文档库 最新最全的文档下载
当前位置:文档库 › 轴承故障诊断中的信号处理技术研究与展望

轴承故障诊断中的信号处理技术研究与展望

轴承故障诊断中的信号处理技术研究与展望
轴承故障诊断中的信号处理技术研究与展望

!专题综述#

轴承故障诊断中的信号处理技术研究与展望

董建宁,申永军,杨绍普

(石家庄铁道学院机械工程分院,河北石家庄050043)

摘要:讨论了各种信号处理技术在滚动轴承故障诊断中的应用,如平稳信号处理技术、非平稳信号处理技术,非高斯和非白色噪声信号处理技术、非线性信号处理技术、奇异值分解技术以及各种智能诊断技术。详细比较了各种信号处理技术的特点、应用范围和研究进展,并指出了今后的若干研究方向,为轴承的故障诊断和在线监测提供了依据。

关键词:滚动轴承;故障诊断;信号处理

中图分类号:T H133.33;T N911.7文献标识码:B文章编号:1000-3762(2005)01-0043-05 Study and Prospect on S ignal Process Technique of Bearing Fault Diagnosis

DONG Jian-ning,SHEN Yong-jun,YANG Shao-pu

(Department of M echincal Eng ineering,Shijiazhuang Railway Inst itute,Shijiazhuang050043,China)

Abstract:T he application of several signal process techniques are discussed in failur e diagnosis of the rolling bearing, such as steady signal,non-steady sig nal,non-g auss-s and non-w hite no ise signal,non-linear signal process tech-nique,oddity value decompositio n technique and so me kinds of intelligent diagnosis technique.T he characterist ics,ap-plied area and development trend of the signal process techniques ar e compared in detail.A nd t he study dir ections in t he futur e are pointed out.

Key words:ro lling bearing;fault diagnosis;signal process

对重要轴承进行工况监视与故障诊断,不但可以防止机械工作精度下降,减少或杜绝事故发生,而且可以最大限度地发挥轴承的工作潜力,节约开支,在工程上具有重要意义。

本文以轴承系统为研究对象,重点介绍轴承的振动诊断技术中常见的信号处理方法。现代信号分析和处理的本质可以作一个/非0字高度概括:研究和分析非线性、非因果、非最小相位系统、非高斯、非平稳、非整数维信号和非白色的加性噪声[1]。其中非最小相位和非因果信号处理技术目前尚未在故障诊断中得到应用。现介绍其他信号处理技术在轴承故障诊断中的应用情况。

收稿日期:2004-03-12;修回日期:2004-04-22

基金项目:河北省科学技术研究与发展计划项目(01547019D)

作者简介:董建宁,(1977-),女,研究生,专业方向:滚动轴承的故障诊断技术研究。1平稳信号处理技术

111平稳信号的Fourier谱分析技术

目前振动信号分析工程上常用的信号处理方法是FFT频谱分析。在对轴承的故障诊断中,将振动信号进行频谱分析,查看谱图中有无明显的故障频率谱峰存在,从而可以判断轴承是否完好。这种方法具有很大的局限性,诊断出来的轴承一般都已有较严重的损害,并且对轴承早期故障的分析不够灵敏。

112平稳信号的时间序列分析

对于直接进行频谱分析比较困难的情况,如采集的信号序列较短,或者Fourier变换不能将相互靠近的两个频率分开,采用时间序列分析(也称参数模型的谱分析)是一种较好的方法。常用的时间序列模型有ARMA模型、AR模型以及MA 模型。关于各种模型的特点、算法以及适用领域

ISSN1000-3762 CN41-1148/T H

轴承

Bear ing

2005年第1期

2005,No.01

43-47

可参考文献[2]。

113平稳信号的其他分析方法

采集到的轴承振动信号,不可避免地会受到噪声的污染。为提高信噪比,还发展了其他一些方法,如时域平均方法,倒频谱分析,包络分析等。时域平均方法也称相干检波,主要原理是以一定的时间间隔对所测得的信号进行分段,然后将各信号段进行叠加再平均,这样可以在一定程度上消除信号中的随机干扰和非周期成分,从而提取出信号中的周期成分。采用倒频谱分析技术,可以对存在幅值调制的轴承故障振动信号进行分析。倒频谱分析具有谱线定位准确、幅值突出和能识别因信号调制引起的功率谱中的周期分量并诊断出调制源的特点[3]。与传统的FFT分析方法不同,包络分析是在频谱分析之前对信号进行滤波检波分析,从而只提取附载在高频信号上的调制信号。因此包络分析技术可以有效地排除噪声干扰,提高信噪比,诊断出轴承磨损、裂纹、点蚀等故障[4]。实践证明,利用包络分析、倒频谱技术可以准确地判断轴承缺陷的部位及损伤程度。

2现代信号处理技术

211循环平稳信号处理技术

循环平稳信号是一种特殊的非平稳信号,其统计特征参量随时间呈现出周期或多周期的变化规律。当系统发生损伤故障时,损伤部件在运转中都会在相接触的零件间产生周期性的脉冲力,使观测到的振动信号明显包含有周期成分。这种周期性的振动信号具有循环平稳特性。目前,循环平稳信号分析方法已开始应用于设备故障诊断领域,并取得了一些卓有成效的结果[5]。

姜明等[6]在二阶循环平稳理论的基础上,将时间平滑周期图法应用到实测轴承振动信号的分析与诊断中,通过与经典的功率谱分析方法相比较,证明循环周期图能够快速有效地识别出轴承的故障。李力等[7]讨论了二阶统计循环自相关函数特性,基于调幅和调频信号模型推导出循环域解调方法,通过扫描循环频率域使调制源(故障)信息解调在循环域的低频段和高频段,利用高频段无调制源交叉相的特点,有效地提取出轴承外圈、内圈和滚动体的故障特征。秦恺等[8]针对轴承故障信号含有调幅成分的特点,提出并讨论了利用谱相关密度来提取轴承故障特征的方法。王锋等[9]采用小波包原理对一组仿真得到的轴承振动信号进行分解重构,再计算其循环谱密度,可解调出所有的调制源频率,并能有效抑制噪声和干扰信号对解调结果的影响,提高了监测的准确性。因此,循环平稳分析方法利用振动信号的周期时变特性来分析轴承的运行状态,可以更加贴切反映出轴承的真实状况,揭示故障的本质特征。

