文档库 最新最全的文档下载
当前位置:文档库 › J007 动力匹配计算指导

J007 动力匹配计算指导

J007  动力匹配计算指导
J007  动力匹配计算指导

Q/XRF

xxxx公司

Q/XRF-J007-2015

新日(无锡)

动力匹配计算指导

编制:日期:

校对:日期:

审核:日期:

批准:日期:

2015-03-15发布 2015-03-15实施

xxxx公司发布

目录

一、概述 (1)

二、输入参数 (1)

2.1 基本参数列表 (1)

2.2 参数取值说明 (1)

2.3 电动机外特性曲线 (2)

三、xxx纯电动物流车动力匹配计算基本方法 (3)

3.1 驱动力、行驶阻力及其平衡图 (4)

3.2 动力因数图 (6)

3.3 爬坡度曲线图 (6)

3.4 加速度曲线及加速时间 (7)

一、概述

汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。

二、输入参数

2.1 基本参数列表

进行动力匹配计算需首先按确定整车和电动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是波导纯电动物流车动力匹配计算必须的基本参数,其中电动机参数将在后文专题描述。

表1动力匹配计算输入参数表。

2.2 参数取值说明

1)迎风面积

迎风面积定义为车辆行驶方向的投影面积,可以通过通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。宁波波导纯电动物流车车型迎风面积为A 一般取值3.5 m2。

2)动力传动系统机械效率

根据宁波波导纯电动物流车车型动力传动系统的具体结构,传动系统的机械效率 主要由变速器传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联T

组成。根据电机的性能匹配情况可以选择有或没有装置,考虑到配套资源和成本因素,XRF5020XXYHBEV 车型的变速传动比2,后桥单级主减速比4.11。

例如:根据实际情况,取差速器传动效率为98%、轴承总效率98%、传动轴万向节传动效率为99%(两级)、主减速器传动效率为99%,因此电机+传动轴驱动的方案传动效率为:

T η=98%×98%×99%×99%×99%=93.2%

3)滚动阻力系数

f

滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算:

f =???

???????? ??+??? ??+4

410100100a a u f u f f c

其中:0f —0.0072~0.0120以上,取0.012; 1f —0.00025~0.00280,取0.0027; 4f —0.00065~0.002以上,取0.002; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 2.3 电动机外特性曲线

电动机外特性曲线是电动机功率、转矩的函数关系。在进行动力性能匹配计算时,主要用到电动机的外特性参数,即最大负荷下功率、转矩随转速的变化曲线。

动力匹配计算所需电动机的主要性能指标如表2所示。

表2 电动机主要性能参数

此外,电动机在使用过程中还要为水泵、气泵、发电机、空调等设备提供动力,其使用外特性(见图2)要比外特性小,用于汽车行驶的有效扭矩和有效功率均在原来基础上有所减少,一般发动机使用外特性比净功率外特性约小7-10%,取有效扭矩=扭矩×92%,有效功率=功率×92%。

图1 电动机外特性曲线

三、 波导纯电动物流车动力匹配计算基本方法

汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为

j i w f t F F F F F +++=

(1)

其中 t F —驱动力; f F —滚动阻力; w F —空气阻力; i F —坡道阻力;

j F —加速阻力。

下面对上述驱动力和行驶阻力的匹配计算方法以及各个曲线的匹配计算方法简要说明如下。

3.1 驱动力、行驶阻力及其平衡图

在电动机转速特性、传动系统传动比及效率、车轮半径、空气阻力系数、迎风面积以及汽车的质量等确定后,便可确定汽车的驱动力-行驶阻力平衡关系。

驱动力:

d

T

g tq t r i i F T η 0 =

(2)

其中:tq T —电动机的转矩,单位为N ·m ; g i —变速器各个档位的传动比; 0i —主减速器速比;

T η—动力传动系统机械效率; d r —车轮滚动半径,单位为m 。

滚动阻力

f

F =αcos mgf (3)

其中:m —汽车匹配计算载荷工况下的质量,单位为kg ;

g —重力加速度,单位为m/s 2;

f —滚动阻力系数;

α—道路坡角,单位为rad ;

d r —车轮滚动半径,单位为m 。

空气阻力

15

.212a

D w u A C F = (4)

其中:D C —空气阻力系数;

A —迎风面积,单位为m 2;

a u —汽车行驶速度,单位为km/h 。

货车空气阻力系数D C 通常取0.5-0.8,波导纯电动物流车根据具体车型造型选择系数大小,车辆造型越趋向于流线空气阻力系数取值越小。

坡道阻力

i F =αsin mg (5)

其中:m —匹配计算载荷工况下汽车的质量,单位为kg ; g —重力加速度,单位为m/s 2; α—道路坡角,单位为rad 。

加速阻力

dt

du m F a

j δ=

(6)

其中:δ—旋转质量换算系数;

m —匹配计算载荷工况下汽车的质量,单位为kg ;

dt

du a

—汽车行驶加速度,单位为m/s 2。 在进行动力性初步匹配计算时,由于不知道汽车轮胎等旋转部件准确的转动惯量数值,对于旋转质量换算系数δ,通常根据下述经验公式进行匹配计算确定:

