文档库 最新最全的文档下载
当前位置:文档库 › 高等代数的知识结构

高等代数的知识结构

高等代数的知识结构
高等代数的知识结构

高等代数知识结构一、高等代数知识结构图

高等代数线性代数

工具

线性方程组

中心课题

线性典范型

研究范围

线性空间

行列式

矩阵

线性方程组

向量相关性

行列式的计算

行列式的性质

矩阵的秩

矩阵的运算

与逆

矩阵的初等变换

线性方程组的解法及判别定理

线性方程组解的结构

极大线性无关组

线性相关和线性无关

二次型

线性流形

线性函数

若尔当典范性

化为标准型(配方法,

线性方程组法,正交法)

对角化

正定性,合同

单线性函数

对称双线性函数

J矩阵

II-C定理

矩阵的可对角化

线性空间

欧式空间

酉空间

线性空间的性质与同构,

子空间的判定

线性变换

坐标变换与基变换

特征值与特征向量

可对角化及不变子空间

欧式空间的性质

正交化与正交补的求法

正交变换与正交矩阵

酉空间的性质

复数域上的正交变换

二、高等代数知识结构内容

(一)线性代数: 工具:线性方程组

1.行列式:

1行列式的计算设有2n 个数,排成n 行n 列的数表

nn

n n n n a a a a a a a a a

21

2222111211

,即n 阶行

列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积

n 21nj j 2j 1a a a

⑴的代数和,这里n 21j j j 是n 21,,,

的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号.即

nn

n n n

n

a a a a a a a a a

2

12222111211

=()

()n 21n 21n 21nj j 2j 1j j j j j j 1a a a τ∑-,

这里∑n

21j j j 表示对所有n 级排列求和. a.行列式的性质:

性质1.行列互换,行列式不变。

性质2.一行的公因子可以提出来(或以一数乘行列式的一行就相当于用这个数

多项式理论

整除理论

因式分解理论

多项式根的理论

多元多项式/ 对称多项式

最大公因式定理

互素与同于

因式分解唯一性

重因式 复数域

实数域 有理数域

求法

判定(爱绅斯坦因)

根的判别式 韦达定理

乘此行列式。

性质3.如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外与原行列式的对应行一样。

性质4.如果行列式中两行相同,那么行列式为零。(两行相同就是说两行对应元素都相同)

性质5.如果行列式中两行成比例。那么行列式为零。 性质6.把一行的倍数加到另一行,行列式不变。 性质7.对换行列式中两行的位置,行列式反号。

2.矩阵:

a.矩阵的秩:矩阵A 中非零行的个数叫做矩阵的秩。

b.矩阵的运算

定义 同型矩阵:指两个矩阵对应的行数相等、对应的列数相等的矩阵. 矩阵相等:设n m ij a A ?=)(,n m ij b B ?=)(, 若 ij ij b a =),,2,1;,,2,1(n j m i ==, 称

B A =.

线性运算:n m ij a A ?=)(,n m ij b B ?=)( 加法:???

?

????++++=+=+?mn mn m m n n n

m ij ij b a b a b a b a b a B A

11111111)( 数乘:???

?

????==?mn m n n

m ij a k a k a k a k a k kA 1111)( 负矩阵:n m ij a A A ?-=-=-)()1( 减法:???

?

????----=-=-?mn mn m m n n n

m ij ij b a b a b a b a b a B A

11111111)( 矩阵的乘法定义:设 s m ij a A ?=)(,n s ij b B ?=)(

??

?

?

????=ms m s a a a a AB 1111?

????????sn s n b b b b 1111?

??

?????=mn m n c c c c 1111其中元素[]is i i ij a a a c 2

1

=????

?

?

??????sj j j b b b 21sj is j i j i b a b a b a +++= 2211),,2,1;,,2,1(n j m i ==

A 的列数 =

B 的行数。

AB 的行数 = A 的行数;

AB 的列数 = B 的列数.

A 与

B 的先后次序不能改变.

(5)矩阵的初等变换

矩阵的等价变换形式主要有如下几种:

1)矩阵的i 行(列)与j 行(列)的位置互换;

2)用一个非零常数k 乘矩阵的第i 行(列)的每个元;

3)将矩阵的第j 行(列)的所有元得k 倍加到第i 行(列)的对应元上去。

3.线性方程组

一般线性方程组.这里所指的一般线性方程组形式为

11112211211222221122,,.n n n n s s s n n s ax ax ax b ax ax ax b ax ax ax b +++=??+++=????+++=

?

()i

()i 式中(1,2,,)i xi n =代表未知量,(1,2,,;1,2,,)i j a i s j n ==称为方程组的系数,(

1,2,,)j b j n =称为常数项. 线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s bb b ====. 令

11

12121

2221

2

n n s s sn a a a a a a A a a a ??????=??????,12n x x X x ??????=??????, 12s b b B b ??

????=??

????

则()i 可用矩阵乘法表示为

A X

B =,,,.m n n m

A C X C

B

C ?∈∈∈

a.线性方程组的解法 1)消元法

在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用. 2)应用克莱姆法则

对于未知个数与方程个数相等的情形,我们有 定理1 如果含有n 个方程的n 元线性方程组

111122112

1122222

1122,,.n n n n n n n n n n ax ax ax b ax ax ax b ax ax ax b +++=??+++=????+++=

?

()i i

的系数矩阵

1112121

2221

2

n n n n nn a a a a a a A a a a ??????=??????

