文档库 最新最全的文档下载
当前位置:文档库 › 水管系统各部件局部阻力系数

水管系统各部件局部阻力系数

水管系统各部件局部阻力系数
水管系统各部件局部阻力系数

并联环路压力损失的最大允许差值双管同程:15%

双管异程:25%

附录C 当量长度表

所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。

特别补充:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。同样,水管的水流速建议计算后,查表取阻力值。

关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。

另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的

水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了!

1、水泵扬程简易估算法暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):

Hmax=△P1+△P2+0.05L(1+K)

△P1为冷水机组蒸发器的水压降。

△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。

L为该最不利环路的管长

K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6

2、冷冻水泵扬程实用估算方法这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。

1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控制在150~200Pa/m 范围内,管径较大时,取值可小些。

3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。

4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。

根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程:

1.冷水机组阻力:取80kPa(8m水柱);

管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50kPa;取输配侧管路长度300m与比摩阻200Pa/m,则磨擦阻力为300*200=60000Pa=60kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60kPa*0.5=30kPa;系统管路的总阻力为50kPa+60kPa+30kPa=140kPa(14m水柱);

3.空调末端装置阻力:组合式空调器的阻力一般比风机盘管阻力大,故取前者的阻力为45kPa(

4.5水柱);

4.二通调节阀的阻力:取40kPa(0.4水柱)。

5.于是,水系统的各部分阻力之和为:80kPa+140kPa+45kPa+40kPa=305kPa(30.5m水柱)

6.水泵扬程:取10%的安全系数,则扬程H=30.5m*1.1=33.55m。

根据以上估算结果,可以基本掌握类同规模建筑物的空调水系统的压力损失值范围,尤其应防止因未经过计算,过于保守,而将系统压力损失估计过大,水泵扬程选得过大,导致能量浪费。

(1)冷、热水管路系统

闭式水系统

Hp=hf+hd+hm (10-13)

式中 hf、hd——水系统总的沿程阻力和局部阻力损失,Pa

hm——设备阻力损失,Pa

hd/ hf值,小型住宅建筑在1~1.5之间大型高层建筑在0.5~1之间远距离输送管道(集中供冷)在0.2~0.6之间。设备阻力损失见表10-5。

设备阻力损失

2)地面辐射供暖系统户内系统总阻力损失应在10kPa左右。若考虑恒温阀.、热量表.,则系统总阻力损失可达到30-50 kPa。本文计算工况偏于不利工况,对面积较小或热负荷较小的房间,其对应环路

的阻力损失相应也小,适当增加户内系统总阻力损失,利于变流量系统的调节与稳定。

(3)仅就加热管的阻力损失而言,其局部阻力占户内系统总阻力损失的比例不超过10%。

通常地面辐射供暖系统的阻力损失要大于散热器采暖系统,究竟大多少?局部阻力与沿程阻力的比例如何?这是设计人员普遍关心的问题。下面将通过实际计算,分析地面辐射供暖系统的阻力损失。

3.1 算例:房间地面面积30 m2,假定单位热负荷为70W/m2、供回水温差10℃,则该房间热负荷为2100W,热媒流量为180.6kg/h。以De20×2的PE-X(PE—RT)管为例,假定加热管间距200mm。

(1)沿程阻力损失⊿Pl

假定房间可敷设加热管的地面面积22 m2,若不考虑弯头部分的差别,管长可按下式计算:

L=A/T

L-----加热管管长 m

A-----敷设加热管的地面面积 m2

T------加热管间距 mm

经计算,加热管长度为110米,假设分、集水器到房间的加热管长度(供回)为10 米,则加热管总长度为120米。由塑料管水力计算表可查得,此时热媒流速υ为0.25m/s、沿程比摩阻为85.86(Pa/m),则沿程阻力⊿Pl为46.7x120=10303(Pa)。

民用建筑供水温度宜为45-50度,不应高于60度,供回水温差宜采用5-10度。

机房内阻力表(参考)

立管局部阻力损失为沿程损失的一半估算

HDPE管连接件的等值长度m(有待确认)

选定阀门的当量长度

二十世纪90年代美国。加拿大建设的一些地源热泵系统的设计特征

编号建筑类型建成

时间

(mm) 埋

管径

(mm)

孔深

(m)

孔数装机

容量

(kw)

总流量

(l/min.k

w)

单管

流量

(l/h)

单位孔深

换热量

(w/m)

