文档库 最新最全的文档下载
当前位置:文档库 › 光伏发电并入电网所面临的问题

光伏发电并入电网所面临的问题

光伏发电并入电网所面临的问题
光伏发电并入电网所面临的问题

光伏发电并入电网所面临的问题近年来,我国光伏发电的国内市场正加速启动,但遇到了困扰风电等新能源多年的“并网难问题。这一问题的产生,除光伏发电自身缺陷、电网建设滞后外,值得担忧的一点是,在某些领域,光伏发电正在复制导致风电迟迟不能上网的风险。

可调可控性弱现有电网捉襟见肘

从国外光伏产业的发展来看,实现并网是全球的一个趋势。业内认为,只有实现并网,才能让发出的电产生效益,这对于实现光伏产业的规模化、保障能源安全、实现节能减排都具有重要意义。

“不过目前光伏发电要实现并网还有一定困难。中节能(杭州)光伏发电有限公司总经理高重恩说,他所在的公司今年已建成了目前全国最大的单体屋顶光伏电站,并成功实现并网发电。不过高重恩认为,自己的电站之所以能快速实现上网,主要得益于政府推动。“作为省里的示范项目,在上网方面是特事特办的,否则不会那么顺利。高重恩说,和风能等新能源一样,太阳能的间歇性等特点,对当前电网的安全和稳定运行有影响。

江西电力公司高级工程师彭莉萍说:“太阳能光伏发电属于调节能力差的能源,昼夜变化、气象条件变化以及季节的变化均会对发电产生影响,由于光伏并网发电系统不具备调峰和调频能力,他的接入对电网接纳能力提出了更高要求。

面对可调可控性差的光伏发电,国内的电网也未能升级到与其匹配的程度。业内认为,要实现以发展清洁能源为目标的新一轮的“能

源革命,实现电网的革命是前提,必须建立起能够适应清洁能源间歇式发电特点,具备信息化、自动化、互动化特点的“智能电网。

记者从国家电网公司了解到,要实现电网的智能化,就意味着对电网的投入要远远高于常规发电项目对应的电网投入比重(当前的合理比例应是1:1)。而我国长期以来忽视对电网的建设投资,多年来电网投资部分仅为发电投资的30%左右,造成电网发展大量欠账,发展滞后问题异常突出。因此面对新能源快速发展的并网需求,现有电网显得捉襟见肘。

电厂电网规划脱节入网标准制订滞后

记者了解到,目前国内真正实现并网发电的太阳能光伏电站还不多,大部分项目仍处于试验阶段。运行数据的缺失,使得大规模光伏发电究竟会对电网造成多大影响难以说清。国家电网能源研究院副院长蒋莉萍说:“即使这些试验性项目也从来没有跟电网协调过,因此电力部门怎么更好地去支持光伏发电,可借鉴的只有风电的经验。

事实上记者注意到,导致起步更早的风电至今无法顺利并网的一些问题,在如今太阳能光伏发电起步之时,就已经开始经露出了苗头。

首先是电厂建设和电网建设规划脱节。有专家告诉记者,前些年风电快速发展时,各地在上风电项目只考虑当地的资源情况,而没有关注消纳市场,使得风电建设和电网建设不配套。有些地方即使接进了电网,也出现了有电送不出去的尴尬局面。

如今,这样的失误正在某种程度上被光伏发电所复制。江西电力公司高级工程师彭莉萍对记者感叹说:“光伏产业发展太快了,供电

公司对信息来源不畅通,新增负荷又不明朗,使电网规划和建设有时处于非常被动的局面,电网建设难以适应。

其次是入网标准、产品检测能力缺失,让电力部门无法大大方方“开门迎客。国家能源太阳能发电研发(实验)中心主任朱小东说,在风电领域,国内在入网标准制订以及检测能力方面就滞后于产业发展,导致产品质量良莠不齐,无法确保并网产品质量,从而给电网安全稳定带来隐患。

“因为缺乏强制标准,有企业在引进风机时,故意拿掉部分控制组件,降低了成本却影响了稳定性,不利于电网安全。国家电网能源研究院副院长蒋莉萍说。而在光伏行业,标准缺失的情形也大同小异。统计显示,目前国内太阳能光伏行业共有各类标准40多个,不过其中多半是关于太阳能产品的,跟并网发电相关的标准只有3个,而且还全是推荐标准,并且有的已经过期。