的行列式

11

1212122212

det 0n n n n nn

a a a a a a A a a a =

≠,

那么线性方程组()i i 有唯一解:

d e t (1,2,,),d e t j

j

B x j n A

== 其中d e t j B 是把矩阵中第j 列换成线性方程组的常数项12,,,n b b b 所成的矩阵的行列式,即

11

1,111,1

122

2,122,121

,1,1

d e t ,1,2,,.j j n

j j n

j

n n j n n j n n

a a

b a a a a b a a B j n a a b a a -+-+-+== 此外,还可以叙述为,如果含有n 个未知数、n 个方程的线性方程组Ax b =的系

数矩阵的行列式d

e t 0A ≠,则线性方程组Ax b =一定有解,且解是唯一的. 广义逆矩阵A -

设m n

A C

?∈.如果存在n m G C ?∈,使得A G A A =,则称G 为矩阵A 的一个{1}-广义逆矩阵,记作A -.矩阵A 的{1}-逆总是存在的,但一般不是惟一的[12],矩阵

A 的{1}-逆的全体记为{1}A .

若m n A C ?∈,A -n m C ?∈为A 的一个{1}-广义逆矩阵,则对,n m

V W C

?∈为任意的n m ?矩阵,矩阵A 的一个{1}-广义逆矩阵为

G A V A A V A A

---

=+-, 同时还可以表示为

()()m n G A V E A AE A

A W ---

=+-+-. 广义逆矩阵A -的计算:

(1)设(

0)mn r A C r ?

∈>,且有m m m P C ?∈和n 阶置换矩阵Q 使得 ()

,(),r r nr E K P A Q KC O O ?-??=∈????

则对任意的()()

nr m r L C

-?-∈,n m ?矩阵 r E O G Q P O L ??

=????

是A 的一个{1}-广义逆矩阵.若存在n n

n T C ?∈使得

,r

E O PAT O O ??

=????

则矩阵的{1}-逆的全体

12()()()()

1221222122{1},,.r r m r n r r n rm r E L A T P L C L C L C L L ?--?-?-??????=∈∈∈??????????

(2)设m n

A C

?∈,则A 有惟一{1}逆的充分必要条件是m n =,且()r A n =,即A 可逆.这个惟一的{1}逆就是1A -. 4.向量相关性

a.判断向量组线性相关的方法 1)线性相关

2)的对应分量成比例线性相关 3)含有零向量的向量组是线性相关的

4)向量组线性相关该组中至少有一个向量可由其余的向量线性表出

5)部分相关则整体相关

6)设向量组可由向量组线性表出,如果r>s,则线性相关;

7)n+1个n维向量必线性相关(个数大于维数)

8)该向量组的秩小于它所含向量的个数向量组线性相关

9)n个n维的向量构成的行列式=0 该向量组是线性相关的

10)线性相关向量组中每个向量截短之后还相关

b.判断向量组线性无关的方法

1)线性无关

2)的对应分量不成比例线性无关

3)向量组线性无关该组中任何一个向量都不能由其余的向量线性表出

4)整体无关则部分无关

5)线性无关向量组中每个向量加长之后还无关

6)该向量组的秩等于它所含向量的个数向量组线性无关

7)n个n维的向量构成的行列式0 该向量组是线性无关的

(二)中心课题:线性规范型

1.二次型线性流型:

二次型及其矩阵表示

二次型的定义:以数域P中的数为系数,关于x1,x2,…,x n的二次齐次多项式f(x1,x2,…,x n)=a11x12+2a12x1x2+ … +2a1n x1x n

+a22x22+ … +a2n x2x n

+ (3)

+a nn x n2

称为数域P上的一个n元二次型,简称二次型。

矩阵的合同关系:对于数域P上的两个n阶矩阵A和B,如果存在可逆矩阵C,使得B=CTAC则称A和B是合同的,记为A~B。

合同关系性质:

1) 反身性:A~A;

2) 对称性:A~B,则B~A;

3) 传递性:A~B,且B~C,则A~C。

二次型的标准形

1) 实数域R(或复数域C)上的任意一个二次型都可经过系数在实数域R(或复数域C)中的非退化线性变换化成平方和形式:

d1y12+d2y22+…+dnyn2

其中非零系数的个数唯一确定,等于该二次型的秩。上述形式的二次型称为二次型的标准形。

2) 任何对称矩阵都与一个对角矩阵合同。

3)复二次型的规范形:

任何复系数二次型都可经过复数域C中的非退化线性变换化成如下最简形式平方和:y12+y22+…+yr2,其中r唯一确定,等于该二次型的秩。上述形式的复二次型称为复二次型的规范形。

2.线性函数

(三)研究范围:线性空间

1.线性空间

简单的说,线性空间是这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任意元素与任意数(可以是实数也可以是复数,也可以是任意给定域中的元素)相乘后得到此集合内的另一元素。1)V对加法成Abel群,即满足:

(1)(交换律)x+y=y+x;

(2)(结合律)(x+y)+z=x+(y+z)

(3)(零元素)在V中有一元素0,对于V中任一元素x都有x+0=x;

(4)(负元素)对于V中每一个元素x,都有V中的元素y,使得x+y=0;

2)数量乘法满足:

(5)1x=x;

(6)k(lx)=(kl)x;

3)数量乘法和加法满足:

(7)(k+l)x=kx+lx;

(8)k(x+y)=kx+ky.

