炉的优点是对垃圾质量和成分的要求较低,前处理简单,飞灰量较少,技术成熟且使用广泛。其不足之处是: 1.二恶英的产生温度在360℃~820℃之间,在炉排炉开车和停炉过程中 炉温不可避免地要经过二恶英产生的温度区间,由于炉排炉开停车时间较长,所以这一过程二恶英排放量较大;同时,因炉排炉内需要机械装置,限制了炉排炉内温度的进一步提升,导致炉排炉持续在二恶英产生的温度区间附近工作,在燃烧过程控制不完全的情况下,二恶英将会大量产生;

2.由于垃圾成份复杂,普通炉排维持在整个炉排内均匀移动,均匀完全 地燃烧是困难的,容易导致垃圾燃烧不充分; 3.炉排难以适应水份变动范围较宽的垃圾焚烧,因为水份较高的垃圾需 较宽的干燥区,这给水份高的垃圾完全燃烧带来困难; 4.难以处理垃圾渗滤液,需设置专门污水处理设施; 5.由于垃圾未经分拣,且成分复杂,燃烧不充分,因此产生大量不可资 源化利用的炉渣,需要进行二次填埋; 6.炉排炉的炉排不仅制造复杂,成本高,而且体积庞大,占地面积大, 因而不适合于中小城镇垃圾处理量不十分大的场合。 二、RDF(衍生燃料)气相燃烧炉 阿尔法环能公司的MBRE工艺是利用全自动分拣技术和微生物技术将垃圾变成高热值的衍生燃料(RDF 或称绿色煤炭),然后利用RDF气相燃烧锅炉进行气相焚烧发电。 RDF(垃圾衍生燃料)气相燃烧锅炉是我公司利用美国气化湍流燃烧技术,由中国济南锅炉集团代工制造,并提供全面质量保证。 工艺描述:RDF(垃圾衍生燃料)进入无氧料仓,输入RDF气化燃烧炉中,进入储热段,在550℃~750℃温度域和缺氧条件下气化,可燃气体上升至分级燃烧段,将燃烧温度提升至980℃,热烟气进入余热锅炉产生中温中压蒸汽,蒸汽轮机发电机组发电。炉膛温度≥980℃,烟气高温停留时间≥4S,实现充分湍流及燃烧,满足《生活垃圾焚烧焚烧污染控制标准》