防止重蹈风电覆辙沦为“垃圾电

尽管目前太阳能发电的某些领域正在重复风电当年的坎坷,不过在专家们看来,目前国内光伏发电的大规模应用并没有展开,因此急需提前布局,为光伏发电实现并网铺路。

研究人员认为,要破解太阳能“并网难的顽疾,首先要克服认识上的一大误区。“很多人认为并网是电力部门一家的事,实际上新能源和传统能源截然不同,怎样满足电网的安全稳定,也是需要太阳能企业考虑的。国家电网能源研究员副院长蒋莉萍说,在并网环节需要电网企业、制造企业,开发商(发电企业)形成一个共同取向。电力部

门加强电网建设的同时,光伏行业亦需提高产品质量,制定出合理入网标准。专家们建议:

一、将电网建设提升为国家工程,加大投入的同时设定合理建设目标。蒋莉萍认为,如果不考虑投入,光从技术层面出发,建设“智能电网是可以实现的。但要考虑到我国的能源建设还在发展中,每年大部分投入仍被用于新建电力项目,因此在电网建设上要以“安全可靠、经济高效为原则。“由国家来牵头,制定出电网发展的目标,对技术、管理各方面都提出具体要求。蒋莉萍说。

二、统一规划电网和电厂建设,光伏电站布局不能各搞各的,要围绕电网规划进行。江西电力公司高级工程师彭莉萍建议,要让电网建设适应光伏产业的快速发展,在光伏产业规划和前期工作中就要有地方供电公司参与,并将配套电网设施作为产业的一个组成部分,同步办理相关用地等手续,以便电网项目和光伏产业能同步核准,同步建设。

三、尽快制订合理入网标准,提高国内太阳能产品的检测能力,消除不良产品给电网安全带来的隐忧。河北英利集团副总裁刘耀诚说,出台切实可行、简单易操作的光伏并网电站等技术标准规范和实施手册,将达不到标准,危害市场的企业排除在外,可以有效防止行业乱局,提高光伏发电的整体水平,保障电网运行安全。在具体的标准制订上,蒋莉萍建议,可以由国家标准委员会牵头,把电网企业、调度专家、规划发展方面的专家、制造商和开发商都纳入团队中去,广泛听取各方意见。

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

光伏并网发电对电网系统负面影响_徐桢

中国科技信息2014年第23期·CHINA SCIENCE AND TECHNOLOGY INFORMATION Dec.2014 资源环境技术推广 -47- 太阳能对人类来说几乎是无限的,随着传统能源的日渐减少和环境污染的日趋严重,光伏发电作为新型清洁可再生能源,近年来得到了人们的广泛关注,并迅猛发展起来。虽然光伏发电的实际应用技术还没有完全成熟,存在着包括太阳效能利用率低,蓄电池造价高等问题。在世界范围内大力发展“低碳经济”呼声越来越高,光伏发电作为其中的生力军和重要组成部分,投入大量的资金和研究力量,随着科技发展,问题会得到相应解决,将来光伏发电在各类电源中所占比例会逐步增高。但是,光伏并网发电超过一定比例对电网形成的影响是否就像人们想的那样乐观? 光伏发电的基本原理 太阳能光伏发电系统的组成 太阳能光伏发电系统主要部件:太阳能光伏电池组、蓄电池、控制器和交直流逆变器。 太阳能光伏电池板 目前,世界上太阳电池的实验室效率最高水平为:单晶硅电池24%(4cm 2),多晶硅电池18.6%(4cm 2), InGaP /GaAs 双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8%(稳定),碲化镉电池15.8%, 硅带电池14.6%,二氧化钛有机纳米电池10.96%。 太阳能光伏发电系统的分类 目前太阳能光伏发电系统大致可分为三类,独立光伏 发电系统(离网光伏蓄电系统),光伏并网发电系统(集中电站)、分布式光伏发电系统。 光伏发电的局限性 气象、气候条件局限 光伏电池光电转换效率与光照强度(单位面积上接受可见光能量)有关,即天气变化对光伏发电实时出力影响很大。如果光伏电站并网发电达到电网电源的一定比例,当日照情况发生突变时(例如阴雨天、空气污染造成的雾霾等),将造成上网电量大幅波动,而这时电网用电负荷并没有变化,以此导致电网电源出力不足(部分用户停电)。同一个地区一年四季春夏秋冬每个季节太阳光照情况皆不相同,在一天当中白昼到黑夜每个时段太阳光照角度都不一样,光伏发电量的变化也是巨大的。 地理条件局限 由于技术限制,光伏电池光电转换效率现阶段还比较低,在标准条件下地面上接收到的太阳辐射强度为1000W/m 2,相对于火电、核电等传统电厂,占地面积将更大。由于太阳能电池板下面不适合植被生长,为了不破坏生态环境只能将光伏电站建在建筑物屋顶和和荒漠。 建筑物屋顶远远不能满足大装机容量电站用地要求,而荒漠是远离城市等用电负荷中心,需要建设长距离输电线路,成本大大提高。 容量传输局限 DOI:10.3969/j.issn.1001-8972.2014.23.011 光伏并网发电对电网系统负面影响 徐?桢 山东省烟台市供电公司 徐?桢 本文简述光伏发电基本原理,指出光伏并网发电的局限性,以德国2014年6月9日光伏出力超过系统负荷的50%为例分析讨论光伏并网发电形成规模后对大电网影响,提出光伏并网发电形成规模以后对电力系统的负面影响。 1 2