其中x,y,z为V中任意元素,k,l为数域F中的任意元素,1是F的乘法单位元。

数域F称为线性空间V的系数域或基域,F中元素称为纯量或数量(scalar),V中元素称为向量(vector)。

当系数域F为实数域时,V称为实线性空间。当F为复数域时,V称为复线性空间。

(1)V中零元素(或称0向量)是唯一的。

(2)(2)V中任一向量x的负元素(或称负向量)是唯一的。

(3)(3)kx=0(其中k是域F中元素,x是V中元素)当且仅当k=0或x=0。(4)(-k)x=-(kx)=k(-x)。

2.欧氏空间

定义 设V 是实数域R 上的线性空间(或称为向量空间),若V 上定义着正定对称双线性型g (g 称为内积),则V 称为(对于g 的)内积空间或欧几里德空间(有时仅当V 是有限维时,才称为欧几里德空间)。具体来说,g 是V 上的二元实值函

数,满足如下关系:

(1)g(x,y)=g(y,x);

(2)g(x+y,z)=g(x,z)+g(y,z);

(3)g(kx,y)=kg(x,y);

(4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0时成立。

这里x,y,z 是V 中任意向量,k 是任意实数。

二、多项式理论

1.整除理论

整除: 若多项式a :“f (x )” 除以多项式b :“g (x )”,商为一个多项式,且余数为零多项式。 我们就说a 能被b 整除(或说b 能整除a ),记作b|a ,读作“b 整除a ”或“a 能被b 整除”. 1)最大公因式

多项式的最大公因式的定义 定义(公因式与最大公因式)

定义1 若既是的因式,又是的因式,则称是与的公因式。 因所以任意两个多项式都有公因式。 2)互素

如果,那么就说,即两个多项式只有零次公因式时,称为互素。 的公因式,就称这两个多项式互素 2.因式分解理论 1)重因式

定义 设p(x) 为不可约多项式. 如果f(x)能被p(x) 的k 次方整除而p (x )的k+1次方不能, 则称p(x) 是 f(x)的k 重因式.

若k=0, 则p(x) 不是f(x) 的因式.

若k=1, 则称 p(x) 是f(x) 的单因式.

若k>1, 则称 p(x) 是f(x) 的重因式.

也可以定义高阶微商的概念, 一阶微商f'(x) 的微商称为f(x) 的二阶微商, 记为f''(x). 一般地,f(x) 的k 阶微商定义为f(x) 的k-1 阶微商的微商:

定理 如果不可约多项式p(x) 是f(x) 的k 重因式(k ≥1), 那么它是f'(x) 的

1.公因式:

满足: 2.最大公因式:

k-1 重因式.

注意: 该定理的逆定理一般不成立

推论 1:如果不可约多项式p(x) 是f(x) 的k (k≥1)重因式, 那么p(x) 分别是f'(x),f''(x)...f(k-1)(x) 的 k-1,k-2,...,1 重因式, 但不是f(k)(x)的因式.

推论 2:不可约多项式p(x) 是f(x) 的重因式的充分必要条件是p(x) 为f(x) 与 f'(x)的公因式.

推论 3:多项式 f(x)没有重因式的充分必要条件是(f(x),f'(x))=1.

2)唯一性理论

不可约多项式

定义:数域P上次数的多项式p(x)称为不可约多项式,如果p(x)不能表成数域P上的两个次数比p(x)低的多项式的乘积。

唯一性指:数域P上每一个次数1的多项式f(x)均可分解成数域P上一些不可约多项式的乘积。F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。

当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。

当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。

当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。关于本原多项式有下述重要性质。

郑雅心

12304125

高等代数与中学数学的联系

目录 摘要................................................................................ I Abstract........................................................................... I 1 引言 (1) 2 知识方面的联系 (1) 2.1多项式理论的应用 (1) 2.2行列式的应用 (2) 2.3柯西不等式的应用 (3) 2.4二次型的应用 (4) 3 思想方面的联系 (4) 3.1符号化思想 (4) 3.2分类思想 (5) 3.3化归与转化思想 (5) 3.4结构思想 (6) 3.5公理化方法 (6) 3.6坐标方法 (6) 3.7构造性方法 (7) 4 观念方面的联系 (7) 结束语 (8) 参考文献 (8)

致谢 (10)

摘要:运用高等代数的理论、方法、思想与观点剖析和阐述中学数学相关内容的若干问题,通过若干典型试题的解析,从知识方面、思想方面以及观念方面研究了高等代数与中学数学的联系,探索高等数学观点对中学数学一些教学内容的理论依据,深化与发展高等代数在中学数学的相关内容,促进高等代数在中学数学领域的应用,探求二者的内在的联系,以便高等代数能与中学数学完美的结合. 关键词:高等代数;中学数学;数学思想方法;应用 Abstract: The problems related to elementary mathematics are analyzed and explained by using the theory,method,thoughts and views of higher algebra.Through analyzing some typical test questions,the relation between higher algebras and elementary mathematics are investigated from the aspects of knowledge、thought and idea. Exploring the higher mathematics view to middle school mathematics some teaching content theory and model,deepening and development in higher algebra in middle school mathematics related content,and promote higher algebra in the middle school mathematics field of application,and to explore the inner link,so that higher algebra can be combined with the middle school closely.Keywords: higher Algebra;middle school mathematics;mathematical thinking;application