δ=2

211g i δ+δ+

式中,1δ和2δ取值范围在0.03到0.05之间,这里粗取平均值,即认为1δ=2δ=0.04。

在进行驱动力和阻力估算时,还需要知道汽车速度与电动机转速之间的关系:

377

.0i i n r u g d a = (7)

其中:a u —汽车行驶速度,单位为km/h ;

n —电动机转速,单位为rpm ; 0i —主减速器传动比;

d r —车轮的滚动半径,单位为m ;

—当前档速比。

根据上述公式,我们还可以方便地估算出汽车在任意电动机转速、汽车的驱动力、行驶阻力,进而可以绘制出汽车的驱动力-行驶阻力平衡图。

汽车的驱动力-行驶阻力平衡图形象地表明了汽车行驶时的受力情况和平衡关系。由此可以确定汽车的动力性。

在驱动力-行驶阻力平衡图中,求出最大驱动力和行驶阻力曲线的交点,曲线交点处对应的速度值即为汽车的最高车速。 3.2 动力因数图

动力因数的定义为

mg F F D w

t -=

(8)

其中:各个参数的含义同前面的说明。

利用公式(8)结合前面公式就可以估算出汽车的动力因数值,进而可以绘制出动力因数图。 3.3 爬坡度曲线图

根据汽车的行驶方程式和驱动力-行驶阻力平衡图,可以估算汽车的爬坡能力。在估算爬坡度时,认为汽车的驱动力除了用来克服空气阻力、滚动阻力外,剩余驱动力都用来克服坡道阻力,即加速阻力j F 为零。

根据公式(1)可以得到如下公式

w

t i f F F F F -=+

将公式(3)、(5)代入上式,就可以得到如下公式:

w t F F mg mgf -=+ααsin cos

代入公式αα2

sin 1cos -=以及公式(8),经过整理那么就可得

2

2

211arcsin

f

f

D f D ++--=α (10)

然后根据公式i =tg α进行转换,这样就可以估算出爬坡度,并进一步绘制出爬坡度曲线图。

3.4 加速度曲线及加速时间

汽车的加速能力可用它在水平良好路面上行驶时能产生的加速度来评价。 汽车加速时,驱动力除了用来克服空气阻力、滚动阻力以外,主要用来克服加速阻力,此时不考虑坡道阻力i F (i F =0)。

根据公式(1)、(6),可以得到如下公式:

j w f t a F F F m dt du =--=][1δ

所以,加速时间

t =?t

dt 0=?2

1

1

u u

j

du a 根据以上公式,通过数值积分方法对上式进行积分求解,就可以得到所需要的加

速时间。

6.1转向系统匹配计算及设计

第六章 转向系统匹配计算及设计 根据总布置设计提供的满载前轴荷、前轮定位参数(参考同类车型数据库),按照汽车转向系设计的要求,参照其它同类车型,进行汽车转向系设计。 6.1 转向角和传动比 6.1.1 理论转向角-左右转角差大于实际汽车应设计值 传统的理论转向角为纯滚动理论-阿克曼理论,没有考虑车轮弹性和高速应用,因此有些过时,现代轿车设计为了节省车空间,一般在该理论算出左右转角差后,可以除以2~3作为设计数值更好。 如果通过所有4个车轮中心的车轮平面垂直线都相交于一点——转向中心M ,汽车在缓慢行驶时的转弯是精确的。如果后轮不一定转向,则2个前轮的垂线必须与后轮中心连线的延长线相交于M 点(图6.1.1)。如是在车身外侧的前轮上出现不同的转向角i δ和Aa δ。根据较大的侧车轮转向角i δ可以算出外侧车轮的理论值,即所谓的阿克曼角: l j ctg ctg i Aa /+=δδ (6.1.1) 式中:l 为在地面测得的两主销轴线延长线与地面交点交点的距离,即 s v r b j ?-=2 (6.1.2) 在负的主销偏移距r S 的情况下,它在式中的运算符号变成加号。 图6.1.1 由阿克曼角确定的车轮转向角Aa δ之间的运动学关系 图6.1.2 r S 是在图示情况下为正的主销偏距 图6.1.1 由阿克曼角确定的车身外侧车轮转向角和侧车轮转向角Aa δ之间的运动学关系。图中还标出了转向角差A δ?和转弯直径D s (亦见图6.1.1)。图6.1.2 前悬架上的尺寸说明:b v 是前轮轮距,r S 是在图示情况下为正的主销偏距。图6.1.1中标出的转向角差(也称弯角差)A δ?在所获得理论值中必须始终为正值。 Aa i A δδδ-=? (6.1.3) 根据角Aa δ可得出理论转弯直径D s (图6.1.1),即车身外侧前轮平面以最大的转向角转弯时经过的圆弧直径。汽车的转弯圆应尽可能小,以易于转弯及停车方便。依图示可推导出公式:

基于整车匹配的汽车变速器总体设计及整车动力性计算

基于整车匹配的汽车变速器总体设计及整车动 力性计算 Revised as of 23 November 2020

本科课程设计说明书题目:基于整车匹配的汽车变速器 总体设计及整车动力性计算 院(部):机电工程学院 专业:车辆工程 班级: 姓名: 学号: 指导教师: 设计期限: 目录

第1章前言 本次设计的目的和意义 随着汽车工业的迅猛发展,车型的多样化、个性化已经成为汽车发展的趋势。而变速器设计是汽车设计中重要的环节之一。尽管近年来,自动变速器和无级变速器技术迅猛发展,对长期以来主导市场地位的手动变速器产生很大冲击,但手动变速器已应用了很长一个时期,经过反复改进,制造技术趋于成熟化,与其它种类变速器相比较,具有以下优点: 1.手动变速器技术已经发展了几十年,制造技术更加成熟,长期处于主导 变速器市场的地位,各方面技术经过长期市场考验,通过逐步积累,技 术已经相当成熟。 2.手动变速器传动效率较高,理论上比自动变速器更省油。 3.手动变速器结构简单,制造工艺成熟,市场需求大,能够产生生产规模 效益,生产成本低廉。 4.维修方便,维修成本便宜。 5.可以给汽车驾驶爱好者带来更多的操控快感。 在市场经济形势下.特别是当前国家对汽车变速器产品还拿不出完整规划的情况下.寻求引进更先进的汽车变速器,改进现有的变速器,从市场广度开发转变为深度开发,使产品系列化,通用化,标准化.组织好精益生产,降低成本,提高产品质量,才能逐步缩短同世界先进技术水平的差距。 基于整车匹配的变速器的现状和发展 各种车辆的用途不同,对变速器的要求也各异,所谓变速器与车辆匹配,即是为满足一定需要和使用性能的车辆配置一台水平相当、技术性合理、与车

制动系统匹配计算讲义

讲义开发(讲师用) (制动系统匹配计算讲课提纲及内容) 课时_____ 一制动系统匹配计算提纲及内容 1、制动系统匹配计算的目的与要求 制动系统匹配设计主要是根据设计任务书的要求,整车配置、布置及参数,参考同类车型参数,选择制动器型式、结构及参数,然后校核计算,验证所选参数是否满足设计任务书及法规的要求,满足要求后初步确定参数。 公司目前车型主要是M1、N1类,操纵系统为液压操纵、真空助力。因此,本匹配计算主要以上述车型及操纵系统为基础进行基础制动系统及调节装置的匹配计算,ABS或ESP的匹配计算由配套厂家完成。 GB12676-1999《汽车制动系结构、性能和试验方法》、GB7258-2004《机动车运行安全技术条件》,GB13594-2003《机动车和挂车防抱制动性能和试验方法》等对制动系的性能、要求及试验方法都作了详细的规定,因此,制动系设计首先应满足以上法规的要求。同时,为提高整车性能,不同级别的车型,又会对制动性能提出高于以上标准的要求,这些要求会在设计任务书中体现,因此,对设计任务书要求高于法规要求的,要按设计任务书要求设计。 将M1、N1类车与匹配计算有关法规摘录如下: 表1 M1、N1类车有关制动法规要求

注:以上数据为发动机脱开的O型试验要求。 2、制动系统主要参数的选择 制动系统参数选择形式多样,可根据实际情况、用不同的方法确定,以最终保证设计参数合理为准。如:轴荷、重心位置相近的车辆,可借鉴采用参考车型数据;平台化产品,可借用部分参数,选择其它参数;选择参数后要进行校核计算,满足要求后就可以采用;下面以无参考样车时的设计为例,简要说明制动系统主要参数选择的一般步骤。 制动系统参数选择的一般步骤如下:

汽车转向系统设计计算匹配方式方法

1 汽车转向系统的功能 1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。 对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘 转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。这时, 基本上是角输入。而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有 一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。 1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。这种反馈,通常称为路感。 驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、 身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车 的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路 感是优良的操稳性中不可缺少的部分。 反馈分为力反馈和角反馈 从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。 2 转向系统设计的基本要求 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。转向系的基本要求如下: 2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。 不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。实际上,没有哪 一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向 角(轮15°~25°围)使转向外轮运动关系逼近上述要求。 2.2 良好的回正性能 汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。转向轮的回正力矩的大小主要由悬架系统所决定的前 轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销倾角、 主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的 逆效率等。 2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。 2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。 汽车转弯行驶时,作用在汽车质心处的离心力的作用,轮载荷减小,外轮载荷

载货汽车动力匹配和总体设计

汽车设计课程设计说明书 学院:机械工程学院 班级: 姓名: 学号:

目录 设计任务书 (3) 第1章整车主要目标参数的初步确定 (4) 发动机的选择 (4) 发动机的最大功率及转速的确定 (4) 发动机最大转矩及其转速的确定 (6) 轮胎的选择 (7) 传动系最小传动比的确定 (8) 传动系最大传动比的确定 (10) 第2章传动系各总成的选型 (11) 发动机的选型 (11) 离合器的初步选型 (12) 变速器的选型 (14) 传动轴的选型 (15) 主减速器结构形式选择 (16) 驱动桥的选型 (17) 第3章整车性能计算 (17) 配置潍柴发动机的整车性能计算 (17) 汽车动力性能计算 (17) 汽车经济性能计算 (20) 第4章发动机与传动系部件的确定 (21) 参考文献 (23)