光伏发电并网对电网运行的影响及解决措施

光伏发电并网对电网运行的影响及解决措施 发表时间:2018-06-22T14:29:11.050Z 来源:《电力设备》2018年第4期作者:任于展 [导读] 摘要:太阳能是一种可再生能源,具有安全、清洁、分布广泛等特点,光伏发电能够有效利用太阳能实现电力能源的生产,符合现代化的节能环保理念。 (东北电力大学吉林省吉林市 132012) 摘要:太阳能是一种可再生能源,具有安全、清洁、分布广泛等特点,光伏发电能够有效利用太阳能实现电力能源的生产,符合现代化的节能环保理念。但是,光伏发电并网的电源容量的增加也会对配电网的运行控制产生不利影响,降低供电质量。文章分析了光伏发电并网对电网运行的影响,并提出几点提高光伏并网电网稳定性措施。 关键词:光伏发电;并网;电网运行;影响 随着光伏电站并网数量的增加,这种依靠太阳能等自然资源的发电方式对配电网的影响也逐渐显现出来。光伏发电容易受到自然因素的影响,具有一定的随机性和波动性,同时,光伏电站并网后,配电网由原来的单电源系统转变为多电源系统,导致配电网中谐波和直流分量增加,影响配电网的安全运行和电力设备的正常工作。新能源企业要抓住机遇,迎接挑战,认真分析和总结光伏发电并网存在的问题,并制定有效方案予以解决。 1.光伏发电并网简介 光伏发电是指通过半导体界面的“光生伏特效应”将光能转换为电能的一种发电技术。光伏发电系统的实现需要太阳能电池、控制器和逆变器的配合使用,将多个太阳能电池板 (组件)按照不同的排列形式(进行串联、并联)组成太阳能电池方阵,在接收太阳能之后电压逐渐升高,达到系统输入的标准之后就会经过光伏组件将其转化成为直流电,经过直流配电箱汇流到逆变器,将直流电转换为交流电之后再经过交流配电箱提供给电网或者相关负载。 光伏发电系统并网方式主要有分布式和集中式。分布式是相对于集中式来说的,其容量相对较小,分布比较广泛,自身带有负载,例如居民太阳能发电;集中式就是指集中建立起 容量较大的电站,可以直接向电网进行供电,自身并不具有负载。依据《分布式电源接入配电网设计规范》,对于单个并网点接入的电压等级应按照安全性、灵活性、经济性的原则,经过综合比选后确定,具体可参考表 1。 表 1 分布式电源接入电压等级推荐表 注:最终并网电压等级应根据电网条件,通过技术经济比例论证确定。若高低两级电压均具备接入条件,优先采用低电压等级接入。 2.光伏发电对电网安全稳定的影响 2.1对电网运行特性的影响 光伏发电并网的电量储集输送与太阳光照相关,具有昼发夜停的特征,所以通常会有较大的幅度波动。光伏电站利用取之不竭的太阳能发电,并且能够就近发电,具有不需要长距离输送燃料、运行成本比较低、维护简单、无污染、无噪音等特点。总体而言,光伏电站与传统的火电站、水电站、风电站、生物质发电站都有较大的区别,在接入电网时通常会在一定程度上影响电网安全稳定运行,具有一定的特殊性,影响电网运行的特性。 2.2孤岛效应的影响 孤岛效应是指电路的某个区域有电流通路而实际没有电流流过的现象。由于孤岛效应的潜在危险性与对设备的损害性,社会公共工程与发电设备行业长期以来都十分注重光伏并网逆变器的反孤岛效应控制。孤岛效应的产生可能会对配电系统造成以下不良影响:(1)危害电力维修人员的生命安全;(2)影响配电系统的保护开关动作程序;(3)供电电压与频率不稳定并造成设备破坏;(4)供电恢复时产生浪涌电流,造成再次跳闸,并破坏光伏系统、负载与供电系统;(5)单相供电造成系统三相负载的欠相供电问题。孤岛效应大多产生在配电侧,在周围负载形成电网难以控制的孤岛,导致用户负荷出现不稳定现象,出现电能闪电,供电恢复后又产生并网冲击。 2.3对电能质量的影响 光伏发电接入电网系统中,通常具有大量的整流与逆变装置,在这些大功率电子器件的作用下,能够产生直流逆变后的交流电大量高次谐波,对电网带来危害巨大的谐波污染,影响电网运行的安全、稳定,对用户用电带来巨大的困扰。而这种谐波的产生也相对较难滤除,会激发功率谐振,对电网系统的电能质量造成严重的影响。电流谐波危害对电网系统与用户的影响范围非常大,比如改变电压平均值、产生电压闪变、导致旋转电机与发电机的发热、变压器的发热以及磁通饱和,此外,还会对通信系统造成干扰,对变压器、断路器、电流型电压器以及计量仪表等造成严重的影响。 2.4对继电保护可靠性的影响 光伏发电中的分布式发电系统通常会接入配电系统的末端,而配电系统的电压等级较低,除了一些小电源之外,大多都是负荷为主,潮流方向比较单一,所以在配网中的继电保护装置大多为过流保护形式,并不具备特定的方向性。光伏发电系统的光伏电源接入会改变配网的潮流,可能出现双向流动,这就使得传统的保护形式已经无法适应这种双向流动的保护,有可能出现误动、分支失电现象。所以光伏发电并网时,必须考虑到继电保护方面,必要时加设方向保护。 3.提高光伏并网电网稳定性的措施 3.1合理布点 光伏发电在接入电网系统时,接入末端与联络断面情况下的影响是不同的,对电网系统安全稳定的影响具有差异性,并网过程中会导