高等代数知识结构

高等代数知识结构

二、高等代数知识结构内容 (一)线性代数 工具:线性方程组 1 1 列时, a 性质1 性质2、一行得公因子可以提出来(或以一数乘行列式得一行就相当于用这个数乘此行列式。 性质3、如果某一行就是两组数得与,那么这个行列式就等于两个行列式得与,而这两个行列式除这一行以外与原行列式得对应行一样。 性质4、如果行列式中两行相同,那么行列式为零。(两行相同就就是说两行对应元素都相同) 性质5、如果行列式中两行成比例。那么行列式为零。 性质6、把一行得倍数加到另一行,行列式不变。 性质7、对换行列式中两行得位置,行列式反号。 2、矩阵: a、矩阵得秩:矩阵A中非零行得个数叫做矩阵得秩。 b、矩阵得运算 定义同型矩阵:指两个矩阵对应得行数相等、对应得列数相等得矩阵. 矩阵相等:设,, 若 , 称、 线性运算:, 加法: 数乘: 负矩阵: 减法: 矩阵得乘法定义:设 , 其中元素 得列数 = 得行数。 得行数 = 得行数; 得列数 = 得列数. 与得先后次序不能改变. (5)矩阵得初等变换 矩阵得等价变换形式主要有如下几种: 1)矩阵得i行(列)与j行(列)得位置互换; 2)用一个非零常数k乘矩阵得第i行(列)得每个元; 3)将矩阵得第j行(列)得所有元得k倍加到第i行(列)得对应元上去。 3、线性方程组 一般线性方程组、这里所指得一般线性方程组形式为

111122112 11222221122,,.n n n n s s s n n s ax ax ax b ax ax ax b ax ax ax b +++=??+++=??? ?+++=? L L L L L L ()i ()i 式中(1,2,,)i xi n =K 代表未知量,(1,2,,;1,2,,)i j a i s j n ==L L 称为方程组得系数,( 1,2,,)j b j n =L 称为常数项、 线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s bb b ====L 、 令 111212122212n n s s sn a a a a a a A a a a ????? ?=??????L L M M M M L ,12n x x X x ??????=??????M , 12s b b B b ?? ????=???? ?? M , 则()i 可用矩阵乘法表示为 A X B =,,,.m n n m A C X C B C ?∈∈∈ a 、线性方程组得解法 1)消元法 在初等代数里,我们已经学过用代入消元法与加减消元法解简单得二元、三元线性方程组、实际上,这个方法比用行列式解方程组更具有普遍性、但对于那些高元得线性方程组来说,消元法就是比较繁琐得,不易使用、 2)应用克莱姆法则 对于未知个数与方程个数相等得情形,我们有 定理1 如果含有n 个方程得n 元线性方程组 11112211 21122222 1122,,.n n n n n n n n n n ax ax ax b ax ax ax b ax ax ax b +++=??+++=?? ? ?+++=? L L L L L L ()i i 得系数矩阵

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

606-高等代数

606-《高等代数》考试大纲 一、考试性质 《高等代数》是基础数学专业、计算数学专业、概率论与数理统计专业、应用数学专业、运筹学与控制论专业、系统理论专业硕士学位研究生入学考试的科目之一。《高等代数》考试要求能反映数学学科的特点,科学、公平、准确地测试考生的基本素质和综合能力,很好地选拔具有科研发展潜力的优秀人才进入硕士阶段学习,为国家培养掌握现代数学方面的基础理论知识,具有较强分析与解决实际问题能力的高层次的应用型的和复合型的数学专业人才。 二、考试要求 考查考生对《高等代数》里的基本概念、基础知识的掌握情况,考察考生的分析能力、计算能力和对知识的综合运用能力。 三、试卷分值、考试时间和答题方式 本科目试卷满分为150分,考试时间为180分钟,答题方式为闭卷、笔试。 四、试题结构 (1)试卷题型结构

填空题:30分 计算题:60分 证明题:60分 (2)内容结构 各部分内容所占分值为 多项式、行列式:约30分 线性方程组:约30分 线性空间、线性变换:约45分 矩阵的对角化问题:约45分 五、考试的知识及范围 1、多项式 整除;最大公因式;因式分解 2、行列式 n 阶行列式的定义;行列式的性质;n阶行列式的一行(列)展开式,行列式的计算 3、线性方程组 向量空间;矩阵的秩;齐次线性方程组的基础解系;非齐次线性方程组的通解 4、矩阵 矩阵的运算;逆矩阵的求法;分块矩阵的运算和性质;矩阵的初

等变换与初等矩阵 5、二次型 二次型的矩阵;复系数的二次型的规范型;实系数的二次型的规范型、正定二次型的判别定理;正定二次型的证明;二次型的判定 6、线性空间 线性空间的定义和性质;线性空间的维数,基与坐标;线性子空间的判定和证明;子空间的直和;维数公式;线性空间同构的定义和证明 7、线性变换 线性变换的定义和运算;线性变换在基下的矩阵的求法;矩阵的相似;线性变换的特征值和特征向量;矩阵的特征值和特征向量; 矩阵可对角化的判定定理;线性变换的值域与核定义、性质和判定;不变子空间的定义、性质和判定 8、λ-矩阵 λ-矩阵的标准形;矩阵的若当标准形的求法 9、欧几里得空间 内积的定义和判定;欧几里得空间的定义和性质;欧氏空间标准正交基的定义和存在性定理;欧氏空间标准正交基的求法;欧氏空间的同构;正交矩阵;正交变换的定义和判定定理;欧氏子空间的定义和判定;对称变换的定义和性质;对称矩阵的标准形