设计任务书 载货汽车动力匹配和总体设计 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4; 驱动型式:8×4; 轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。

第1章 整车主要目标参数的初步确定 发动机的选择 发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13 max max max a D a a T e u A C u f g m P ?+??≥η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器 的传动效率)%9.84%96%98%95%95=???=T η,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 a m ——汽车总质量,kg m a 31000=; g ——重力加速度,2/81.9s m g =; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

动力匹配参数

何老师,您好! 红色的字体标记的,我和田罗不太确定怎么翻译。 模型各个模块 一、 Vehicle gas tank volume (m 3) 油箱体积 pressure difference engine/environment (mbar ) 发动机与环境的压力差 distance from Hitch to front axle (mm ) 前轴到质心的距离 wheel base (mm ) 轴距 temperature difference engine/environment (K ) 发动机与环境的温度差 height of support point at bench test (mm ) 进行台架试验的支持点高度 constant part 常量部分 linear part 线性部分 quadratic part 二次部分 二、 Tire Inertial moment (kg* m 2) 惯性矩 friction coefficient of tire 轮胎摩擦系数 reference wheel load (N ) 参考轮重 wheel load correction coefficient 轮胎负荷修正系数 static rolling radius (mm ) 静态滚动半径 dynamic rolling radius(mm) 动态滚动半径 三、 engine engine type(汽油/柴油) 发动机类型 charger (without/Turbo charger/TC with intercooler ) 控制器

engine displacement(cm3) 发动机排量 engine working temperature(C)发动机工作温度number of cylinders 气缸数 number of stroke 冲程数 idle speed(1/min)怠速 maximum speed(1/min)最大速度 inertia moment(kg* m2)转动惯量response time(s)响应时间 fuel type 燃料类型 heating value(kJ/kg)热值 fuel density(kg/L)燃油密度 Idle 怠速 Consumption(L/h) 油耗 emission NOX/HC/CO(kg/h) NOX/HC/CO排放量Fuel Shut-off(选择yes or no) 切断燃油Lower speed for fuel shut-off 燃油切断的最低速度upper speed for fuel shut-off 燃油切断的最低速度residual fuel consumption 残余燃料消耗consumption increase after deactivation 停用后的油耗增加量FULL LOAD CHARACTERISTIC 全负荷特性 MOTORING CURVE 发动机的摩擦功

转向系统设计计算书

密级:版本/更改状态:第一版/0 编号: 长城汽车股份有限公司技术文件 CC6460K/KY 转向系统设计计算书 编制: 审核: 审定: 批准: 长城汽车股份有限公司 二OO四年四月十五日

目录 1 系统概述????????????????????????????????????????????????????????????????????????????????????????????????????????????????1 2 转向系统设计依据的整车参数计设计要求????????????????????????????????????????????????????????2 3 转向系统设计过程????????????????????????????????????????????????????????????????????????????????????????????????2 3.1 最小转弯半径计算?????????????????????????????????????????????????????????????????????????????????????????2 3.2 转向系的角传动比计算?????????????????????????????????????????????????????????????????????????????????3 3.3 转向系的力传动比计算?????????????????????????????????????????????????????????????????????????????????3 3. 4 转向系的内外轮转角?????????????????????????????????????????????????????????????????????????????????????4 3. 5 液压系统的匹配计算?????????????????????????????????????????????????????????????????????????????????????5 3.5.1 转向油泵流量的计算??????????????????????????????????????????????????????????????????????????5 3.5.2 转向油泵压力的变化??????????????????????????????????????????????????????????????????????????6 4 结论说明????????????????????????????????????????????????????????????????????????????????????????????????????????????????7 5 参考文献????????????????????????????????????????????????????????????????????????????????????????????????????????????????8

汽车的动力性设计计算公式

(1) 汽车动力性设计计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: h 疋n e U a i =O.377 上- I gi ×∣O 其中: r k 为车轮滚动半径,m; 由经验公式: r k =0.0254 - b(1- ■ ) (m) [2 d----轮辋直径,in b----轮胎断面宽度,in n e 为发动机转速,r/min ; i °为后桥主减速速比; I gi 为变速箱各档速比,i(i =1,2...p),P 为档位数,(以下同) 3.1.2 各档牵引力 (N ) (2) 其中:T tq (U a )为对应不同转速(或车速)下发动机输出使用扭矩, N?m ; t 为传 动效率。 汽车的空气阻力: 其中:C d 为空气阻力系数,A 为汽车迎风面积,m 2 汽车的滚动阻力: F f = G a f 其中:G a = mg 为满载或空载汽车总重(N), f 为滚动阻尼系数 汽车的行驶阻力之和F r : F r=F f F W ( N ) ……⑸ 注:可画出驱动力与行驶阻尼平衡图 (km/h ) 汽车的牵引力: 错误!未指定书签 F ti (U a )= T tq (U a ) i gi ∣O F W C d A U 2 21.15