风力发电对电力系统的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

未来太阳能光伏并网发电对电网的影响

未来太阳能光伏并网发电对电网的影响 尽管寻找新能源的工作已经有相当的历史了,但是世界性的环境污染和能源短缺已经迫使人们更加努力的寻找和开发新能源。在寻找和开发新能源的过程中,人们很自然的把目光投向了各种可再生的替代能源。光伏发电就是其中之一。虽然光伏发电的实际应用存在着种种的局限,但是随着光伏发电成本的降低和矿物发电成本的提高以及矿物能源的减少,总有一天光伏发电的成本将会与传统发电成本相当。到时侯,光伏发电将逐步进入商业化阶段。光伏并网发电形成规模后会对电网形成什么样的影响是本文想要探讨的问题。 一、光伏发电的基本原理 1 太阳能光伏发电系统的组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: 光伏电池:光电转换。 控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。 交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 2 太阳能光伏电池板: 太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N结。工作原理和二极管类似。只不过在二极管中,推动P-N结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响P-N结空穴和电子运动的是太阳光子和光辐射热(*)。也就是通常所说的光生伏特效应原理。目前光电转换的效率,大约是光伏电池效率大约是单晶硅13%-15%,多晶硅11%-13%。目前最新的技术还包括光伏薄膜电池。(参考资料12)1839年,法国物理学家A.E.Becquerel在实验室中发现液体的光生伏特效应(由光照射在液体蓄电池的金属电极板上使得蓄电池电路中的伏特表产生微弱变化)至今,在所有能找到的材料中,由单晶硅做成的P-N结光伏电池是光电转换效率最高的材料。 3 太阳能光伏发电系统的分类: 目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。 A)离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。 B)光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。 C)A, B两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。 二、光伏发电的优点 进入70年代后,由于2次石油危机的影响,光伏发电在世界范围内受到高度重视,发展非常迅速。从远期看,光伏发电将以分散式电源进入电力市场,并部分取代常规能源。不论从近期和从近期看,光伏发电可以作为常规能源的补充,在解决特殊应用领域,如通信、信号电源,和边远无电地区民用生活用电需求方面,从环境保护及能源战略上都具有重大的意义。光伏发电的优点充分体现在以下几个方面: 1,充分的清洁性。(如果采用蓄电池方案,要考虑对废旧蓄电池的处理) 2,绝对的安全性。(并网电压一般在220V以下) 3,相对的广泛性。 4,确实的长寿命和免维护性。