垃圾焚烧中二恶英的产生及控制

垃圾焚烧与二恶英的产生及控制 摘要:本文阐述了二恶英的毒性、结构、性质、来源。二恶英的生成主要有二条途径,第一条途径是从与二恶英结构关系不紧密的,碳水化合物开始而生成的,第二条途径是从具有与二恶英结构相近的氯化苯酚等而生成的。垃圾焚烧中影响二恶英生成的因素有粒子状物质、催化剂(如铜、铁、镍、锌等具有催化剂的作用)、氯、碳、焚烧炉中温度(250-70012)。控制垃圾焚烧中二恶英生成的对策有垃圾焚烧前的分类处理、二恶英生成抑制、二恶英排放抑制。关键词:垃圾焚烧;二恶英;控制技术 1 二恶英的性质、结构及来源二恶英主要是由于人类的活动而产生的一种最毒 的物质,其毒性是氰化钾的1000倍,1g二恶英可使10000人致死,此外还具有致癌性、致奇性、生殖毒性等慢性毒性。二恶英是多氯代二苯二恶英(PCDDs)和多氯代二苯呋喃(PCDFs)的总称,根据其所含氯原子的数量和取代位置的不同,PCDDs有75种同系物,PCDFs有135种同系物,其毒性亦有极大的差异。毒性最强的是2,3,7,8一四氯二苯二恶英(2,3,7,8T4CDD),其毒性当量系数(Toxic EquivalencyFactor:11、F)为1。此外的二恶英同系物的毒性当量系数均小于1。因此,计算二恶英的毒性常以二恶英类同系物总的毒性当量(2,3,7,8一T4CDD Equiva—lent Quantity:11、Q)表示,11、Q=Σ二恶英同系物浓 二恶英为白色结晶体,强氧化剂,耐酸、耐碱,化学性质极其稳定,其分解需800"C以上的温度(高速分解需1300"(2以上),易溶于有机溶剂难溶于水(对水的溶解度为0.2ng/L)。自然界中,二恶英来源如下,一是垃圾焚烧过程中产生的,二是有机氯化学物质(如2,4一_D)合成时的副产物,三是造纸工厂在纸浆的氯气漂白过程中产生的和炼钢过程中产生的,四是自然产生的,如森林火灾。其中,垃圾焚烧是最主要的来源,而自然产生的二恶英,浓度极低,不会影响人的健康。许多国家对二恶英在空气、水体、土壤的浓度制定了控制标准,超过控制标准的统称为被二恶英污染。如El本环境厅发布的2001年开始执行的二恶英控制标准是,空气为0.6pg TEQ/m3以下,水为lpg 11、Q几以下,土壤1000pg 11、Q 以下。我国的二恶英控制标准尚未出台。 2 垃圾焚烧与二恶英的产生垃圾焚烧可使垃圾减量化,减量至原量的10%左 右,而且焚烧垃圾产生的蒸汽可用于发电而实现资源化,可谓一举两得。因此,日本、欧美等发达国家建立了大量的垃圾焚烧工厂,但是垃圾焚烧时会产生相当数量的二恶英。如日本全国一年因垃圾焚烧而排放出的二恶英达2500g,占全国二恶英排放量的一半。这对我国推行垃圾焚烧处置法时,必须给予高度地重视,以减少二恶英的污染。 2.1 二恶英的生成机理 二恶英的生成机理,通过各国科学家近10年的研究表明,主要有如下二条生成途径。 第一条途径是,从与二恶英结构关系不紧密的,碳水化合物开始,而生成的。二恶英的生成其碳、氯、氧、金属是必要的,适合温度是250~35013,而300*(3左右为其最适合,垃圾焚烧时产生的飞灰,其所含碳氧化物而分离成为具有二恶英结构的物质,而生成二恶英。第二条途径是,从具有与二恶英结构相近的氯化苯酚等而生成的。在垃圾焚烧物中,300~700*(3的温度条件下,由氯化苯酚等而生成二恶英。 2.2 影响二恶英生成的要因 2.2.1 粒子状物质 垃圾焚烧炉的排放气体中,垃圾中的无机物以飞灰、煤烟等粒子状物质而存在。这些粒子状物质是二恶英生成的重要条件。粒状物质中的金属、碳对二恶 英生成反应起着非常重要的作用,而且,生成的二恶英在排放气体中吸附粒子状物质,凝缩成为微小粒子。 2.2.2 催化剂 飞灰中的金属或金属氧化物是作为催化剂参与二恶英的生成反应。其中:如铜的氯化物