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

高等代数知识点归纳.doc

A , i j , a i 1 A j1 a i 2 A j 2 L a in A jn 0, i j . A O A A O O B = B A B O B O A = A B O ( 1)mn A B B O a 1n O a 1n a 2n 1 a 2 n 1 ( 1 n ( n 1) 2 N N ) a n1 O a n1 O a 1n a 2 n K a n1 范德蒙德行列式: 1 1 L 1 x 1 x 2 L x n x 12 x 22 L x n 2 x i x j M M 1 j i n M x n 1 x n 1 L x n 1 1 2 n 代数余子式和余子式的关系: M ij ( 1)i j A ij A ij ( 1)i j M ij A 11 B 11 A 11 B 11 n A n 分块对角阵相乘: A , B AB , A 11 A 22 A n B 22 A 22 B 22 22 A B T A T C T 分块矩阵的转置矩阵: C D B T D T A 11 A 21 L A n1 A * A ij T A 12 A 22 L A n2 , A ij 为 A 中各个元素的代数余子式 . M M M A 1n A 2n L A nn AA * A * A A E , A * n 1 A 1 1 A , A . A * BA * 分块对角阵的伴随矩阵:

矩阵转置的性质:( A T )T A 矩阵可逆的性质:( A 1) 1 A ( A ) n 2 伴随矩阵的性质: A A n 若 r ( A) n r ( A )1 若 r ( A) n 1 0 若 r ( A) n 1 1 B 1 a1 A B A 1 ( AB)T B T A T A T A ( A 1 )T ( A T ) 1 ( A T ) ( A )T ( AB) 1 B 1 A 1 A 1 1 ( A 1 )k ( A k ) 1 A k A ( AB) B A A n 1 ( A 1 ) ( A ) 1 A ( A k ) ( A ) k A A AB A B A k A k AA A A A E (无条件恒成立) 1 1 1 1 a1 a1 a3 a2 1 a2 1 a2 a 2 a3 1 a3 1 a3 a1 矩阵的秩的性质: ① A O r ( A) ≥1; A O r ( A) 0 ;0≤ r ( A m n ) ≤ min( m, n) ④若A m n , B n s ,若r ( AB) 0 r ( A) r ( B) n 的列向量全部是 Ax 的解 B 0 ⑤r ( AB) ≤min r ( A), r (B) ⑥若 P 、Q可逆,则 r ( A) r (PA) r ( AQ) r ( PAQ) ;即:可逆矩阵不影响矩阵的秩 . Ax 只有零解 ⑦若 r ( A m n ) n r ( AB) r ( B) ;在矩阵乘法中有左消去律AB O B O A A B A C B C 若 r ( B n s ) n r ( AB) r ( B) 在矩阵乘法中有右消去律 . B 若 ( ) 与唯一的E r O 等价,称E r O 等价标准型 . ⑧为矩阵的 r A r A O O O O A ⑨r ( A B) ≤ r ( A) r (B) , max r ( A), r ( B) ≤r ( A, B)≤r ( A) r (B) ⑩ A O O A ( ) ( ) , A C ( ) ( ) r B B O r A r B r B r A r B O O

知识点总结高等代数

第二章行列式知识点总结 一行列式定义 1、n 级行列式1112121 22 212 n n ij n n n nn a a a a a a a a a a = (1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代 数和,这里12n j j j 是一个n 级排列。当12 n j j j 是偶排列时,该项前面带正号;当12 n j j j 是奇排列时,该项前 面带负号,即: 12 1212 1112121222() 1212 (1)n n n n n j j j ij j j nj n j j j n n nn a a a a a a a a a a a a a τ= = -∑ 。 2、等价定义 121212() 12(1)n n n i i i ij i i i n n i i i a a a a τ = -∑和12 1211221212 ()() (1)n n n n n n i i i j j j ij i j i j i j n i i i j j j a a a a ττ+= -∑ 和 3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。 4、常见的行列式 1)上三角、下三角、对角行列式 11 11 11 222222 112200nn nn nn nn a a a a a a a a a a a a *===* 2)副对角方向的行列式 111(1)21 2,1 2,1 2 12,111 1 1 0(1) n n n n n n n n n n n n n n a a a a a a a a a a a a -----* ===-* 3)范德蒙行列式: 1222212 11 1112 111() (2) n n i j j i n n n n n a a a a a a a a a a a n ≤<≤---= -≥∏ 二、行列式性质 1、行列式与它的转置行列式相等。

高等代数教学大纲

中国海洋大学本科生课程大纲 课程属性:学科基础 课程性质:必修 一、课程介绍 1.课程描述: 高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。高等代数内容包含理工科所开设的线性代数的主要内容。 2.设计思路: 开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。 19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。 - 2 -

高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。 3.课程与其他课程的关系: 先修课程:无; 并行课程:数学分析、空间解析几何; 后置课程:近世代数。高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。 二、课程目标 本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。 到课程结束时,学生应达到以下几方面要求: (1)知识掌握良好。会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准 - 2 -

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

高数上知识点总结

高数上知识点总结 导语:当你一个人的时候,别想两个人的事,把回忆丢在一旁,当你一个人的时候,只想高兴的事,把忧伤抛在脑后,当你一个人的时候,来到一个人的浪漫,释放你的情感,敞开你的情感,敞开你的心灵。以下我为大家介绍高数上知识点总结文章,欢迎大家阅读参考! 高数上知识点总结 高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。主要包括8方面内容。 1、函数、极限与连续。主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。 2、一元函数微分学。主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。 3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。 4、向量代数和空间解析几何。主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。