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

电网质量对光伏逆变器的影响

电能质量对光伏逆变的影响测试实验 0.引言 随着不可再生能源的日益枯竭以及电力系统中大规模光伏系统的接入,光伏系统和电网之间的相互影响日趋紧密。一方面,由于光伏发电采用最大功率点跟踪策略进行控制,其输出功率与太阳辐照度和环境温度直接相关,而太阳辐照度随着时间、气象等诸多因素的变化,不是一个稳定值,因此,光伏发电的输出功率在全天中也具有较大的波动性。较大的波动性将导致光伏系统并网侧电压波动、电压闪变、频率波动等一系列电能质量的问题。其中,光伏发电系统通过电力电子装置实现功率变换及并网运行,在此过程中并网逆变器的高频特性和非线性特性会产生较多谐波和直流分量等,影响用户电能质量,损害用户设备,造成经济损失。另一方面,电网中存在的谐波和不平衡负序分量将导致光伏系统输出有功功率波动和输出电流畸变,会影响光伏并网逆变器的正常运行。 本文基于光伏发电并网系统和可编程交流电源模拟光伏并网状态,针对不同的电网电压畸变率,展开对光伏系统输出有功功率波动和输出电流畸变的测试。 1.实验室测试方法 实验室测试中,测试系统的示意图如图1所示: 太阳能光伏发电系统通过光伏组件将太阳能转变为直流电能,再通过光伏逆变器将直流电转变为交流电并入电网(可编程交流电源),与电网协同向本地阻性负载(5KW)供电。 测试流程为: 1.根据示意图正确连接电路和仪器仪表,电能质量测试点应设在光伏逆变器出口并网处。 2.通过可编程交流电源分别设置电网的电压畸变率为2%,3%(a),3%(b),3%(c),3%(d),4%。a,b,c,d表示同一电压畸变率下的不同波形。测试在不同电压畸变率下并网前后的电网输出功率以及逆变器输出电流波形,并记录在表一中。 3.通过MATLAB分析实验数据,求解出在不同电压畸变率下的逆变器输出电流的各次谐波分量及电流畸变率,并记录在表二中。

浅谈风力发电对电网的影响

浅谈风力发电对电网的影响 随着我国经济的发展,大规模企业越来越多,对能源的需求也在不断的增长。但是由于企业的增加对矿产资源的开采带来了很大的压力,矿产资源属于不可再生资源,因此,大规模的开采资源总有一天会被开采殆尽。为此,必须不断的加快新能源的开发与利用,以替代自然资源,文章通过介绍风力发电对电网的影响,更加清晰阐述了新能源的优势,表明了其在当今社会中的重要性。 标签:风力发电;发电机;电网;可持续发展 近年来,随着我国对矿产资源的不断开发利用,出现了资源匮乏的危机。相信许多仁人志士也已经意识到了这一点,寻找新能源,替代自然资源。已经成为了当代发展的目标。既能不污染环境,又能够实现可持续发展是当代的主题。风能完全符合这一主题,而且在我国风能资源十分丰富,蕴藏了巨大的能量。因此有效推动风力发电的进一步利用和发展尤为重要。以下就风力发电对电网的影响展开阐述。 1 风力发电机的类型 实现风电并网的前提是首先考虑风力发电机的类型,不同的类型发电机有不同的工作原理。因此其对电网产生的影响也不尽相同。目前我国的风力发电机有以下三种类型。现分述如下: 1.1 异步风力发电机 異步发电机是目前国内运用最多的发电机,其具有结构简单、运行可靠、价格实惠等优势。但是这种风力发电机的发电能力较新型的机组发电能力低。原因是其机组为定速恒频机组,运行转速基本稳定。不仅如此,在其运行的过程中还得从电力系统中吸收无功功率,才能正常运行。目前,为了满足该种发电机的使用,多数情况下是在其机端并联补偿电容器,以满足其工作的需求。 1.2 双馈异步风力发电机 此种发电机来自国外,价格昂贵。仅有少数在我国使用。但是该种发电机可在一定的范围内变速运行。通过调节器功率因数,不用再额外的吸收无功功率。例如其功率因数可以从领先的0.95~滞后的0.95。 1.3 直驱式交流永磁同步发电机 目前,我国有许多的大型风力发电机组,但是在实际的运用中,有一个共性,就是齿轮箱容易出故障,因为此减少了其自身的寿命。所以为了解决这一问题,人们研究了无齿轮箱发电机。便是直驱式交流永磁同步发电机。