3.1.3 各档功率计算 汽车的发动机功率: T tq (U a M n e P ei (U a "th ( kW ) ......⑹ 其中:P ei (U a )为第i(i =1,2...p)档对应不同转速(或车速)下发动机的功率 汽车的阻力功率: 3.1.4 各档动力因子计算 D i (Uar F ti (:)-F W (8) G a 各档额定车速按下式计算 r k n ec u ac ?i =0.377— ( km/h ) (9) i g i i 其中:n ec 为发动机的最高转速; D i (U a )为第i(i =1,2...p)档对应不同转速(或车速)下的动力因子。 对各档在[0, U acj ]内寻找U a 使得D i (U a )达到最大,即为各档的最大动力因子 Dg x 注:可画出各档动力因子随车速变化的曲线 3.1.5 最咼车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 3.1.5.1 根据最高档驱动力与行驶阻力平衡方程 F t.highest (U a^- F r (U a ) , 求解U a 。舍去U a 中的负值或非实数值和超过额定车速的值; 若还有剩余的值,则选择 它们中最大的一个为最高车速,否则以最高档额定车速 U aC 作为最高车速U a.max 。 额定车速按下式计算 r k ∏ec U aC =0.377 , (km/h ) (10) i g h i 其中:n ec 为发动机的最高转速 i g h 为最高档传动比 (F f F W )U a 3600 t

汽车理论1课程设计__汽车动力性匹配计算的研究.

汽车理论课程设计 汽车动力性匹配计算的研究 姓名: 专业班级: 学号: 指导老师: 时间: 摘要 应用 MATLAB 进行汽车动力性匹配计算,首先求解出发动机与液力变矩器共同工作的输入输出特性,然后绘制出汽车的驱动力-行驶阻力平衡图,最后得出汽车的动力性参数,从而实现了汽车动力性匹配计算、分析及绘图的自动化,提高了设计效率和精度。 关键词:汽车动力性;匹配;MATLAB Abstract MATLAB was applied to matching calculation of the automotive dynamic performance. At fi rst, the input and output characteristics while the engine operates together with hydraulic torque converter were solved, and then the balancing diagram of automotive driving force and advancing resistance were plotted, fi nally the dynamic performance parameters were obtained. Thereby the automated calculation, analysis and

plotting for matching of the automotive dynamic performance were achieved, which promoted the design effi ciency and precision. Key Words:dynamic performance; matching; MATLAB 序言 矿用汽车运行工况比较复杂,路况比较恶劣,具有载重大、速度低的特点;因此,要求汽车动力系统在汽车较低速度下能输出较大的转矩。其中,发动机与液力变矩器的匹配计算是整个地下汽车动力系统设计的关键和难点。发动机与液力变矩器的合理匹配,能使汽车在较低速度下输出较大的转矩,从而获得较好的动力性和燃油经济性。在此基础上再进行合理的挡位选择,绘出汽车在不同挡位下的驱动力-行驶阻力平衡图,最后得出汽车的最高速度、加速度和最大爬坡度等反映汽车动力性的参数,从而对汽车动力性进行评定[1]。传统的匹配计算主要是作图法和解析法,其共同缺点是工作量大,计算误差大。利用 MATLAB设计相关匹配计算程序[2],可以方便、精确地完成各种匹配计算,从而快速地对匹配方案进行筛选。 一、程序结构设计 按照流程,程序主要包括发动机外特性曲线的拟合、发动机与液力变矩器的匹配计算以及汽车动力性计算这 3 个模块[3]。 二、发动机外特性曲线的拟合 发动机外特性曲线是进行发动机与液力变矩器匹配计算的基础,通过发动机台架试验获得,常用 Me =Me(ne 或 Ne = Ne(ne 曲线表示。本文选用 Me = Me(ne 曲线来表示。用数值方法计算时,需要将没有函数关系的发动机外特性曲线以拟合的方式用解析式表示,以便求解发动机外特性曲线与变矩器输入特性曲线的交点,即二者共同工作点。已知发动机外特性曲线的若干离散点,采用最小二乘法拟合发动机外特性曲线的解析式,可以通过调整拟合阶次来控制曲线拟合的精度[4]。