212其他非平稳信号处理技术

21211时频信号分析

对非平稳信号而言,Fourier变换不再是有效的数学分析工具,因为它是信号的全局变换,而信号的局部性能的分析必须依靠信号的局部变换。信号的局部性能需要使用时域和频域的二维联合表示,因此常将非平稳信号的二维分析称为时频信号分析。Cohen L的专著[10]系为研究非平稳信号的经典著作,详细叙述了时变频谱在时频平面上的分布特性、计算方法、尺度表示以及各种算子问题等。孟庆丰等[11]描述了振动信号分析时频域法,证明了时频域法是识别轴承故障的有效方法。研究表明,短时Fourier谱和Wigner分布都能将时域信号变换到时频域,但是对于时变信号,应用Wig ner分布更为适宜。黄迪山等[12]根据非平稳带通信号的特点,改进了Classen的Wigner分布算法,克服了由离散计算引起的混叠问题,应用二维、三维Wig ner分布图对轴承故障进行了特征分析。

21212小波分析

小波分析是最近几年才出现并得以应用和发展的一种时)频信号分析方法。由于它具有时域和频域的局部化和可变时频窗的特点,用它分析非平稳信号比传统的傅里叶分析具有更为显著的优点。由于轴承的故障信号中含有非稳态成分,所以用小波分析来处理其振动信号,可望获得更为有效的诊断特征信息。Sun Q等[13]采用连续小波变换(CWT)的方法,通过各尺度连续小波变换的简化分析,来识别轴承振动信号中包含的以故障特征频率为周期的周期成分,用来检测轴承运行中的局部损伤故障。Nikolaou N G等[14]提出了使用小波包变换(WPT)作为分析系统振动信号的工具,来诊断轴承的局部缺陷。结果表明,小波包变换能有效地提取振动信号的微弱瞬态特征。张中民等[15]提出了基于正交小波变换诊断

#

44

#5轴承62005.l.01

轴承故障的新方法。利用正交小波基将轴承故障振动信号变换到时间)尺度域,对高频段尺度域的小波系数进行包络细化谱分析,不仅能检测到轴承故障的存在,而且能有效地识别轴承的故障模式。史东锋等[16]提出了基于高斯函数的小波包络解调分析方法。该方法能将各共振响应频带的调制频率提取出来,进一步采用包络谱熵选择最优尺度来监测轴承缺陷的发生和发展过程。经试验验证,该方法能准确地检测出轴承外圈、内圈及钢球局部缺陷。张中民等[17]利用小波分析技术将轴承故障振动信号分解到时)频空间,定义了轴承故障振动信号能量分布函数S(t),提出了利用能量分布函数S(t)细化谱诊断变速箱轴承故障的分析方法。张佩瑶等[18]提出了提取强噪声背景下多通带窄带信号的一种新方法)小波包信号提取算法。它是利用小波包络信号按任意时频分辨率(满足测不准原理)分解到不同频段的特点而提出的,并以仿真结果和轴承的故障诊断说明了该算法的有效性。

213非高斯和非白色噪声信号处理技术

研究非高斯信号和非因果、非最小相位系统的主要数学工具是高阶统计量。在信号处理领域使用高阶统计量的主要动机和出发点可归结为:

(1)抑制加性有色噪声(其功率谱未知)的影响。

(2)辨识非因果、非最小相位系统或重构非最小相位信号。(3)检测和表征信号中的非线性以及辨识非线性系统。(4)抽取由于高斯性偏离引起的各种信息。(5)检测和表征信号中的循环平稳性以及分析和处理循环平稳信号。高阶统计量包括高阶矩、高阶累积量、高阶矩谱、高阶累积量谱这四种主要形式,还包括倒高阶累积量和倒高阶累积量谱(简称倒多谱)。在工程上,主要使用高阶累积量和高阶累积量谱(高阶谱)来研究非高斯、非平稳随机过程。

当轴承元件出现局部损伤时,根据故障特征频率可以检测出轴承故障并诊断其发生的位置。但是由于损伤轴承振动冲击的能量散布在一个很宽的频带上,其频谱包含故障特征频率的各次谐波,很容易被噪声淹没,故高阶谱分析方法为此类振动提供了新的手段。高阶谱可以弥补二阶统计量(功率谱)不包含相位信息的缺陷。高阶谱有很强的消噪能力,理论上能完全抑制高斯噪声,因此用高阶谱分析振动信号更容易获得有用信息。高阶谱以双谱(三阶累积量谱)应用最为广泛。有关双谱和多谱分析在设备检测与故障诊断中的应用,文献[19]进行了详述。Pineyro J等[20]比较了二阶功率谱密度、Haar小波变换及双谱分析在轴承故障诊断中的应用,指出双谱可以更有效地提取轴承故障的非线性相位耦合特征。苏文斌等[21]针对轴承故障诊断中的非线性耦合特征,提出在极坐标下进行特征提取的方法,将频率平面的计算简化到对角切片上进行,将故障特征频率及谐波的检测转化为检测特征频率及谐波与其他周期激励之间非线性耦合产生的和、差频率的双相干谱识别问题。试验证明,该方法可在信噪比低的低频段完成,并且对故障的敏感性比传统谱分析的方法高。杨江天等[22]在对轴承振动信号