1 办公/服务中心199

2 U 32 5

3 280 1080 3.27 757 72.8

2 中学1992 U 32 61 360 1442 3.47 83

3 65.7

3 办公楼1993 U 25 61 70 390 2.43 811 91.3

4 高尔夫俱乐部1990 U 40 183/91 4/2 90 3.24 291

5

98.5

5 合作办公楼1991 U 20 4

6 65 204 3.23 608 68.2

6 艺术博物馆1990 U 25 8

7 4

8 373 1.46 127

8

89.3

7 小学1992 U 25 15 560 679 1.50 162 80.8

8 小学1994 U 25 80 106 331 3.41 638 39

9 大学1994 U 32 129 400 4924 3.46 255

5

95.4

10 工厂及办公1991 U 20 91 180 703 3.23 757 42.9

11 多单元住宅1986 U 32 90 104 1045 3.51 211

8

111.6

12 公用建筑1986 U 40 232 3.88

13 旅馆1986 U 32 91 30 341 2.95 201

4

124.9

14 多单元住宅U

15 办公楼1990 U 183 62 886 78.1

54.2 16 旅馆1992 U 32 152 90 742 2.76 136

5

202 17 中学1993 U 32 30 250 1516 2.91 105

8

18 大学1994 U 32 61 50 281 93.6

69.1 19 教育中心1993 U 32 76 16 84 6.31 198

7

94.4 20 办公楼1990 U 32 52 43 211 3.95 116

2

21 办公楼1993 U 32 50 96 352 2.71 596 73.3

22 办公楼1993 U 226 1231 3.27 109

6

23 中学1997 U 19 46 320 36.6

24 办公楼1997 U 19 46 65 74.3

25 大学U 120 390

26 办公楼U 25 42 30 654

27 小学1987 水

32 50 36 198 2.78 229 27.5

28 u

从表中可以看出,这些系统的地下换热器设计流量在3L/min.kw(2-4L/min.kw)左右,孔洞单位长度换热量在70-100w/m之间,地下部分的造价约占系统总造价的1/3.

每个回路的管长并不是越长越好,一旦超过了极限,则长度的增加对换热量的影响就非常小了

实验三 管路局部阻力系数测定实验

实验三 管路局部阻力系数测定实验 一、实验目的要求: 1.掌握三点法,四点法测量局部阻力系数的技能。 2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。 3.加深对局部阻力损失机理的理解。 二、实验成果及要求 1.记录计算有关常数。 实验装置台号No d 1=D 1= 1.4 cm , d 2=d 3= d 4= D 2=1.9 cm , d 5=d 6=D 3= 1.4 cm , l 1—2=12cm , l 2—3=24cm , l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm , 2 2 1) 1(A A e - ='ξ= 0.21 ,) 3 1(5.05A A s - ='ξ= 0.23 。 2.整理记录、计算表。 表1 记录表

表2 计算表 3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。 三、实验分析与讨论 1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同? 2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式 g v h j 22 ζ = 及 ()21d d f =ζ 表明影响局部阻力损失的因素是v 和21d d 。由于有 突扩:2 211???? ? ?-=A A e ζ

突缩:???? ? ?-=2115.0A A s ζ 则有 () () 2 12 212115.0115.0A A A A A A K e s -= - -= = ζζ 当 5.021?A A 或 707.021?d d 时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。 21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动, 因而阻力损失显著减小。 2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与 突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。 从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。 从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。突然收缩实验管道使

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算 第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 , , , , 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 , ,所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间

的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9,,给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示 式中,—局部损失,阻力,系数,是一个无量纲的系数,它的大小与局部障碍物的结构形式有关,由实验确定。—管中的平均速度,通常指局部损失之后的速度,。 局部压强损失为 式中, —流经局部障碍物前后的压强差,或总压差,。 突然扩张管道的局部损失计算

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法 胡宝林 在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件与重杂物分离器、供料器、卸料器、除尘器等设备上产生。由于管件形状与设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都就是实测数据,由于规格结构不同差异也会很大,所以仅供参考。只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。局部阻力就是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2、5~6、5m 的直管沿程阻力。由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下与带料运行时的局部阻力系数的变化及局部阻力计算方法。 一、纯空气输送时局部阻力与系数 1、局部阻力 当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。在产生局部损失的地方,由于主流与边界分离与漩涡的存在,质点间的摩擦与撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式: 2 2 j d H H ρυξξ=?=? 式中:j H —局部阻力,a P ; ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ; ρ—空气密度,1、2053/kg m (20°℃); υ—空气流速,/m s