二恶英

什么是“二恶英”? 二恶英(DIOXIN)是由两组共210种氯代三环芳烃类化合物组成,包括75种多氯代二苯并二恶英和135种多氯代二苯并呋喃,可经皮肤、粘膜、呼吸道、消化道进入体内,有致癌、致畸形及生殖毒性,可造成免疫力下降、内分泌紊乱,高浓度二恶英可引起人的肝、肾损伤,变应性皮炎及出血。研究表明,暴露于高浓度二恶英的工人,其癌症死亡率较普通人高百分之十六。 二恶英 二恶英(Dioxin) 二恶英是一种无色无味的脂溶性物质,二恶英实际上是一个简称, 它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类 物或异构体的两大类有机化合物,全称分别叫多氯二苯并-对-二恶英(简 称PCDDs)和多氯二苯并呋喃(简称PCDFs),我国的环境标准中把 它们统称为二恶英类。多氯二苯并-对-二恶英(PCDDs)由2个氧原子 联结2个被氯原子取代的苯环;为多氯二苯并呋喃(PCDFs)由1个氧 原子联结2个被氯原子取代的苯环。每个苯环上都可以取代1~4个氯 原子,从而形成众多的异构体,其中PCDDs有75种异构体,PCDFs 有135种异构体。所以,二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累。自然界的微生物和水解作用对二恶英的分子结构影响较小,因此,环境中的二恶英很难自然降解消除。它包括210种化合物。它的毒性十分大,是氰化物的130倍、砒霜的900倍,有“世纪之毒”之称。国际癌症研究中心已将其列为人类一级致癌物。环保专家称,“二恶英”,常以微小的颗粒存在于大气、土壤和水中,主要的污染源是化工冶金工业、垃圾焚烧、造纸以及生产杀虫剂等产业。日常生活所用的胶袋,PVC(聚氯乙烯)软胶等物都含有氯,燃烧这些物品时便会释放出二恶英,悬浮于空气中。 二恶英的毒性因氯原子的取代位置不同而有差异,故在环境健康危险度评价中用他们的含量乘以等效毒性系数(toxic equivalency factors,TEFs)得到等效毒性量(toxic equivalent,TEQ)。二恶英中以2,3,7,8-四氯-二苯并-对-二恶英(2,3,7,8-tetrachlorodibenzo-p-dioxin,2,3,7,8-TCDD)的毒性最强,研究也最多。 (一)来源 大气环境中的二恶英90%来源于城市和工业垃圾焚烧。含铅汽油、煤、防腐处理过的木材以及石油产品、各种废弃物特别是医疗废弃物在燃烧温度低于300-400℃时容易产生二恶英。聚氯乙烯塑料、纸张、氯气以及某些农药的生产环节、钢铁冶炼、催化剂高温氯气活化等过程都可向环境中释放二恶英。二恶英还作为杂质存在于一些农药产品如五氯酚、2,4,5-T等中。城市工业垃圾焚烧过程中二恶英的形成机制仍在研究之中。目前认为主要有三种途径:1.在对氯乙烯等含氯塑料的焚烧过程中,焚烧温度低于800℃,含氯垃圾不完全燃烧,极易生成二恶英。燃烧后形成氯苯,后者成为二恶英合成的前体;2.其他含氯、含碳物质如纸张、木制品、食物残渣等经过铜、钴等金属离子的催化作用不经氯苯生成二恶英。3.在制造包括农药在内的化学物质,尤其是氯系化学物质,象杀虫剂、除草剂、木材防腐剂、落叶剂(美军用于越战)、多氯联苯等产品的过程中派生。 大气中的二恶英浓度一般很低。与农村相比,城市、工业区或离污染源较近区域的大气中含有较高浓度的 二恶英。一般人群通过呼吸途径暴露的二恶英量是很少的,即估计为经消化道摄入量的1%左右,约为 0.03pgTEQ(kg?d)。在一些特殊情况下,经呼吸途径暴露的二恶英量也是不容忽视的。有调查显示,垃圾焚烧从业人员血中的二恶英含量为806pgTEQ/L,是正常人群水平的40倍左右。排放到大气环境中的二恶英可以吸附在颗粒物上,沉降到水体和土壤,然后通过食物链的富集作用进入人体。食物是人体内二恶英的主要来源。经胎盘和哺乳可以造成胎儿和婴幼儿的二恶英暴露。经常接触的人更容易得癌症。 (二)健康影响 二恶英是环境内分泌干扰物的代表。它们能干扰机体的内分泌,产生广泛的健康影响。二恶英能引起雌性动物卵巢功能障碍,抑制雌激素的作用,使雌性动物不孕、胎仔减少、流产等。低剂量的二恶英能使胎鼠产生腭裂和肾盂积水。给予二恶英的雄性动物会出现精细胞减少、成熟精子退化、雄性动物雌性化等。流行病学研究发现,在生产中接触2,3,7,8-TCDD的男性工人血清睾酮水平降低、促卵泡激素和黄体激素增加,提示它可能有抗雄激素(antiandrogen)和使男性雌性化的作用。