进行双谱分析的基础上,提出了基于1

1

2

维谱的轴在诊断方法。通过1

1

2

维谱分析轴承振动信号,可以提取由于二次相位耦合产生的非线性特征,识别故障模式。试验结果表明,这种方法能有效地诊断轴承故障,且对初期故障很敏感。

214非线性信号处理技术

分形维数是用来定量刻划混沌吸引子/奇异0程度的一个重要参数,被广泛用于刻划非线性系统行为。轴承在不同运行状态下,因刚度非线性、摩擦力等的影响,系统表现出不同的非线性特性,分形维数作为振动特征量被引入到了刻划轴承的故障状态中[23-24]。

张文明等[25]研究了滚动轴承在不同润滑和游隙条件下的分形维数。吕志民等[26]对轴承振动时域信号进行了分形维数计算,结果表明,正常轴承的振动信号其分形维数最大,当轴承发生故障时,其振动行为将在相空间趋于某一有限维吸引子或者奇异吸引子,这样故障状态下计算得到的分形维数将小于正常状态下轴承振动信号的分形维数。因而,分形维数可以作为识别轴承故障的特征量。王朝晖[27]利用分形维数法对隐含故障的特征进行了提取,实现了对发动机轴承隐含故障的诊断。

215奇异值分解技术

奇异值分解技术是指对一个m@n的矩阵A 进行奇异值分解得到A=U r V*,其中r为由奇异值构成的矩阵,它包含了系统中相当多的有用信息。由于试验条件的限制,很多时候测得的

#

45

#

董建宁等:轴承故障诊断中的信号处理技术研究与展望

信号维数并不等于信号的实际维数,尤其在信号具有混沌特征时。此时为了详细了解系统信息,可以构造系统的吸引子轨迹矩阵,通过对矩阵进行奇异值分解进行研究。

对轴承进行状态监测和故障诊断时,测得的振动信号除反映轴承本身的工作情况外,还包含了大量的背景噪声。为了突出故障信息特征,首先应对原始数据进行降噪处理。对于某些隐含故障,其噪声与信号十分接近,这时使用奇异值分解降噪的方法效果较好。吕志民等[28]提出了一种将振动信号在相空间进行重构,并利用重构吸引子轨道矩阵的奇异谱的特性来提高信噪比的方法。试验表明,该方法能够有效地降低噪声,提高信噪比,突出振动信号的故障特征,从而提高设备故障诊断的准确度。

216轴承故障的智能诊断技术

所谓轴承故障的智能诊断技术就是将信号处理技术同神经网络、灰色系统理论、专家系统、模糊理论等技术结合起来进行故障诊断的技术。

神经网络技术是在生物神经学研究的基础上提出的人工智能概念,是对人脑神经组织结构和行为的模拟。神经网络具有独特优点,如容错、联想、推测、记忆、自适应、自学习和处理复杂多模式,因此,对于突发性故障或其他异常现象,可以利用神经网络的联想、推测及记忆对其进行推理和诊断。由于神经网络具有很强的鲁棒性和容错性,能对不十分准确和含有噪声的数据进行处理,目前已出现将小波分析、遗传算法、神经网络相结合的技术方法,共同应用于轴承的故障诊断中。

灰色系统理论应用于故障诊断,是基于对诊断对象部分信息了解、部分信息不了解,把它作为一个灰色系统来看的思想而引入的。在轴承故障诊断过程中,一个运行着的轴承是一个复杂的灰色系统,主要表现在其故障和征兆之间的随机性和模糊性,而整个故障诊断的过程就是灰色系统理论处理问题过程的具体体现。灰色诊断法常常是通过归纳几种典型故障样本,选取几种反映故障运行状态的参数,构造一个典型故障样本矩阵。然后测取状态待测轴承的所选参数值,构造状态待测矩阵,计算它和典型故障样本矩阵的关联度,从而达到诊断轴承故障的目的。目前,灰色诊断关联度分析方法已在轴承故障诊断中得到了一定的应用。

故障诊断专家系统,是一种典型的知识处理系统,它能获取大量的专家诊断知识,利用专家的推理方法,解决故障诊断领域的问题。故障诊断专家系统的主要内容包括:诊断知识的表达,诊断推理方法和不确定性推理以及诊断知识的获取等。目前,故障诊断专家系统可用于对轴承的运行情况进行在线监测,能及时预报轴承在运行中出现的异常现象并对故障进行诊断,分析故障原理和提出相应的处理对策。

模糊故障诊断方法,是利用模糊集合论中的隶属函数及模糊矩阵的概念,解决故障与征兆间关系的模糊不确定性与故障的早期预报及精密诊断的方法。轴承的模糊诊断包括:(1)模糊变换与综合评判。(2)故障状态的划分及故障特征的确定。(3)模糊关系矩阵的分析。通过上述方法可以对轴承的运行状态进行定性和定量分析,提高轴承诊断的可靠性。目前,将模糊诊断模型与神经网络模型相结合而形成的模糊神经网络故障诊断技术,已开始应用于轴承的故障诊断中。

3今后的研究方向

以上综述了常见的一些信号处理技术在轴承故障诊断中的应用。笔者认为,以下几个方面将成为今后的研究重点。

(1)除了时频分布和小波变换以外还有其他的非平稳信号分析方法,如非平稳信号分析的参数模型法,包括时变参数模型法、分段平稳AR模型法、自适应AR模型法等。这些方法属于信号处理的前沿内容,其理论基础尚处于不断完善中。这些方法得到了很多研究者的重视,并正逐步在轴承的故障诊断中得到应用。关于这些方法的理论问题可参考文献[29]。

(2)目前在轴承故障诊断中普遍采用的是二阶循环统计量法。除了二阶循环统计量外还可以采用高阶循环统计量技术进行研究。轴承的振动信号大多具有循环平稳性,通过研究轴承振动信号的高阶循环统计量有望在轴承的故障诊断中取得新的突破。

(3)非线性理论在轴承故障诊断中的应用。目前对轴承故障的研究主要是分析故障信号的非线性特征,即分形维数,但是出现这些特征的机理以及故障发展趋势对这些特征的影响等我们还远未清楚,这是轴承故障诊断中另一个很有前途的

#

46

#5轴承62005.l.01

研究课题。

(4)智能诊断技术在轴承故障诊断中的应用。随着神经网络算法的改进,模糊理论、灰色系统理论的不断完善和发展,智能诊断技术已经成为轴承故障诊断的一个热点研究方向,因此,它必将具有很大的发展潜力和广阔的发展前景。

参考文献:

[1]陈进.现代信号处理在机械故障诊断中的应用及

展望[J].声学技术,1999,18(11):13-16.