转向系统匹配

本人从事转向系统设计工作,今赋闲在家,偶然发现这个论坛,获益颇丰。但见很多朋友所求助的问题得到的解答不是特别透彻,遂想从转向系统布置、匹配、零部件8D整改等方面分别做一个全面的总结。希望对新手有所帮助,不对的地方也希望能得到各位前辈的指正。言归正传,先介绍转向系统的匹配。 匹配篇:0 ? W6 I! m& P! \( A7 Q 1、以循环球整体式转向器为例,首先要确定转向系统的载荷,根据转向系统的载荷确定出相应输出力矩的循环球转向器。转向系的载荷计算方法多种多样,有公式计算法,也有图表法。常用公式有原苏联半经验公式、雷雷索夫公式、塔布莱克公式等,各个公式的侧重点各有不同(不同的因素分别为有的考虑主销偏置距,轮胎静力半径,有的分别考虑计算左右轮的最大转向阻力矩然后叠加,有的考虑轮胎接地面积等)。根据自己对各个方法的对比,载荷计算结果差别不是很大。本人常用苏联半经验公式: Mr =[f×(G 13÷P)1/2]÷3: @# a# r" y. W; {0 N P Mr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm;+ ?/ e1 f7 a& P$ ]' G f--------轮胎与地面间的滑动摩擦系数,取0.7;+ k3 M+ n' w. Z5 l G1-----转向轴负荷,N; P-------轮胎气压,MPa;9 h+ M9 }: J( Q 该公式适用于中轻型汽车,其悬挂为钢板弹簧时,用于计算最大转向阻力矩(即汽车的原地转向阻力矩)。该公式仅考虑了前桥负荷和轮胎气压的影响。 公式中,转向轴荷G一般按设计轴荷超载30%计算。 在计算载荷确定之后,可根据载荷选取适合的动力转向器。 这里顺便介绍下转向器的选型,现在的动力转向器配套供应商做了大量的研究和实验,提出了适应不同轴荷的其产品系列,你只要按照你计算出的前轴负荷提供给他,他即可推荐给你相匹配的型号的转向器。根据自己的经验,具体选型时要考虑以下几点因素:1、同一范围的轴荷在不同前轮最大转角的情况下2、根据车型使用工况进行斟酌。以上两点主要从多种车型转向器模块化管理,减少转向器品种方面考虑的。 走题了,继续。- A: Z2 F4 J, x# V5 n 转向器流量计算 Q=(1. 5~2)×60ntS/K! r& {* c* w, E6 I 上式参数依次为汽车方向盘最大瞬时转速(转/秒),9 E2 {. D/ z: Q4 k1 l1 E! }4 T 助力方向机丝杆螺距;助力方向机油缸实际工作面积;助力方向机效率系数(泄漏系数)! f, O' i0 }! \& O 2、转向助力泵的匹配。% F& \+ p2 ]* X- A4 o $ `5 l1 f5 G: J# V9 s 系统压力的计算可根据下列公式) Z$ ` `9 [% d( k- D* y7 B P=4*M÷π÷D(平方) ÷r÷i÷n 上式参数依次为转向阻力矩、转向器缸径、齿扇啮合半径、转向力传动比、转向机的正效率。 转向油泵的控制流量可根据以下公式$ r" H! N! G. R5 f0 _, K! [; d: w Q=S*n*t÷k9 U0 m/ v2 r# A A 上式参数依次为活塞面积,方向盘转速,取1.5,螺杆螺距、转向器泄露系数取0.855 S$ z- {& @1 M( M+ x0 E 转向泵怠速状态下流量可根据下公式7 ?: L$ ^8 O- {3 c1 P. c

动力系统匹配和选型设计规范

编号: 动力系统匹配和选型 设计规范 编制: 审核: 批准:

目录前言 2 1.适用范围 3 2.引用标准 3 3.选型匹配设计主要工作内容及流程 4 4.产品策划 5 5.资源调查 5 6.分析与筛选 6 7.设计参数输入 6 8.预布置与匹配分析计算 6 9.法规对策分析18

前言 本标准是为了规范我公司汽车动力总成(MT)匹配设计而编制。标准中对设计程序、参数的输入、参照标准、匹配计算等方面进行了描述和规定,此标准可作为今后汽车动力总成(MT)匹配设计参考的规范性指导文件。

1.适用范围 本方法适用于基于现有动力总成资源,选择满足整车设计要求的动力总成(MT)的一般方法与原则。 2.引用标准 GB 16170-1996 汽车定置噪声限制 GB 1495-2002 汽车加速行驶车外噪声限值及测量方法 GB/T12536-1990 汽车滑行试验方法 GB/T12543-2009 汽车加速性能试验方法 GB/T12544-1990 汽车最高车速试验方法 GB/T12539-1990 汽车爬陡坡试验方法 GB/T12545.1- 2008 汽车燃料消耗量试验方法 GB/T18352.3- 2005 轻型汽车污染物排放限值测量方法

3.选型匹配设计主要工作内容及流程 4.产品策划 产品策划的目的是依据整车设计要求,确定动力总成选型的范围、条件及基本技术指标。根据整车设计任务书要求,确定以下输入条件: 整车输入条件—车辆类型; 4