论述光伏发电接入对配网继电保护的影响

论述光伏发电接入对配网继电保护的影响 发表时间:2016-10-12T14:25:08.153Z 来源:《电力设备》2016年第14期作者:段炜 [导读] 全世界范围内都在大力发展光伏发电技术,发展迅猛。 (国网宁夏电力公司吴忠供电公司宁夏吴忠 751100) 摘要:全世界范围内都在大力发展光伏发电技术,发展迅猛。光伏发电系统中多分布式光伏电源并网成为发展潮流时,并网配电网引起的继电保护问题也就越来越多,对配电网保护的影响也就越来越严重,这带来的问题和挑战值得电力工作者重新审视光伏并网问题。高容量大规模的光伏发电电源涉网后必定会影响潮流分布,改变配电网的网络结构,而原有配电网的继电保护问题是基于单电源辐射型结构的保护进行整定,可见,光伏发电涉网保护问题是电网规划及运行维护人员需要重大考虑的一大问题,值得科技工作者进行相关的研究。 关键词:光伏发电;配网;继电保护;影响 随着光伏发电系统的日益成熟且成本越来越低,光伏系统并网成为利用这一资源的最好方式。然而,光伏发电有其自己的特点,光伏发电系统的并网,使配电系统从单系统放射状网络变为分布有中小型系统的有源网络,改变系统的潮流分布,进而影响配电网继电保护的合理性,对配电系统的继电保护造成一定的影响。 一、光伏发电的优点 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。它具有常规火力发电系统所不具备的优势:①无枯竭危险、安全可靠、无噪声、无污染排放。②不受资源分布地域的限制,可利用建筑屋面。③无需消耗燃料和架设输电线路即可就地发电供电。④能源质量高,对实现节能减排、可持续发展有重要意义。⑤建设周期短,获取能源花费的时间短。同时微电网接入采用了电力电子技术实现的“柔性”接入,其电源特征与常规的“旋转”发电机发电接入不同,从而对常规的配电网继电保护带来影响。 二、光伏并网发电系统 2.1光伏发电原理 光伏发电即利用光伏电池阵列将太阳能转换成直流电,再通过直流/交流(DC/AC)并网逆变器将直流电逆变成50Hz、220/380V的交流电,或者升为更高的电压并入电网。光伏并网发电系统的模型主要由太阳能光伏阵列、并网逆变器、计量装置及配电系统组成,光伏发电系统结构如图1所示。逆变装置可以分为单级式逆变和多级式逆变,多级式逆变便于实现最大功率跟踪控制和直流电压的控制,但是电力电子器件数目的增多使得结构变的复杂,同时增加了电能损耗,接入时对电网产生一定的影响。 2.2并网光伏发电特点 对于并网型光伏系统,在向当地负荷提供电能和向电网输送电能时,由于太阳光照受四季、昼夜等气象条件的影响,造成输出功率的波动,此外电力电子设备的使用对电网的谐波也产生一定的影响。当并网容量较大时,光伏系统对电网的影响尤其突出。为了使电网能够安全稳定经济地运行,光伏系统发出的电能质量应在谐波、电压、频率等方面满足国家相关标准。 三、配电网的保护配置 目前我国的中低压配电网的电流、功率的方向是恒定的,因此其保护配置也是基于其电源系统设计的。为了简化保护配置,对于不用于其他线路连接,直接向终端用户供电的线路,一般采用瞬时电流速断保护加定时限过电流保护,对于不用直接向终端用户供电的线路,采用三段式电流保护与其他保护相配合。瞬时电流速断保护按线路是否足够灵敏度的原则,整定以保护全线。对于非全电缆线路,配置三相一次重合闸,以保证在其发生瞬时故障时,快速恢复供电。 四、光伏发电接入对配电网继电保护的影响 4.1光伏发电并网对电流保护和重合闸的影响 三相短路的故障一般最为严重,此情况对配电网的影响也更大,故分析系统涉网严重情况,在系统最大运行方式下发生三相短路时的情况来定义并网系统的保护安全界限。光伏发电涉网保护问题除了针对电流保护之外,配置有重合闸前加速和后加速以及保护电流的电配网,也由此产生自动重合闸问题,当光伏系统发电电源与并网系统电源之间联接线发生故障导致保护动作后,在自动重合闸重合之前,并网电网仍然与光伏电源联络在一起,光伏电源没有解列,光伏电源就会继续加大故障点的故障电流,因为其继续向故障点供电,并且会导致电弧无法熄灭,并且重合闸重合会使故障点电弧阶跃重燃,甚至无法熄灭,使临时性故障转变成永久性故障,造成巨大损失。退一步讲,发生非同期合闸的可能性还是有的,原因是重合闸动作前的这段时间即使故障点没有使介质绝缘彻底损坏,也可能会对配网和光伏电源造成破坏和冲击,因为光伏发电系统和电网并网并未解列。 4.2光伏发电并网对熔断器重合器及分段器的影响 广泛应用于配电系统、控制系统和用电设备中的熔断器是一种具有结构简单、成本低和操作方便等优点的电流保护器。反时限特性的熔断器电流大则熔断时间短,电流小则熔断时间长。经常采用应用于馈线自动化重合器和分段器配合的方案中。能并在整定时间内动作检测故障电流跳闸。常使用在配电网自动化中的智能化开关设备之一重合器具有控制和保护功能。 为防止事故扩大,通常第一、二次被整定为快速分闸,可以被预先整定重合器的动作程序指分闸动作快速,以消除瞬时故障。重合器后面几次动作都带有时限,以便和分段器进行配合。分段器开关设备在失压或无电流情况下是可以自动分闸的。有电压——时间式、过电