[2]张贤达.现代信号处理[M].北京:清华大学出版社,

2002.

[3]喻金平.倒频谱分析及其在滚动轴承故障诊断中的

应用[J].南方冶金学院学报,1993,14(1):49-55. [4]朱跃松.设备厂故障诊断中的包络分析[J].金山油

化纤,2000(4):27-31.

[5]Jiang M.Chen J et al.Cyclostationary Signal Analysis

Based Diagnosis M ethod for Rotating M achinery[A].

P roceedings of Fifth International Conference on M o-

tion and Vibration Control[C].2000,433-438.

[6]姜明,陈进,秦恺.循环周期图在滚动轴承故

障诊断中的应用[J].机械科学与技术,2002,21(1):

108-110.

[7]李力.循环域解调方法在滚动轴承故障诊断中的

应用[J].轴承,2003(10):33-36.

[8]秦恺,陈进,姜鸣等1一种滚动轴承故障特

征提取的新方法)谱相关密度[J].振动与冲击,

200l,20(1):34-37.

[9]王锋,屈梁生.小波)循环谱密度法在旋转机械

故障诊断中的应用[J].中国设备工程,2002(6):38

-39.

[10]Cohen L.时)频分析B理论与应用[M].白居宪,

译.西安:西安交通大学出版社,1998.

[11]孟庆丰,蒋晓玲.滚动轴承和齿轮故障的时频识别

[J].重型机械,1998(1):57-60.

[12]黄迪山,郭仰德.W igner分布算法及其在滚动轴承

故障诊断中的应用[J].中国纺织大学学报,1995,

21(2):136-140.

[13]Sun Q,T ang Y.Singular ity analysis using continuous

w av elet transform for bearing fault diagnosis[J].M e-

chanical Systems and Sig nal Processing,2002,16(6):

1025-1041.

[14]N ikolaou N G,Antoniadis I A.Rolling element bear-

ing fault diagnosis using wavelet packets[J].N DT

and E intermational,2002,35(3):197-205.[15]张中民,张英堂1基于小波系数包络谱的滚动轴

承故障诊断[J].振动工程学报,1998,11(1):65-

69.

[16]史东锋,鲍明1小波包络分析在滚动轴承诊断

中的应用[J].中国机械工程,2000,11(12):1382-

1385.

[17]张中民,张英堂.基于小波分析的变速箱滚动轴承

故障诊断方法的研究[J].机械科学与技术,1999,

18(1):121-124.

[18]张佩瑶,马孝江1小波包络信号提取算法及其在

故障诊断中的应用[J].大连理工大学学报,1997,

37(1):67-72.

[19]M cCor mick A C,Nandi A K.Bispectral and trispec-

tral features for machine condition diagnosis[J].IEE

P roceedings:V i sion,Image and Signal Processing,

1999,146(5):229-234.

[20]P ineyro J,K lempnow A,Lescano V.Effect iveness of

new spectral tools in the anomaly detection of rolling

element bearings[J].Jour nal of A lloys and Com-

pounds,2000,3(10):276-279.

[21]苏文斌,温熙森.故障诊断中非线性耦合特征提取

方法研究[J].振动与冲击,1998,17(2):14-18. [22]杨江天,陈家骥.基于1

1

维谱的滚动轴承故障诊断[J].机械强度,1999,22(4):249-251.

[23]Raghuveer.T ime-domain appr oaches to quadratic

phase coupling estimation[J].I EEE T r ans.A uto-

matic Contr ol,1999,35(10):48-56.

[24]David L,M athew J.U sing the cor relation dimension

for v ibration fault diagnosis of rolling element bear ing

-I.Basic concepts[J].M echanical System&Signal

processing,1996,10(3):241-250.

[25]张文明,李莉.滚动轴承故障诊断中的分形[J].

北京科技大学学报,1996,18(3):215-221. [26]吕志民,徐金梧1分形维数在滚动轴承故障诊断

中的应用[J].北京科技大学学报,1998,20(5):475

-480.

[27]王朝晖,张来斌.分形法在发动机隐含故障诊断中

的应用[J].石油大学学报,2003,27(1):54-56. [28]吕志民,张武军,徐金梧等1基于奇异谱的降噪方

法及其在故障诊断技术中的应用[J].机械工程学

报,1999,35(3):.85-88.

[29]张贤达,保铮.非平稳信号分析与处理[M].北

京:国防工业出版社,1998.

(编辑:赵金库)

#

47

#

董建宁等:轴承故障诊断中的信号处理技术研究与展望

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

城轨列车滚动轴承早期故障诊断与状态识别方法研究

城轨列车滚动轴承早期故障诊断与状态识别方法研究 城市轨道交通作为一种高效的公共交通方式,逐渐成为了我国各大城市的交通命脉。然而在日益增长的运营压力下,列车安全问题愈发重要。 滚动轴承是城轨列车的重要部件之一,广泛应用于车辆的各个设备中,其运行状态直接影响着列车的安全运行。因此对滚动轴承进行实时监测、分析,准确把握滚动轴承的工作状态,对防止事故发生、保障列车可靠运行具有重大意义。 鉴于此,本文针对滚动轴承的早期故障诊断、特征提取、故障模式识别方法展开了系统研究,主要内容如下:(1)研究了基于变分模态分解(VMD)的滚动轴承早期故障诊断算法。针对传统经验模态分解(EMD)处理信号受噪声影响较大、易出现模态混叠的缺陷,本文提出采用VMD方法对轴承早期故障信号进行分析。 研究了 VMD算法中关键参数的选取对结果的影响,并改进了混沌粒子群算 法(CPSO),使其适用于VMD参数寻优。通过轴承早期故障仿真信号和全寿命疲劳加速实验数据进行分析对比,证明了所提方法能对轴承早期微弱故障进行有效识别,比传统方法具有更大的优势。 (2)研究了基于双树复小波包变换(DT-CWPT)的滚动轴承特征提取技术。本文首先对轴承振动信号进行时域特征参数提取,随后采用DT-CWPT对信号进行分解,求取节点重构系数的多尺度排列熵(MPE)。 为避免特征冗余对识别结果造成不良影响,通过随机森林(RF)算法进行特征选择,选取重要性较高的特征参数作为最终的模式识别算法的输入集。(3)研究了基于KELM-AdaBoost的滚动轴承故障模式识别方法。 在基本极限学习机(ELM)的基础上重点研究核极限学习机(KELM)算法,采用CPSO算法和交叉验证方法结合的方式对核极限学习机的参数进行寻优。针对单