5、多元函数微分学。主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。 6、多元函数的积分学。这部分是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。 7、无穷级数。主要考查级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。 8、微分方程,主要考查一阶微分方程的通解或特解;可降阶方程;线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。 除了以上分章节的考查重点,还有跨章节乃至跨科目的综合考查题,近几年出现的有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题等。线性代数的重要概念包括以下内容:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次

高等代数的知识结构

高等代数知识结构一、高等代数知识结构图 高等代数线性代数 工具 线性方程组 中心课题 线性典范型 研究范围 线性空间 行列式 矩阵 线性方程组 向量相关性 行列式的计算 行列式的性质 矩阵的秩 矩阵的运算 与逆 矩阵的初等变换 线性方程组的解法及判别定理 线性方程组解的结构 极大线性无关组 线性相关和线性无关 二次型 线性流形 线性函数 若尔当典范性 化为标准型(配方法, 线性方程组法,正交法) 对角化 正定性,合同 单线性函数 对称双线性函数 J矩阵 II-C定理 矩阵的可对角化 线性空间 欧式空间 酉空间 线性空间的性质与同构, 子空间的判定 线性变换 坐标变换与基变换 特征值与特征向量 可对角化及不变子空间 欧式空间的性质 正交化与正交补的求法 正交变换与正交矩阵 酉空间的性质 复数域上的正交变换

二、高等代数知识结构内容 (一)线性代数: 工具:线性方程组 1.行列式: 1行列式的计算设有2n 个数,排成n 行n 列的数表 nn n n n n a a a a a a a a a 21 2222111211 ,即n 阶行 列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积 n 21nj j 2j 1a a a ⑴的代数和,这里n 21j j j 是n 21,,, 的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号.即 nn n n n n a a a a a a a a a 2 12222111211 =() ()n 21n 21n 21nj j 2j 1j j j j j j 1a a a τ∑-, 这里∑n 21j j j 表示对所有n 级排列求和. a.行列式的性质: 性质1.行列互换,行列式不变。 性质2.一行的公因子可以提出来(或以一数乘行列式的一行就相当于用这个数 多项式理论 整除理论 因式分解理论 多项式根的理论 多元多项式/ 对称多项式 最大公因式定理 互素与同于 因式分解唯一性 重因式 复数域 实数域 有理数域 求法 判定(爱绅斯坦因) 根的判别式 韦达定理

从高等代数看中学数学

从高等代数看中学数学 高等代数是大学数学专业的主干专业基础课,是初等代数的继续和提高。高中新课改形势下的师范院校数学系的学生,经常面临着怎样运用所学的大学数学知识指导中学数学这个老大难的问题。因此,在教学中应该注意联系中学教学实际,引导学生在中学知识和大学知识之间架起一座桥梁,从而顺利实现思维方式和学习方法的过渡和转变,指导学生、也是未来的中学数学教师能利用课程的理论、方法与观点去剖析中学数学的方法问题,有利于帮助他们融会贯通中学数学的相关内容,提高解决中学数学问题的能力,高屋建瓴地深刻理解中学数学有关内容的来龙去脉,知其然且知所以然,培养较高层次的数学素质,为今后的教学实践打下专业基础。同时,反过来也有利于激发学习兴趣,促进知识深化。下面将从数学知识、数学思想方法、数学观念等方面发掘高等代数与中学数学的联系。 一线性方程组理论的应用 1.关于消元法与解的结构。线性方程组的理论是线性代数的重要理论结果,它是中学数学方程组求解方法的理论化与规范化。线性方程组是否有解、有解时解的数量、通解的公式表示、解的几何意义等一系列问题都得到了圆满的解决,体现了高等代数相对于初等代数的新观点、新思想、新方法的优越性,对中学数学教学具有高屋建瓴的指导作用。消元法是中学数学求解二(三)元一次方程组的基本方法,在高等代数中可以得到理论上的完美解释,即由于线性方程组的初等变换保持同解性,所以消元法可行,而且消元法的实质是反复对方程组作初等变换,或者说消元法是对线性方程组的增广矩阵作行的初等变换的过程。并且,根据线性方程组解的理论容易知道解的只有三种情况(唯一解、无解、无穷多解)以及具体判定方法和解的结构特征。特别地,在一定条件下,方程组的唯一解可以用公式形式给出,即Cramer法则。Cramer法则的意义主要在于:明确了解的存在性与唯一性,为判断这类方程组的有解性提供了比较直接的方法;将求解问题,转化为行列式的计算,避免了消元法的繁琐计算;以公式的形式给出了解与系数的明显关系,为一般线性方程组公式解的表达式提供了理论依据。 2.几个平面共点、共线、平行与重合的问题。利用线性方程组的理论容易解决平面共点、共线、平行与重合的问题。 实际上,平面族交于一点的条件是对应的方程组有唯一解,相当于系数矩阵与增广矩阵的秩都等于3;平面族共线的条件是系数矩阵与增广矩阵的秩都等于2;平面族过同一平面(重合)的条件是系数矩阵与增广矩阵的秩都等于1;平面族互相平行的条件是对应的方程组无解,相当于系数矩阵与增广矩阵的秩不相等。此外线性方程组理论还可解决直角坐标平面上四点共圆或者过不共线的三点的圆的方程等问题。 二向量线性关系的几何意义 向量思想体现了数学的抽象性与严谨性,反过来又展示了应用广泛性的特点,向量之间的线性相关性有着明显的几何意义。 一维情况:非零向量a与向量e共线(平行)的充要条件是a可由e线性表示。更一般的,两个向量共线(平行)的充要条件是它们线性相关。 二维情况:向量a与不共线的两个向量e1,e2共面的充要条件是a可由e1,e2线性表示。更一般的,三个向量共面的充要条件是它们线性相关。