二恶英的产生途径

1. 二恶英的产生途径 4.在焚烧过程和化学反应中二恶英是由苯环与氧、氯等组成的芳香族化合物,其中毒性最 强的为2、3、7、8四氯联苯(2、3、7、8TCDD)。 二恶英在自然界中不存在, 完全由人为污染造成。其来源包括:(1)苯酚类的除草剂的生产过程和燃烧过程及对用这种除草剂喷洒过的植物的燃烧过程;(2)造纸厂在纸浆的氯气漂白过程中漂白废液;(3)焚烧含有石油产品、含氯塑料(聚氯乙烯)、无氯塑料(聚苯乙烯)、纤维素、木质素、煤炭等垃圾物;(4)含铅汽油的使用;(5)烟草的燃烧;(6)在农药生产和氯气生产过程中以副产品或杂质形式产生二恶英;(7)灭螺用的五氯酚钠含有痕量二恶英。通过近几年的研究发现,城市垃圾的不完全燃烧是城市二恶英的主要来源。 2. 二恶英的形成机理 城市垃圾焚烧炉中二恶英有两种成因:一是二恶英类物质混入垃圾,二是焚烧炉在燃烧垃圾过程中产生二恶英,其机理相当复杂。有关研究认为,焚烧垃圾时,二恶英的形成机理如下: 2.1. 高温合成:即高温气相生成PCDD。 在垃圾进入焚烧炉内初期干燥阶段,除水分外含碳氢成分的低沸点有机物挥发后与空气中的氧反应生成水和二氧化碳,形成暂时缺氧状况,使部分有机物同氯化氢(HCl)反应,生成PCDD。焚烧技术标准中是根据一氧化碳浓度判断供氧不足状况的。 2.2. 从头合成:在低温(250~350℃)条件下大分子碳(残碳)与飞灰基质中的有机或无机氯生成PCDD。残碳氧化时,有65%~75%转变为一氧化碳,约1%转为氯苯转变为PCDD,飞灰中碳的气化率越高,PCDD的生成量也越大。 2.3. 前驱物合成:不完全燃烧及飞灰表面的不均匀催化反应可形成多种有机气相前驱物,如多氯苯酚和二苯醚,再由这些前驱物生成PCDD。高温燃烧产生含铝硅酸盐的原始飞灰中含有不挥发过渡金属和残碳。飞灰颗粒形成了大的吸附表面。飞灰颗粒在出炉膛冷却的同时,颗粒表面上的不完全燃烧产物之间,不完全燃烧产物与其它前驱物之间发生多种表面反应,另一方面与不挥发金属及其盐发生多种缩合反应,生成表面活性氯化物,再经过多种复杂的有机反应生成吸附在飞灰颗粒表面上的PCDD。焚烧垃圾温度为750℃且氧过剩时最易生成不完全燃烧物。 具体哪一种机理起主导作用取决于炉型、工作状态和燃烧条件。生成PCDD的前提可以概括为:存在有机或无机氯,存在氧,存在过渡金属阳离子作为催化剂。 发生1952年伦敦烟雾事件的直接原因是燃煤产生的二氧化硫和粉尘污染,间接原因是开始于12月4日的逆温层所造成的大气污染物蓄积。燃煤产生的粉尘表面会大量吸附水,成为形成烟雾的凝聚核,这样便形成了浓雾。另外燃煤粉尘中含有三氧化二

二恶英的污染问题及治理技术

二恶英的污染问题及治理技术 朱蕾 (吉林大学,吉林长春 130000) Email:laiyinyu0416@https://www.wendangku.net/doc/5313820925.html, 摘要:人类在享受工业化所带来的便利的同时,越来越受到它所引起的环境问题的困扰。二恶英作为一类持久性有机污染物对人类造成的危害是潜在的,持久的。如何把握其特性,加强防治工作力度是当今国际社会关注的课题。 关键词:二恶英危害治理 1 二恶英污染的来源及特点 1.1 二恶英的定义 随着人类生活水平的提高,科学技术的进步,环境问题也日益突出。如今,以化学物质为起源的陆地源污染物正向人类生命起源的海洋扩展,以二恶英为代表的持久性有机污染物的全球化污染引起了国际社会的高度重视,成为近年最重要的国际化环境问题之一。把握其污染的发生源信息,实际现状以及以这些资料为基础建立有效的污染对策的立法立案及实施等成为了当前国际社会最为紧迫的课题。 二恶英[1]是一类来源广、毒性强,稳定性高的有机污染物。它是多氯二苯并二恶英和多氯二苯并呋喃的统称,前者75种,后者135种,共210个同族体。这些化合物大部分具有强烈致癌、致畸、致突变的特点。其中,2,3,7,8-四氯代二苯并二恶英(2,3,7,8—TCDD)是目前世界上已知的一级致癌物中毒性最强的有毒化合物, 其毒性相当于氰化钾的50~100倍。 由于二恶英的稳定性及易溶于油脂的特性,它们一旦进入人体便难以排出,长期积累,将会永久破坏人体的免疫系统及扰乱人体的激素分泌,对人体构成重大伤害。研究表明,人体中的二恶英有95%来自饮食。而在通过饮食进入人体的二恶英中,有26.2%是通过海产品摄入的,20.2%是通过黄油及其他脂类制品摄入的,19.8%是通过奶制品摄入的,15%是通过肉类食品摄入的,9.3%是通过水果和蔬菜摄入的,6.1%是通过蛋类或其制品摄入的,还有3.4%是通过粮食摄入的。 1.2二恶英的来源 二恶英不是天然产物,而是含氯的碳氢化合物在燃烧过程中形成的。而二恶英除了用于实验室化学分析的生产外,并非人们有意生产的产物。它通常在燃烧和某些化工生产过程中以副产品形式产生。其来源主要有以下几个方面: 1.2.1化工业生产过程:二恶英类持久性有机污染物作为伴生物多产于杀虫剂、防腐剂、除草剂等农药的副产品中。由于二恶英可通过氯化自然界存在的酚类物质而形成,因此在造纸工业中也会产生二恶英,并且存在于纸张和生产废弃物中。此外,在冶炼、焚烧、合成、热处理等工业生产过程也会有二恶英产生。