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

滚动轴承早期故障在线监测与诊断

第32卷第6期1998年6月 西安交通大学学报 JOURNAL OF XI c AN JIAOTONG UN IVERSITY Vol.32l6 Jun.1998滚动轴承早期故障在线监测与诊断 王丽丽王超 (西安交通大学,710049,西安) 摘要对滚动轴承早期故障的诊断提出了一种简便有效的方法.阐明频域和时域分离故障信息的原理,讨论了窄带滤波器设计参数选取的方法,特别是对窄带滤波器的中心频率及带宽与故障特征频率之间的关系给出了定量的描述,对窄带信号峰值包络包含的低频分量的放大作用给出了定量的分析.最后以5套307轴承为例进行了成功的诊断.采用文中提出的方法可由功率谱直接判读故障谱峰,该方法直观、快速、简便,非常适用于滚动轴承的在线监测与诊断. 关键词轴承故障诊断希尔伯特变换窄带滤波功率谱密度 中国图书资料分类法分类号TB123 The O n-Line Inspection and Diagnosis for the Rolling Bearing.s Tiny Fault Wang L ili Wang Chao (Xi c an J i aotong University,710049,Xi c an) Abstract An effective method based on the H ilbert transform and narrow-band filtration is proposed to dig nose the rolling bearing.s tiny fault.The theory for ex tracting the fault signal in both frequency-domain and time-domain is ex pounded.The envelope signal of the rolling bearing w ith fault sig nal is calculated using the H ilbert transform and narrow-band filtration,and then the com ponent of it caused by the fault is am plified using mathematical transformation.In discussing the choice of the narrow-band filter.s parameters,the relationship betw een the filter.s parameters(center freqency and band range)and the fault.s characteristic freqency is described quantitalively.Ex amples show that this method is valid w ith high accuracy.T he method proposed is very suitable for the rolling bearing.s on-line inspection and diagnosis. Keywords bearing f ault diagnosis H ilbert tr ansf or m nar row-band f iltr ation p ower sp ectrum density 滚动轴承是旋转机械的基础部件,也是旋转机械振动的主要激振源之一,它的状态直接影响到系统的正常运行.因此,对滚动轴承故障实现早期监测和诊断,可以预防事故的发生,在生产上具有重大的经济和社会效益. 文献[1]主要针对滚动轴承的局部缺陷,如内外 收到日期:1997O03O04.王丽丽:女,1968年7月生,建筑工程与力学学院工程力学系,博士生,讲师.