市场定位—经济型、中级或高级; 动力总成布置型式—前置后驱、后置后驱; 整车尺寸参数—外形尺寸、轮距、轴距、整备质量、总质量、离地间隙; 前悬和后悬;轮胎规格;风阻系数; 整车重量参数—整备质量、载客量、总质量、轴荷分配; 整车目标性能—动力性(最高车速、加速时间、汽车的比功率和比转矩指标、最大爬坡度)、经济性指标、排放水平; 产品策划的内容是根据整车设计要求,确定资源调查的具体指标范围:型式(类型)、发动机功率范围、对配套变速器的要求。 5.资源调查 根据设计任务书及产品策划要求进行资源调查,调查市场上发动机及变速器资源及相关信息,包括: (1)发动机、变速器技术参数 外形尺寸—长宽高及相对变速器输出轴尺寸 技术指标—功率、扭矩、速比、排放水平 技术状态—开发阶段、定型产品、匹配车型、批量生产 (2)品牌及产品来源—国产化、自主研发、合作开发 (3)服务—配套车型、附件提供状态、配套体系完整性 (4)风险性分析—配套意向、批量供货能力 资源调查方法为信息收集与厂家专访。 6.分析与筛选 根据排量、功率、扭矩及排放指标并结合参考样车的发动机舱尺寸与动力总成外廓尺寸对比,综合评价技术状态、产量、配套意向、品牌、服务、附件提供状态、配套体系完整性,初选两-三种动力总成进行进一步分析和对比调查。 7.设计参数输入 根据初选的两-三种动力总成,确认供应商意向,并收集以下匹配计算资料及参数: (一)动力性计算参数 5

动力匹配设计规范

目录1 原理及依据 1.1 评价指标 1.2 总成参数选择原则 2 计算方法 2.1 人工经验计算方法 2.2 计算机辅助计算 3 基础数据收集和输入 3.1 动力系统总成参数 3.2 车辆运行环境参数 3.3 驾驶员换挡规律 4 现阶段公司可用相关资源配置 5 计算任务和匹配优化 5.1 计算任务 5.2 数据对比及匹配优化 6 计算结果输出和数据分析 6.1输出格式和内容规范 6.2试验数据对比及分析

一规范适用范围 本规范规定了动力总成系统传统匹配设计方法及利用AVL Cruise软件对整车动力性和燃油经济性进行计算,并对动力总成系统配置优化。 本规范适用于目前我公司所有车型。 二规范性引用文件 GB7258-2004 《机动车运行安全技术条件》。

本规范中所引用的符号及意义

动力匹配设计规范 1 原理及依据 1.1评价指标 1.1.1汽车动力性评价指标 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的,所能达到的平均行驶速度。从获得尽可能高的平均行驶速度的观点出发,汽车的动力性主要可由以下三个指标来评定。 1.1.1.1最高车速 最高车速U max是指在水平良好的路面上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均速度。 1.1.1.2加速性能 汽车的加速能力常用原地起步连续换档加速时间与最高档或次高档加速时间来表示。 原地起步连续换档的加速时间是指用一档或二档起步,以最大加速度按最佳换档时间逐步换至最高档,加速至某一预定的距离或车速所需要的时间。该项指标反映了汽车在各种车速下的平均动力性。 最高档或次高档加速时间是指用最高档或次高档由某一较低车速全力加速至某一高速所需要的时间。因为超车时汽车与被超汽车并行,容易发生安全事故,所以最高档或次高档加速能力强,行驶就更安全。

J007动力匹配计算指导

Q/XRF xxxx公司 Q/XRF-J007-2015 新日() 动力匹配计算指导 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-03-15发布 2015-03-15实施 xxxx公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 2.3 电动机外特性曲线 (2) 三、xxx纯电动物流车动力匹配计算基本方法 (3) 3.1 驱动力、行驶阻力及其平衡图 (4) 3.2 动力因数图 (6) 3.3 爬坡度曲线图 (6) 3.4 加速度曲线及加速时间 (7)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和电动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是波导纯电动物流车动力匹配计算必须的基本参数,其中电动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。宁波波导纯电动物流车车型迎风面积为A 一般取值3.5 m2。 2)动力传动系统机械效率 根据宁波波导纯电动物流车车型动力传动系统的具体结构,传动系统的机械效率 主要由变速器传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联T 组成。根据电机的性能匹配情况可以选择有或没有装置,考虑到配套资源和成本因素,

转向泵与系统匹配计算公式

附录Ⅱ: 液压动力转向系统性能参数计算和设计方法 1.力矩Mr 的计算: 转向器的扭矩取决于汽车整体转向桥承重载荷、轮胎气压、路面情况及转向桥设计参数,计算公式: Mr =3/)/(1 31P G f --------------------------公式1 式中: ? Mr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm ; ? f-------轮胎与地面间的滑动摩擦系数,取0.7; ? G 1-----转向前桥负荷,N ; ? P-------轮胎气压,MPa ; 2.转向所需最小工作压力Pmin 及理论流量Qo 计算: 根据公式1计算的力矩Mr 和所选转向器的缸径, Pmin =)]([10S S R M F r -*÷ ------------------公式2 式中: ? Pmin-------转向的最小工作压力,MPa ; ? Mr------在沥青或混凝土路面上的原地转向阻力矩, N.m ; ? S 0------油缸工作面积,㎡; ? S 1------螺杆外径所占面积,㎡ ; ? R F ------扇形齿分度圆半径,m 。 理论流量(Qo)是根据转向盘最大瞬时转速计算: Q 0=60ntS ----------------------------------公式3 式中: ? n —汽车方向盘最大瞬时转速(转/秒),轿车取 1.5r/S, 其它车辆取 1.25r/S ; ? t---助力方向机丝杆螺距; ? S---助力方向机油缸实际工作面积; 3.转向油泵的最大压力Pmax 设计: 公式2计算出的转向压力是转向所需要的最小工作压力,由于转向油泵具有安全保护作用,必须保证转向压力不得大于转向油泵设计的安全压力,建议设计的转向压力为安全 QC/T ×××-20×× 压力的85%,例如:转向压力为8MPa ,那么油泵的安全压力则设计为10MPa 。同时该工作