一高等代数与解析几何之间的关系

利用几何直观理解高等代数中抽象的定义和定理 一、高等代数与解析几何的关系 代数为几何的发展提供了研究方法,几何为代数提供直观背景。 解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。 “如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。” --------拉格朗日 二、目前将高等代数与解析几何合并开课的大学 中国科大: 陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011. 南开大学: 孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007. 华东师大: 陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008. 华中师大: 樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004. 同济大学: 高等代数与解析几何同济大学应用数学系高等教育出版社(2005-05出版) 兰州大学,广西大学,西南科技大学,成都理工大学 三、高等代数的特点 1、逻辑推理的严密性; 2、研究方法的公理性; 3、代数系统的结构性。 四、高等代数一些概念的引入 对于刚上大学的一年级新生, 大多数难以适应高等代数的抽象概念的引入、推导 和应用。通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。

883高等代数考试大纲

附件七: 中南大学2012年全国硕士研究生入学考试 《高等代数》考试大纲 本考试大纲由数学与计算科学学院教授委员会于2011年7月7日通过。 I.考试性质 高等代数考试我校数学与计算科学学院为招收硕士研究生而设置的具有选拔性质的入学考试科目,其目的是科学、公平、有效地测试学生掌握大学本科阶段高等代数课的基本知识、基本理论,以及运用高等代数的理论和方法分析和解决问题的能力,为我校数学与计算科学学院择优选拔硕士研究生提供依据。 II.考查目标 高等代数科考试涵盖多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间和双线性函数等内容。要求考生:(1)准确理解本课程中的基本概念。 (2)熟练掌握本课程的基本理论和基本方法。 (3)能灵活运用运用本课程的基本理论和基本方法综合分析和解决问题。 Ⅲ.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为150 分,考试时间为180 分钟 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 多项式约12 % 行列式线性方程组矩阵约36 % 二次型λ-矩阵约16 % 线性空间线性变换约20 % 欧几里得空间双线性函数约16 % Ⅳ.试卷题型结构 计算或证明题八—九个大题共150 分 Ⅴ.考查内容

一、多项式 数域、一元多项式、整除、最大公因式、互素、因式分解定理、重因式、多项式函数、实、复系数多项式的因式分解、有理系数多项式、多元多项式、齐次多项式、对称多项式、一元多项式根与系数的关系及一元多项式有重根的判别式。 二、行列式线性方程组矩阵 排列、行列式及其性质、行列式的计算技巧、行列式按一行(列)展开、行列式按多行(列)展开、Cramer法则。 n维向量空间、向量的线性相关性与线性无关性、向量组的极大无关组与秩、矩阵的秩、线性方程组有解判别定理、齐次和非齐次线性方程组解的结构。 矩阵的运算、矩阵的行列式与秩、矩阵的逆、矩阵的分块运算、初等矩阵与矩阵的初等变换、矩阵的等价与等价标准形、分块乘法的初等变换。 三、二次型λ-矩阵 二次型的矩阵表示、二次型的标准形(规范形)及标准形(规范形)的唯一性、用非退化或正交线性替换化二次型为标准形(规范形)、矩阵的合同、正定、负定、半正定、半负定二次型与定、负定、半正定、半负定矩阵。 λ-矩阵的初等变换及其标准形、矩阵的相似及相似标准型、矩阵的不变因子、行列式因子、初等因子与最小多项式及矩阵的Jordan标准形、矩阵的有理标准形。 四、线性空间线性变换 线性空间的定义及性质、线性空间的维数、基、坐标、基变换与坐标变换、线性子空间的交、和、直和、线性空间的分解、线性空间的同构。 线性变换的定义及运算、线性变换的矩阵、线性变换的特征值、特征向量与矩阵的特征值、特征向量、线性变换与矩阵的对角化、线性变换的值域与核、维数定理、线性变换的不变子空间。 五、欧几里得空间双线性函数 欧几里得空间的定义与性质、内积及性质、标准正交基、欧几里得空间的同构、正交变换、子空间的正交与正交补、实对称矩阵的标准形、向量到子空间的距离、最小二乘法。 双线性函数、对偶空间、对称双线性函数。

高等代数 知识点

第一章 定义1 数域 定义2 数域P上的一元多项式 定义3 多项式相等 定义4 一元多项式环 带余除法 定义5 整除 定理1 r(x)=0 定义 6 最大公因式 定理 2 d(x)=u(x)f(x)+v(x)g(x); (f(x),g(x))= u(x)f(x)+v(x)g(x) 定义7 互素(f(x),g(x))=1 定理 3 u(x)f(x)+v(x)g(x)=1 定理4 f ,g互素且f|gh,则f|h 推论f1|g,f2|g,且f1,f2互素,则f1f2|g, 定义8 不可约多项式 定理5 一个不可约多项式p,能够表达成P|fg, 则p|f或者p|g 因式分解及其唯一性定理数域P上的一个多项式f,都可以唯一的分解成数域P上的一些不可约多项式的乘积。