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

声发射检测技术用于滚动轴承故障诊断的研究综述_郝如江

振 动 与 冲 击 第27卷第3期 J OURNAL OF V IBRAT I ON AND SHOCK Vo.l 27No .32008 声发射检测技术用于滚动轴承故障诊断的研究综述 基金项目:863计划(2006AA04Z438)资助;河北省自然科学基金(E2007000649)资助 收稿日期: 2007-06-25 修改稿收到日期:2007-07-12 第一作者郝如江男,博士生,副教授,1971年生 郝如江1,2 , 卢文秀1 , 褚福磊 1 (1.清华大学精密仪器与机械学系,北京 100084;2.石家庄铁道学院计算机与信息工程分院,石家庄 050043) 摘 要:声发射是材料受力变形产生弹性波的现象,故障滚动轴承在运转过程中会产生声发射。从几个方面综合 阐述了国内外轴承故障声发射检测技术的研究和发展现状,即轴承故障声发射信号的产生机理,故障声发射信号的传播衰减特性,声发射信号的参数分析法和波形分析法对故障特征的描述,轴承故障声发射源的定位问题,根据信号特征进行 故障模式识别以及声发射检测和振动检测的比较问题。通过分析总结出滚动轴承声发射检测技术下一步的研究方向,并指出滚动轴承故障的声发射检测是振动检测的有力补充工具,特别是在轴承低转速和故障早期的检测中更能发挥作用。 关键词:声发射;滚动轴承;故障诊断 中图分类号:TH 113,TG 115 文献标识码:A 滚动轴承是各种旋转机械中最常用的通用零部件之一,也是旋转机械易损件之一。据统计,旋转机械的故障有30%是轴承故障引起的,它的好坏对机器的工 作状况影响极大[1] 。滚动轴承主要损伤形式有:疲劳、 胶合、磨损、烧伤、腐蚀、破损、压痕等[2] 。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。因此,对重要用途的轴承进行工况检测与故障诊断是非常必要的。 滚动轴承故障的检测诊断技术有很多种,如振动信号检测、润滑油液分析检测、温度检测、声发射检测等。在各种诊断方法中,基于振动信号的诊断技术应用最为广泛,该技术分为简易诊断法和精密诊断法两种。简易诊断利用振动信号波形的各种参数,如幅值、波形因数、波峰因数、概率密度、峭度系数等,以及各种解调技术对轴承进行初步判断以确认是否出现故障;精密诊断则利用各种现代信号处理方法判断在简易诊断中被认为是出现了故障的轴承的故障类别及原因。振动信号检测并非在任何场合都很适用,例如在汽轮机、航空器变速箱及液体火箭发动机等鲁棒性较低的系统中,轴承的早期微弱故障就会导致灾难性的后果,但是早期故障的振动信号很微弱,又容易被周围相对幅度较大的低频环境噪声所淹没,从而无法有效检测出故障的存在[3] 。由于声发射是故障结构本身发出的高频应力波 信号,不易受周围环境噪声的干扰[4] ,因此声发射检测方法在滚动轴承的故障诊断中得到了应用。 1 滚动轴承故障声发射检测机理 111 声发射检测技术原理 材料受到外力或内力作用产生变形或者裂纹扩展 时,以弹性波的形式释放出应变能的现象称为声发射[5] 。用仪器检测、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测技术,它是20世纪60年代发展起来的一种动态无损检测新技术,其利用物质内部微粒(包括原子、分子及粒子群)由于相对运动而以弹性波的形式释放应变能的现象来识别和了解物质或结构内部状态。 声发射信号包括突发型和连续型两种。突发型声发射信号由区别于背景噪声的脉冲组成,且在时间上可以分开;连续型声发射信号的单个脉冲不可分辨。实际上,连续型声发射信号也是由大量小的突发型信号组成的,只不过太密集而不能分辨而已。目前对于声发射信号的分析方法主要包括参数分析法和波形分析法。112 滚动轴承故障声发射源问题 滚动轴承在运行不良的情况下,突发型和连续型的声发射信号都有可能产生。轴承各组成部分(内圈、外圈、滚动体以及保持架)接触面间的相对运动、碰摩所产生的赫兹接触应力,以及由于失效、过载等产生的诸如表面裂纹、磨损、压痕、切槽、咬合、润滑不良造成的的表面粗糙、润滑污染颗粒造成的表面硬边以及通过轴承的电流造成的点蚀等故障,都会产生突发型的声发射信号。 连续型声发射信号主要来源于润滑不良(如润滑油膜的失效、润滑脂中污染物的浸入)导致轴承表面产生氧化磨损而产生的全局性故障、过高的温度以及轴承局部故障的多发等,这些因素造成短时间内的大量突发声发射事件,从而产生了连续型声发射信号。 滚动轴承在运行过程中,其故障(不管是表面损伤、裂纹还是磨损故障)会引起接触面的弹性冲击而产生声发射信号,该信号蕴涵了丰富的碰摩信息,因此可利用声发射来监测和诊断滚动轴承故障。与振动方法不同的是,声发射信号的频率范围一般在20kH z 以上,而振动信号频率比较低,因此它不受机械振动和噪声

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

轴承运行状态监测与故障诊断方法研究【文献综述】

毕业设计开题报告 测控技术与仪器 轴承运行状态监测与故障诊断方法研究 1前言 装备制造业是为国民经济和国防建设提供技术的重要产业,而振兴装备制造业的重中之重是提高装备的创新和产品的国产化,轴承产品作为装备制造业中重大装备的基础零件,也必须实现其自主创新和国产化。从文献所知,国务院在《关于加快振兴装备制造业若干意见》中提出,选择16个对国家经济和国防建设有重要影响的关键领域,以重大装备为重点,尽快扩大自主装备的市场占有率[1]。而在这16个关键领域中的重大技术装备中,绝大部分都要装用轴承,并且需要高技术的轴承来保证其精度、性能、寿命和可靠性。据数据显示,至2010年,这16个关键领域每年要配套轴承约 550.5万套,产值约 116.5亿元。滚动轴承作为机械设备中重要的零件,是机械设备的重要故障源之一。统计表明:在使用滚动轴承的机械中,大概有 30%的机械故障是由滚动轴承引起的。在感应电机故障中,滚动轴承故障约占电机故障的40%左右,而齿轮箱各类故障中的轴承故障率仅次于齿轮占20%。有关资料表明,我国现有的机车用的滚动轴承,每年约40%要经过下车检验,其中的33%左右被更换。 因此,改定期维修为状态监控维修,研究机车轴承故障监测和诊断,有重要的经济效益和实用价值[2]。据统计,对机械设备应用状态监测与故障诊断技术,事故发生率可降低75%,维修费用可减少25~50%。滚动轴承的状态监测与故障诊断技术在了解轴承的性能状态和及时发现潜在故障等方面起着至关重要的作用,并且可以有效提高机械设备的运行管理水平及维修效能,具有显著的经济效益。 2主题 现在,我国在滚动轴承监测与故障诊断技术方面的研究经历了2个重要阶段:从70年代末到80年代初,主要吸收国外先进技术,并对一些故障原理和诊断方