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二恶英的产生和控制

生活垃圾焚烧厂中二噁英的产生和控制 1.前言 生活垃圾焚烧厂烟气中的二恶英是近几年来世界各国所普遍关心的问题,自1999年比利时发生动物饲料二恶英污染事件后,二恶英更是倍受世人所关注,一时成为全球范围的热点。经过这一事件,二恶英在我国也是家喻户晓,闻毒色变。可以这样说,在今天研究生活垃圾焚烧厂烟气中二恶英的产生机理和控制措施,比以往任何时候都显得必要和重要。要建设生活垃圾焚烧厂,我们就不能也无法回避二恶英。 2.二恶英的结构和特性 2.1二恶英的分子结构 二恶英(DIOXIN,简称为DXN)即PolyChlorinatedDibenzo-P-Dioxins,略写为PCDDs。简单地说PCDDs是两个苯核由两个氧原子结合,而苯核中的一部分氢原子被氯原子取代后所产生,根据氯原子的数量和位置而异,共有75种物质,其中毒性最大的为2,3,7,8—四氯二苯并二恶英TCDDs(2,3,7,8—TCDDs),计有22种,;另外,和PCDDs一起产生的二苯呋喃PCDFs,共有135种物质。通常将上述两类物质统称为二恶英(或称戴奥辛),所以二恶英不是一种物质,而是多达210种物质(异构体)的统称。 2.2二恶英的特性 二恶英在标准状态下呈固态,熔点约为303~305℃。二恶英极难解溶于水,在常温情况下其溶解度在水中仅为7.2×10-6mg/L。而同样在常温情况下,其在二氯苯中的溶解度高达1400mg/L,这说明二恶英很容易溶解于脂肪,所以它容易在生物体内积累,并难以被排出。二恶英在705℃以下时是相当稳定的,高于此温度即开始分解。另外,二恶英的蒸汽压很低,在标准状态下低于 1.33×10-8Pa,这么低的蒸汽压说明二恶英在一般环境温度下不易从表面挥发。这一特性加上热稳定性和在水中的低溶解度,是决定二恶英在环境中去向的重要特性。 3.二恶英的毒性和评价 据报导,二恶英是目前发现的无意识合成的副产品中毒性最强的化合物,它的毒性相当于氰化钾(KCN)的1000倍以上。同时它是一种对人体非常有害的物质,即使在很微量的情况下,长期摄取时便可引起癌症等顽症,国际癌症研究

持久性污染物二恶英的简介

目录 1 前言.................................................... 错误!未定义书签。2二噁英的性质结构和性质...................... 错误!未定义书签。 3 二噁英的来源及危害............................ 错误!未定义书签。 3.1二噁英的来源...................................................................................... 错误!未定义书签。 3.2二噁英的危害...................................................................................... 错误!未定义书签。 3.2.1对生态环境的危害 ........................................................................... 错误!未定义书签。 3.2.2对人体健康的危害 ........................................................................... 错误!未定义书签。 4 二噁英的检测与防治............................ 错误!未定义书签。 4.1二噁英的检测...................................................................................... 错误!未定义书签。 4.2二噁英的防治...................................................................................... 错误!未定义书签。 4.2.1热技术............................................................................................... 错误!未定义书签。 4.2.2非热技术........................................................................................... 错误!未定义书签。5结语..................................................... 错误!未定义书签。6参考文献.............................................. 错误!未定义书签。