第四章 1 转轴----坐标系(x1,y1,z1)到(x2,y2,z2)的坐标变换矩阵是A,如果令X1=(x1,y1,z1)的转置,X2=(x2,y2,z2)的转置,则X1=AX2。 2单位矩阵E=数量矩阵为kE= 如:AE=A,EA=A 3矩阵的加法,乘法,减法,结合律,交换律,零矩阵 4 秩(A+B)秩A+秩B 5 如:A=则矩阵的数量乘积 kA= 6 矩阵的转置记作A的转置为A’。例如A= 则A’= 注意:转置的性质(A’)’=A (A+B)’=A’+B’( AB)’=B’A’ (kA)’=kA’ 定理1 假设A B是数域P上的两个n n矩阵,那么|AB|=|A||B| 即矩阵乘积的行列式等于它的因子的行列式的乘积 推论1 |A1A2An|=|A 1||A 2||An|

定义6数域P上的一个n n矩阵A,如果|A|0,称为非退化的,否则称为退化的 推论2 假设A B是数域P上的两个n n矩阵,矩阵AB为退化的充要条件是A,B中至少有一个是退化的 定理2 假设A是数域P上的n m矩阵,B是数域P上的m s 矩阵,于是秩(AB)min[秩A,秩B]。即乘积的秩不 超过个因子的秩 推论3 如果A=A1A2An,那么秩A min(秩Ai) 定义7 如果有n级方阵B,使得AB=BA=E,则n级方阵A称为是可逆的 定义8 如果有n级方阵B,使得AB=BA=E,那么B就称为A的逆矩阵,记作A-1 定义9 假设A ij是矩阵A=中a ij的代数余子式,矩阵A*=称为A的伴随矩阵。 A*A=AA*=dE 其中d=|A| 定理3 矩阵A 可逆的充分必要条件是A是非退化的, 而A-1=A* 推论如果A,B可逆,那么AB与A'也可逆, 且(A’)-1=(A-1)’,(AB)-1=B-1A-1

(完整word版)高等代数知识结构.doc

高等代数知识结构一、高等代数知识结构图行列式的计算 工具 线性方程组 中心课题 线性典范型 线性代数 高等代数 研究范围 线性空间 行列式 行列式的性质 矩阵的秩 矩阵矩阵的运算 与逆 矩阵的初等变换 线性方程组的解法及判别定理线性方程组 线性方程组解的结构 极大线性无关组 向量相关性 线性相关和线性无关 化为标准型(配方法, 线性方程组法,正交法) 二次型 对角化 线性流形 正定性,合同 单线性函数 线性函数 对称双线性函数 J矩阵 若尔当典范性II-C 定理 矩阵的可对角化 线性空间的性质与同构, 子空间的判定 线性空间 坐标变换与基变换 线性变换特征值与特征向量 可对角化及不变子空间 欧式空间的性质 欧式空间正交化与正交补的求法 正交变换与正交矩阵 酉空间的性质 酉空间 复数域上的正交变换

最大公因式定理 整除理论 互素与同于 因式分解唯一性 因式分解理论 重因式 多项式理论 复数域 多项式根的理论实数域 求法 有理数域 判定(爱绅斯坦因) 多元多项式 / 根的判别式 对称多项式韦达定理 二、高等代数知识结构内容 (一)线性代数: 工具:线性方程组 1. 行列式: a 11 a 12 a 1n 1 行列式的计算设有n2个数,排成 n 行 n 列的数表a 21 a 22 a 2n ,即 n 阶行a n1 a n 2 a nn 列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积 a 1j1a 2 j2 a nj n ⑴的代数和,这里j1 j2j n是1,2,,n的一个排列,每一项⑴都按下列规则带有符号:当 j1 j 2j n是偶排列时,⑴带正号;当j1j2j n是奇排列时,⑴带负号.即

高等代数欧几里得空间知识点总结

第九章 欧几里得空间( * * * ) 一、复习指导:在第九章中,有两个重要的考点:1.标准正交基(施密特正交化)2.实对称矩阵如何相似对角化,如何求标准形。除此之外,欧氏空间的含义,概念,性质也要作为一个比较重要的内容来复习。 二、考点精讲: 三、首师大真题: (一)欧氏空间 1.设V 是是数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记为(,)αβ,特具有一下性质: (1)(,)(,)αββα=; (2)(,)(,)k k αβαβ= (3)(,)(,)(,)αβγαγβγ+=+; (4)(,)0αα≥,当且仅当α=0时(,)αβ=0.这里,,αβγ是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。 2.α的长度,记为α。 3.非零向量的夹角,β规定为(,) ,arccos ,0,ααβαβπαβ =≤≤ 4.如果向量,αβ的内积为零,即(,)0αβ=,那么,αβ称为正交或互相垂直,记为αβ⊥。 5.设V 是一个n 维欧几里得空间,在V 中取一组基1,2,......,n εεε令 (,),(,1,2,....)ij i j a i j n εε==矩阵()ij n n A a ?= 称为基1,2,......,n εεε的度量矩阵。 (1)度量矩阵是正定的; (2)不同基底的度量矩阵是合同的。 6.欧氏空间V 中一组非零向量,如果它们两两正交,就称为一正交向量组。在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。 (1)施密特正交化 这是把线性无关向量组改造为单位正交向量组的方法. 以3个线性无关向量α1,α2,α3为例. ①令β1=α1, β2=α2- 11112) ,() ,(ββββα, β3=α3-11113),(),(ββββα-22223) ,() ,(ββββα. 此时β1,β2,β3是和α1,α2,α3 等价的正交非零向量组. (二)同构 1.实数域R 上欧氏空间V 与' v 称为同构,如果由V 到' v 有一个1-1上的映射σ,适合 (1)()()()σαβσασβ+=+ (2)()()k k σασα=

相关文档
相关文档 最新文档