轴承故障诊断中的信号处理技术研究与展望

!专题综述# 轴承故障诊断中的信号处理技术研究与展望 董建宁,申永军,杨绍普 (石家庄铁道学院机械工程分院,河北石家庄050043) 摘要:讨论了各种信号处理技术在滚动轴承故障诊断中的应用,如平稳信号处理技术、非平稳信号处理技术,非高斯和非白色噪声信号处理技术、非线性信号处理技术、奇异值分解技术以及各种智能诊断技术。详细比较了各种信号处理技术的特点、应用范围和研究进展,并指出了今后的若干研究方向,为轴承的故障诊断和在线监测提供了依据。 关键词:滚动轴承;故障诊断;信号处理 中图分类号:T H133.33;T N911.7文献标识码:B文章编号:1000-3762(2005)01-0043-05 Study and Prospect on S ignal Process Technique of Bearing Fault Diagnosis DONG Jian-ning,SHEN Yong-jun,YANG Shao-pu (Department of M echincal Eng ineering,Shijiazhuang Railway Inst itute,Shijiazhuang050043,China) Abstract:T he application of several signal process techniques are discussed in failur e diagnosis of the rolling bearing, such as steady signal,non-steady sig nal,non-g auss-s and non-w hite no ise signal,non-linear signal process tech-nique,oddity value decompositio n technique and so me kinds of intelligent diagnosis technique.T he characterist ics,ap-plied area and development trend of the signal process techniques ar e compared in detail.A nd t he study dir ections in t he futur e are pointed out. Key words:ro lling bearing;fault diagnosis;signal process 对重要轴承进行工况监视与故障诊断,不但可以防止机械工作精度下降,减少或杜绝事故发生,而且可以最大限度地发挥轴承的工作潜力,节约开支,在工程上具有重要意义。 本文以轴承系统为研究对象,重点介绍轴承的振动诊断技术中常见的信号处理方法。现代信号分析和处理的本质可以作一个/非0字高度概括:研究和分析非线性、非因果、非最小相位系统、非高斯、非平稳、非整数维信号和非白色的加性噪声[1]。其中非最小相位和非因果信号处理技术目前尚未在故障诊断中得到应用。现介绍其他信号处理技术在轴承故障诊断中的应用情况。 收稿日期:2004-03-12;修回日期:2004-04-22 基金项目:河北省科学技术研究与发展计划项目(01547019D) 作者简介:董建宁,(1977-),女,研究生,专业方向:滚动轴承的故障诊断技术研究。1平稳信号处理技术 111平稳信号的Fourier谱分析技术 目前振动信号分析工程上常用的信号处理方法是FFT频谱分析。在对轴承的故障诊断中,将振动信号进行频谱分析,查看谱图中有无明显的故障频率谱峰存在,从而可以判断轴承是否完好。这种方法具有很大的局限性,诊断出来的轴承一般都已有较严重的损害,并且对轴承早期故障的分析不够灵敏。 112平稳信号的时间序列分析 对于直接进行频谱分析比较困难的情况,如采集的信号序列较短,或者Fourier变换不能将相互靠近的两个频率分开,采用时间序列分析(也称参数模型的谱分析)是一种较好的方法。常用的时间序列模型有ARMA模型、AR模型以及MA 模型。关于各种模型的特点、算法以及适用领域 ISSN1000-3762 CN41-1148/T H 轴承 Bear ing 2005年第1期 2005,No.01 43-47

轴承故障诊断技术及发展现状和前景

轴承故障诊断技术及发展现状和前景 摘要 本文分析了轴承故障信号的基本特征,并将共振解调技术的原理和基于振动信号的信号处理方法用于滚动轴承的故障诊断. 在实践中运用该技术手段消减了背景噪声的干扰,提高了轴承的信噪比, 取得了与实际情况完全吻合的诊断结果。并概述了滚动轴承故障监测和诊断工程与试验应用技术的现状,并预测了滚动轴承故障监测和诊断技术应用新进展和发展方向。 关键词:滚动轴承;共振解调;小波 分析;信噪比(SN R );变速箱;故障监测;信号处理;故障诊断;应用技术。 1 轴承故障信号的基木 特征 机器在正常工作的条件下其转轴 总是匀速转动的. 由轴承的结构可知, 当轴承某元件的工作而产生缺陷时, 由加速度传感器所测取到的轴承信号 具有周期性冲击的特征,由信号理论 可知, 时域中短暂而尖锐的冲击信号 变换到频域中去时必具有宽频带的特 性, 而非冲击的干扰信号则不具有上 述特性,所以时域中的周期性冲击与 频域中的宽频带特性构成了轴承故障 信号区别于其它非冲击性干扰信号的 基木特征。 2 用共振解调技术提高 轴承信号的信噪比 我们来考察一下用共振解调技术提高轴承信号信噪比的过程。传感器拾取到的轴承信号包含两部分内容, 即轴承的故障信号和干扰噪声两部分。带通滤波器的中心频率与传感器的安装片振圆频率相一致, 它将保存被传感器的共振响应所加强了的冲击性故障信号, 滤除掉频率较低的干扰噪声信号, 这种保留下来的瞬态冲击信号经过包络检波器后就形成了一个与故障冲击重复频率相一致的包络脉冲串, 然后对该脉冲串进行普分析便在低频域内得到一个与冲击币复频率相一致的峰值。峰值的大小反映了冲击的强弱即故障的严重程度这样我们就借助共振解调技术实现了故障信号与干扰信号的分离, 并在低频域内重新得到了故障冲击的信息。而在常规的信号分析与处理过程中一开始就使用了抗混频滤波器(低通滤波器这种分析方法没有利用轴承故障信号的特点, 经抗混频滤波器后将被传感器的共振以加强放大了的故障特征信号无情地滤除了, 所剩下的只是强大的背景噪声信号及微弱的故障特征信号, 因此用常规的信号分析方法难以排除干扰信号的影响而采用共振解调技术就可以排除背景噪声的干扰, 提高轴承故障诊断的有效率。

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断 文献综述

滚动轴承故障诊断文献综述 [ 2008-4-2 14:38:00 | By: mp2 ] 推荐 文献综述 ——滚动轴承故障诊断 1.前言 滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。据统计。旋转机械的故障有30%是由轴承引起的。可见轴承的好坏对机器的工作状况影响很大。轴承故障诊断就是要通过对能够反映轴承工作状态的信号的测取,分析与处理,来识别轴承的状态。包括以下几个环节:信号测取;特征提取;状态识别:故障诊断;决策干预[1]。 滚动轴承故障诊断传统的分析方法有冲击脉冲法,共振解调法,倒频谱分析技术。 在现代分析方法中,小波分析是最近几年才出现井得以应用和发展的一种时—频信号分析方法。它具有时域和频域的局部化和可变时频窗的特点.用它分析非平稳信号比传统的傅里叶分析更为最著。由于滚动轴承的故障信号中禽有非稳态成分,所以刚小波分析来处理其振动信号.可望获得更为有效的诊断特征信息[2]。 滚动轴承故障的智能诊断技术就是把神经网络、专家系统、模糊理论等技术与滚动轴承的特征参数有机地结合起来进行综合分析的故障诊断技术。 2.故障信号诊断方法 2.1冲击脉冲法(spm) SPM技术(Shock Pulse Method),是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时,会产生低频冲击作用,所产生的冲击脉冲信号,会激起SPM 传感器的共振,共振波形一般为20kHz~60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。SPM 方法是根据这一反映冲击力大小的脉冲序列来判断轴承状态的。此种方法目前被公认为对诊断滚动轴承局部损伤故障工程实用性最强的。此方法虽然克服了选择滤波中心频率和带宽的困难,但这种固定中心频率和带宽的方法也有其局限性,因为,一些研究结果表明,滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的,在故障的不同阶段可能激起不同结构的共振响应,而不同部位的故障(内、外圈、滚子)也会激起不同频率结构的共振响应。显然,固定的滤波频带有其局限性。实际使用情况表明,当背景噪声很强或有其他冲击源时,