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响 摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方而的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这此技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。 关键词:风力发电,电能质量,稳定性,解决方案 0引言能源是推动社会进步和人类赖以生存的物质基础。目前,全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度。在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。对于可再生能源的开发和利用变得颇为急切。 在各种可再生能源利用中,风能具有很强的竟争力。风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。 我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力。江苏省如东县建设了我国第一个风电场特许权示范项目。该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。 大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定,但由于和我国电网结构的实际情祝差别很大,并不能完全适合我国的情况。本文主要介绍风力风电并网对电力系统的影响。 1风力发电对电力系统的影响 风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。风电场并入电网主要会面临以下一些技术问题:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。 1.1风力发电场的规模问题 目前,我国正在进行全国电网互联,电网规模日益增大。对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。 风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时,首先要考虑风能储量和地理条件。然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模。 另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。在现有的技术水平下风力发电还无法准确预报,因此风电基木上是不可调度的。从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。 1.2对电能质量的影响 风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。 异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过5~6倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。 1.3对稳定性的影响 风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范

分布式光伏接入对配电网系统的影响分析

分布式光伏接入对配电网系统的影响分析 1.对电压的影响 集中供电的配电网一般呈辐射状。稳态运行状态下,电压沿馈线潮流方向逐渐降低。接入光伏电源后,由于馈线上的传输功率减少,使沿馈线各负荷节点处的电压被抬高,可能导致一些负荷节点的电压偏移超标,其电压被抬高多少与接入光伏电源的位置及总容量大小密切相关。通常情况下,可通过在中低压配电网络中设置有载调压变压器和电压调节器等调压设备,将负荷节点的电压偏移控制在符合规定的范围内。对于配电网的电压调整,合理设置光伏电源的运行方式很重要。在午间阳光充足时,光伏电源出力通常较大,若线路轻载,光伏电源将明显抬高接入点的电压。如果接入点是在馈电线路的末端,接入点的电压很可能会越过上限,这时必须合理设置光伏电源的运行方式,如规定光伏电源必须参与调压,吸收线路中多余的无功。在夜间重负荷时间段,光伏电源通常无出力,但仍可提供无功出力,改善线路的电压质量。光伏电源对电压的影响还体现在可能造成电压的波动和闪变。由于光伏电源的出力随入射的太阳辐照度而变,可能会造成局部配电线路的电压波动和闪变,若跟负荷改变叠加在一起,将会引起更大的电压波动和闪变。虽然目前实际运行的光伏电源并没引起显著的电压波动和闪变,但当大量并网光伏电源接入时,对接入位置和容量进行合理的规划依然很重要。 2.对短路电流的贡献 通常认为在配电网络侧发生短路时,接入到配电网络中的光伏电源对短路电流贡献不大,稳态短路电流一般只比光伏电源额定输出电流大10%~20%,短路瞬间的电流峰值跟光伏电源逆变器自身的储能元件和输出控制性能有关。在配电网络中,短路保护一般采用过流保护加熔断保护。对于高渗透率的光伏电源,馈电线路上发生短路故障时,可能由于光伏电源提供绝大部分的短路电流而导致馈电线路无法检测出短路故障。1999年,IEA-PVPS-Task-5(国际能源署中的光伏技术工作组)在日本曾用4个不同厂家控制电流注入的逆变器连接到一个配电网上的柱式变压器,然后在变压器另一侧进行短路试验。试验表明,短路电流上升不超过故障前的2倍,1~2个周波就隔离了故障。此外,日本还对一个200kWp的光伏电源系统 进行短路试验,研究发现:短路电流经过变压器后,电流变小,变压器过流保护不动作。2003年,美国的NERL(美国可再生能源国家实验室)曾做过关于分布式发电与配电网络之间的