转向系统部分计算说明书

与转向系统相关的整车参数 最小转弯半径 1)按外轮最大转角 R1=L/sinα+C=2550/sin32.26°-11.7=4.77m 2)按内轮最大转角 R2=[(L/tanβ+B) 2+L2]1/2+C =[(2550/tan38.63°+1540) 2+25502]1/2-11.7 =5.4m 取最小转弯半径Rmin=(R1+R2)/2=5.1m 转向系统布置及传动比匹配 按照总布置给定转向器位置,对转向杆系进行优化设计,得到:齿条行程:140mm 转向器传动比:49.37mm/rev 方向盘总圈数:140/49.37=2.84圈 转向力计算 转向时驾驶员作用到转向盘上的手力与转向轮在地面上回转时产生的转向阻力矩有关。影响转向阻力矩的主要因素有转向轴的负荷、轮胎与地面之间的滑动摩擦系数和轮胎气压。计算公式如下:

转向机的计算 XXX采用的是液压动力转向器,动力转向器应满足下述几个基本要求: ○1运动学上应保持转向轮转角和驾驶员转动转向盘的转角之间保持一定的比例关系○2在减小转向时作用在方向盘上的手力的同时,还应当有合适的“路感”; ○3工作要安全可靠,在动力部分失效后应不影响汽车的行驶安全性 ○4密封性能良好 ○5工作时没有噪声和振动 ○6工作灵敏,转动转向盘后,系统内的压力很快能增长到最高值 首先我们来计算转向机最小应能满足的输出力,对转向机来说只要它输出的对主销的力矩必须能克服地面的最大阻力距,故: F = M r /(L 1 ×cos2θ*ηT) 其中 M r ——原地转向最大阻力距 L 1 ——转向横拉杆到主销的力臂长度 θ——主销内倾角 ηT——梯形机构正效率,此效率一般在0.9左右 在M12中 L 1 =131mm 因此换算到转向机出口点处的力为 Fn = 403424/(131×cos2(12.9°)×0.9)=3602N,为原地转向时转向机应输出的力。 按照下式计算动力转向机理论输出力: Fs=P×S+2×H T×3.14/i 其中: Fs―――转向机理论输出力(N) P―――油缸内工作压力(Pa) S―――油缸有效受压面积(m2) H T ―――方向盘转矩(N.m) i―――转向机传动比(m/rev) 在助力原地转向的情况下,原地阻力距主要靠液压油压力提供,同时方向盘输入力矩也起部分作用,考虑发动机怠速时动力泵的输出压力,按动力转向泵的最小压力计算,即: H T =3.6N.m P=4.6MPa(被选用油泵的最小压力) S=8.946cm2 i=49.37mm/rev 时 按照上述公式可得出Fs=4573N 大于 Fn,能克服原地转向阻力。 选用转向机参数如下:

制动系统设计手册(NEW)

王工: 总体上写得不错,需要进一步改进的建议如下: 1.主要零部件的典型结构图。 2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L 项目验证计划)细化与补充。 3. 分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。 3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。 4.附一典型车型(如L3360奥铃)的制动系统计算书。 储成高 2003.8.23 制动系统的开发和设计 1.系统概述 一般情况下汽车应具备三个最基本的机能,即:行驶机能、转弯机能和停车机能,而其停车机能则是由整车的制动装置来完成的。作为汽车重要组成部分的制动系统,其性能的好坏将直接影响汽车的行驶安全性,也就是说我们希望在轻轻地踩下制动踏板时汽车能很平稳地停止在所要停车的地方,为了达到这一目的,我们必须充分考虑制动系统的控制机构和执行机构的各种性能。 制动系统一般可分为四种,即行车制动系、应急制动系(也称第二制动系)、驻车制动系和辅助制动系统(一般用于山区、矿山下长坡时)。 各种制动系统一般有执行机构和控制机构两个部分组成。其执行机构是产生阻碍车辆的运动或运动趋势的力(制动力)的部件,通常包括制动鼓、制动蹄、制动盘、制动钳和制动轮缸等;其控制机构是为适应所需制动力而进行操纵控制、供能、调节制动力、传递制动能量的部件,一般包括助力器、踏板、制动主缸、储油杯、真空泵、真空罐、比例阀、ABS、制动管路和报警装置等,有的还包括具有压力保护和故障诊断功能的部件。在其控制机构中如果按其制动能量的传输方式制动系统又可分为:机械式、液压式、气压式和电磁式(同时采用两种以上传能方式的制动系统可称为组合式制动系统,如气顶油等)。 制动系统是影响汽车行驶安全性的重要部分,通常其应具备以下功能:可以降低行驶汽

相关文档
相关文档 最新文档