滚动轴承故障诊断技术

目录 摘要 (3) 第1章绪论 (4) 1.1滚动轴承故障诊断技术的发展现状 (4) 1.2滚动轴承故障诊断技术的发展趋势 (6) 1.3滚动轴承诊断基础 (7) 1.3.1滚动轴承的常见故障形式 (7) 1.3.2滚动轴承的诊断方法 (8) 1.4本课题的研究意义和内容 (9) 第2章滚动轴承振动机理 (11) 2.1滚动轴承的基本参数 (11) 2.1.1滚动轴承的典型结构 (7) 2.1.2滚动轴承的特征频率 (11) 2.1.3滚动轴承的固有频率 (13) 2.2滚动轴承故障诊断常用参数 (14) 2.2.1时间领域有量纲特征参数 (14) 2.2.2时间领域的无量纲特征参数 (15) 2.2.3频率领域的无量纲特征参数 (16) 第3章滚动轴承故障诊断实验系统及实验方案 (17) 3.1滚动轴承故障诊断实验系统 (17) 3.1.1滚动轴承故障实验机械平台 (18) 3.1.2设备的组成: (19) 3.1.3设备的主要参数: (19) 3.1.4实验平台信号采集及故障诊断系统 (21) 3.2实验方案 (23) 3.2.1轴承的故障状态 (23) 3.2.2实验步骤 (23) 第4章实验的操作过程及数据的提取 (25) 4.1装拆轴承 (25)

4.1.1实验前期准备 (25) 4.1.2试机 (25) 4.1.3拆卸并安装轴承 (25) 4.2信号的采集过程 (27) 4.2.1前期准备 (27) 4.2.2数据采集过程 (28) 4.3数据信号的处理过程 (30) 第5章结论 (35) 致谢 (36) 参考文献 (37)

旋转机械故障诊断特征参数的提取 摘要:本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常用的特征参数。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,本文所提出的方法不仅仅适用滚动轴承故障的诊断,还可推广适用旋转机械其它故障的诊断。 关键词:滚动轴承;故障诊断;特征参数;分辨指数;识别率 The Extraction on Fault Diagnosis Symptom Parameters of Rotating Machinery ABSTRACT:In the thesis ,the fault types,diagnostic methods and vibration principle of rolling bearing are discussed.the thesis sets up a series of academic models of faulty rolling bearings and lists some symptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration principle of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical analysis, and process are described in detail, the paper by the way not only to the Rolling fault diagnosis, but also promote the application of other rotating machinery fault diagnosis. Keywords:Rolling Bearing; Fault Diagnosis; Symptom Parameter; Distinction Index; Distinction Rate

基于Matlab的滚动轴承故障诊断系统设计

摘要 滚动轴承是旋转机械中应用最广泛的一种通用部件,也是机械设备中的易损零件,许多机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约30%的机械故障是由于滚动轴承的损坏造成的。可见,滚动轴承的好坏对机械系统工作状况的影响极大。由于设计不当和安装工艺不好或轴承的使用条件不佳,或突发载荷的影响,使轴承运转一段时间后会产生各种各样的缺陷,并且在继续运行中进一步扩大,使轴承运行状态发生变化。因此,滚动轴承的故障诊断一直是研究的热点。 本文首先从理论上分析了滚动轴承的失效形式、振动机理、振动类型、及发生故障的原因、振动频率;然后在理论基础上提出了滚动轴承的时域、频域的诊断方法;最后搭建了基于Matlab的滚动轴承故障诊断系统,并通过Matlab仿真轴承故障信号,在软件中进行信号分析和处理,验证各种诊断方法的优劣和滚动轴承的故障特征。 本论文按照预定的要求完成了设计任务,研究了滚动轴承的故障诊断方法,完成了故障诊断系统的设计,通过仿真验证了滚动轴承的故障诊断方法。 关键词:滚动轴承;故障诊断;时域分析;频域分析;Matlab

Abstract Rolling element bearing is one of the most widely used general part of rotating machinery,and one of the most easily damaged parts of mechanical equipment. A lot of mechanical failure is relevant to the state of rolling element bearings. It is estimated that about 30 percent of mechanical failure is caused by its fault in the rotating machine with rolling element bearings. It is obvious that the quality of rolling element bearings has a great impact on the working condition of electromechanical systems. Because of wrong design, poor working condition or a jump heavy load, bearing will be damaged and worse during the running time. So at present, the fault diagnosis of rolling element bearings is a research hotspot. Firstly, the failure forms, the vibration mechanism, vibration type, and the failure cause, vibration frequency of bearing are analyzed in theory.Secondly, based on the theory put forward the time domain, frequency domain diagnostic methods.Finally, the software for the fault diagnosis system of the rolling bearings is designed by Matlab,along with the simulation of bearing fault signals by Matlab.To analysis and processing the signal in software. Verify the merits of various diagnostic methods and characteristics of rolling bearing faults. The paper successfully completed the design task and the result meets the expectation. We researched the fault diagnosis methods and completed the fault diagnosis system design and simulation shows the fault diagnosis methods of rolling element bearings. KeyWords:rolling element bearings,fault diagnosis,time-domain analysis, frequency-domain analysis,Matlab

相关文档
相关文档 最新文档