风力发电对电网的影响

风力发电对电网的影响 发表时间:2016-12-01T13:16:42.797Z 来源:《电力设备》2016年第18期作者:周春杰[导读] 火电所占的比例过大,由此带来了日益严重的燃料资源的短缺和环境污染问题。 (国网天津城东供电公司)摘要:能源是推动社会进步和人类赖以生存的物质基础。目前全球能源消耗的速度逐年增加,大量的能源消耗,以带来很多的环境问题,如环境变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其消耗力度,在我国由于长期发电结构不合理,火电所占的比例过大,由此带来了日益严重的燃料资源的短缺和环境污染问题。关键词:能源、风能、电网、影响 一、引言: 能源是推动社会进步和人类赖以生存的物质基础。目前全球能源消耗的速度逐年增加,大量的能源消耗,以带来很多的环境问题,如环境变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其消耗力度,在我国由于长期发电结构不合理,火电所占的比例过大,由此带来了日益严重的燃料资源的短缺和环境污染问题。对于可再生资源的开发和应用有着重大的前途。 在各种各样的可再生自然资源中,风能有很大潜力,风能在发电的技术上日益成熟,商业化应用的提高,是最具有大规模开发利用前景的可再生自然资源。经济方面,风力发电成本的不断下降,同时常规能源发电由于环保要求的增高,随着风力发电技术的成熟,风力发电的成本将有进一步降低。 当风电装机容量占总电网容量的比例较大时对输电网的安全和经济运行都会带来击。大风天气时风电出力增加,会造成严重的输电瓶颈。此外,大规模风力发电对系统小干扰稳定、频率稳定及电压稳定都有着不同程度的影响。 二、风力发电机的类型 分析风电并网的影响,首先要考虑风力发电机类型的不同。同风电机组的工作原理、数学模型都不相同,因此分析方法也有所差异。目前国内风电机组的主要机型有3种,每种机型都有其特点。 2.1异步风力发电机 国内已运行风电场大部分机组是异步风电发电机。主要特点是结构简单、运行可靠、价格便宜。这种发电机组为定速恒频机沮,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的几率比较小,因而发电能力比新型机组低。同时运行中需要从电力系统中吸收无功功率。 2.2双馈异步风力发电机 国内还有一些风电场选用双馈异步风力发电机,大多来源于国外,价格较贵。这种机型称为变速恒频发电系统,其风力机可以变速运行,运行速度能在一个较宽的范围内调节,使风机风能利用系数Cp得到优化,获得高的利用效率;可以实现发电机较平滑的电功率输出;发电机本身不需要另外附加无功补偿设备,可实现功率因数在一定范围内的调节。 2.3直驱式交流永磁同步发电机 大型风力发电机组在实际运行中,齿轮箱是故障较高的部件。采用无齿轮箱结构能大大提高风电机组的可靠性,降低故障率,提高风电机组的寿命。目前国内有风电场使用了直驱式交流永磁同步发电机,运行时全部功率经A-D-A变换,接入电力系统并网运行。与其他机型比较,需考虑谐波治理问题。 三、风力发电并网方式 直接影响到风力发电机能否向电网输送电能以及机组是否受到并网时冲击电流影响。并网控制装置有软并网、降压运行和整流逆变三种方式。 3.1软并网: 现代的风电机组主要以软并网的方式。即采用电力电子装置在发电机转轴同电力网频之间建立一种柔性连接。在风电机组启动时,控制系统对风速不间断地检测。由于异步电动机在启动时,其转速小,切入电网时其转差率较大。会产生相当于发电机额定电流的5—7倍的冲击电流电流。此电流不仅会对电网造成很大的冲击,而影响机组的使用寿命.建议风电机组启动时,其转速接近或达到同步转速时切入电网。 3.2降压运行装置: 软并网装置只是在风力发电机启动时运行,而降压装置是始终运行的,控制方法也比较复杂,该装置在风速低于风力发电机启动风速时将风力发电机与电网切断,避免了风力发电机的电动状态。 3.3整流逆变装置: 整流逆变是一种较好的并网方式,它可以对无功功率进行控制,有利于电力系统的安全稳定的运行,缺点是造价高。随着风电场规模的不断扩大和大功率电力电子设备价格的降低,将来这种并网装置可能会得到广泛的应用。 四、风力发电对电力系统的影响 4.1电能的质量的影响 风资源的不确定性风电机组本身的运行特性是风电机组的输出功率是波动的,可能影响电网的能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光的闪烁、电视机画面质量下降、电动机转速不均和影响电子仪器、计算机、自动控制设备的正常工作状况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大的影响。但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一个电网上的其它电气设备的正运行,甚至会影响到整个电网的稳定与安全。

相关文档
相关文档 最新文档