生活垃圾焚烧中二恶英的产生和控制

生活垃圾焚烧中二恶英的产生和控制 班级:环境08本(一)班姓名:彭申勇学号:80813024 摘要:采用焚烧法处理城市生活垃圾, 在我国正得到广泛的推广应用, 但焚烧也带来二恶英污染, 它严重威胁着人类的健康, 世界各国正在采取积极措施控制。文章介绍了二恶英的结构、性质和形成机理, 从焚烧前、焚烧中、焚烧后三个方面评述了国内外近年来所发展的对二恶英污染物的控制技术。 关键词:城市生活垃圾; 焚烧; 二恶英; 控制 1 前言: 随着我国城市人口不断增加, 城市生活垃圾日益增多, 人均日产量为1.2kg 左右, 并且以每年7%的速度递增, 2004年我国城市垃圾清运量已达14857万t[1]。目前我国城市垃圾无害化处理不足50%, 累积堆存量60亿t, 占地2万hm2; 这些垃圾裸露堆埋, 污染水质、土壤、大气, 传播疾病、威胁人类的生命安全。因此,垃圾无害化处理已成为社会普遍关注的问题。我国城市垃圾处理逐渐淘汰堆埋法而采用具有显著减量化、无害化、稳定化和资源化的垃圾焚烧处理技术。然而, 垃圾焚烧易带来二次污染, 其中, 危害严重的是二恶英污染。二恶英是迄今为止人类无意识合成的毒性最强的副产品,它的理化性质稳定,很难自然降解,对人体健康和生态环境存在着巨大的安全隐患。固体废物焚烧,是其主要产生源之一,据统计,其贡献率可达到50%-80%。由于我国在二恶英控制技术方面的研究工作起步较晚,因此在二恶英控制方面面临着严峻的形式,从技术的层面而言,主要存在着现有焚烧设施技术水平低和缺乏成熟有效的控制技术,难以满足标准的要求两个方面的问题。针对上情况,本文结合近年来国内外的最新研究成果,通过了解和掌握二恶英的合成机制,提出了二恶英污染防治的全过程控制措施。 2 二恶英的危害 生物化学研究认为: 二恶英具有类似人体激素的作用, 称为“环境激素”。二恶英可以通过细胞膜进入细胞内,通过调控基因活性,调节机体的生长和自我调节过程。任何一个二恶英类分子能与细胞内的特殊蛋白受体结合成复合物, 这一复合物能进入细胞核,作用于DNA ,影响某些基因的表达。这一变化的结果可激发一连串的生物化学反应, 包括激素的合成和分泌,还影响激素受体、酶、生长因子和其它物质。然而,二恶英不像天然激素, 它不被代谢和降解, 对受体有高亲合力, 因此非常小剂量的“错误信号”能对激素调控产生极大的影响作用, 包括影响细胞分裂, 组织再生, 生长发育、代谢和免疫功能。因此,二恶英被称为“毒素传递素”,影响和危害正常人体系统,如内分泌、免疫、神经系统等。二恶英主要污染空气、土壤和水体, 进而污染动物、植物和水生生物。人主要是通过空气、饮水、食物而受害。据调查, 人类90% 以上的受害来自于膳食, 其中动物性食品是主要来源。二恶英的生物富集作用非常强, 由于二恶英从土壤→植物→动物的逐级富集, 愈是高级的生物体内含量愈高, 所以人类受危害程度最大, 而人体没有分解二恶英的能力, 所以人体一旦摄入, 就不易排出。最新研究表明: 人体摄入即使在很微量的情况下, 长期摄取也会引起癌症、皮肤病、肝肾疾病、生殖障碍、畸形等顽症。日本学者研究发现, 用二恶英含量较高的乳汁喂养婴儿, 往往会造成婴儿甲状腺激素含量过低, 影响婴儿智力发育。 3 二恶英的产生和排放 3.1 二恶英和垃圾焚烧厂 现在有一种观点认为, 二恶英是生活垃圾焚烧厂特有的公害问题,这是一种片面的认识。其实二恶英是有机物与氯一起加热就会产生的化合物, 只要使用水的场所都有可能产生二恶英,它是一种普遍的化学现象。二恶英在空气、土壤、水和食物中都能发现,火山爆发及森林火灾是自然界中二恶英的主要来源。另外,除草剂、发电厂、木材燃烧、造纸业、水泥业、

相关文档
相关文档 最新文档