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

管道的阻力计算

6.1.1 管道的阻力计算 [ 2007-9-4 14:50:31 | By: rsjang ] 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1)对于圆形风管,摩擦阻力计算公式可改为: (6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; R s——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5)

风管选择计算

11.2风管的沿程压力损失 11.2.1 沿程压力损失的基本计算公式 1. 风量 (1)通过圆形风管的风量 通过圆形风管的风量L (m 3/h )按下式计算: L=900πd 2V (11.2-1) 式中d ——风管径,m ; V ——管风速,m/s 。 (2)通过矩形风管的风量 通过矩形风管的风量L (m 3/h )按下式计算: L=3600abV (11.2-2) 式中 a ,b ——风管断面的净宽和净高,m 。 2. 风管沿程压力损失 风管摩擦损失m P ?(Pa ),可按下式计算: l p P m m ?=? (11.2-3) 式中 m p ?——单位管长沿程摩擦阻力,Pa/m ; l ——风管长度,m 。 3. 单位管长沿程摩擦阻力 单位管长沿程摩擦阻力m p ?,可按下式计算: 22ρ λV d p e m = ? (11.2-4) 式中 λ——摩擦阻力系数; ρ——空气密度,kg/m 3; e d ——风管当量直径,m ; 对于圆形风管: d d e = 对于非圆行风管: P F d e 4= (11.2-5) 例如,对于矩形风管: b a ab d e +=2

对于扁圆风管: )(4 2 A B A A F -+= π )(2A B A F -+=π F ——风管的净断面积,m 2; P ——风管断面的湿周,m ; a ——矩形风管的一边,m ; b ——矩形风管的另一边,m ; A ——扁圆风管的短轴,m ; B ——扁圆风管的长轴,m 。 4.摩擦阻力系数 摩擦阻力系数λ,可按下式计算: )51 .271.3log( 21 λ λ e e R d K +-= (11.2-6) 式中 K ——风管壁的绝对粗糙度,m ; e R ——雷诺数: ν e e Vd R = (11.2-7) ν——运动粘度,s m /2。 11.2.2 沿程压力损失的计算 风管沿程压力损失的确定,有两种方法可以选择。第一,按上述诸公式直接进行计算;第二,查表计算:可以按规定的制表条件事先算就单位管长沿程摩擦阻力)/(m Pa p m ?,并编成表格供随时查用,当已知风管的计算长度为)(m l 时,即可使用式(11.2-3)算出该段风管的沿程压力损失m P ?(Pa )了。下面仅介绍与计算表有关的容。 1.制表条件 (1)风管断面尺寸 风管规格取自国家标准《通风与空调工程施工质量验收规》(GB 50243) 。 (2)空气参数 设空气处于标准状态,即大气压力为101.325kPa ,温度为20℃,密度 3/2.1m kg =ρ,运动粘度s m /1006.1526-?=ν。 (3)风管壁的绝对粗糙度 以m K 31015.0-?=作为钢板风管壁绝对粗糙度的标准。其他风管的壁绝对粗糙度见表11.2-1.

(八)局部阻力损失实验

局部阻力损失实验 实验人:王琦PB10030015 苏拓 一、实验目的要求 1、掌握三点法、四点法量测局部阻力系数的技能; 2、通过对园管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径: 3、加深对局部阻力损失机理的理解。 二、实验装置 本实验装置如图8.1所示 4567891011 12 321 1 2 3 4 5 6 图 8.1 局部阻力系数实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.恒压水箱; 5.溢流板; 6.稳水孔板; 7.突然扩大实验管段; 8.测压计; 9.滑动测量尺; 10.测压管; 11.突然收缩实验管段; 12.实验流量调节阀. 实 验管道由小—大—小三种已知管径的管道组成,共设有六个测压孔,测孔1—3和3—6分别测量突扩和突缩的局部阻力系数。其中测孔1位于突扩界面处,用以测量小管出口端压强值。 三、实验原理 写出局部阻力前后两断面能量方程,根据推导条件,扣除沿程水头损失可得: 1、突然扩大 采用三点法计算,下式中21-f h 由32-f h 按流长比例换算得出。 实测 ]2)[(]2)[(212 2 2 22 11 1-++ + -+ + =f je h g p z g p z h αυγ αυγ g h je e 2/ 2 1αυζ= 理论 2 2 1)1(A A e - =' ζ

g a h e je 22 1υζ'=' 2、突然缩小 采用四点法计算,下式中B 点为突缩点,B f h -4由43-f h 换算得出,5-fB h 由65-f h 换算得出。 实测 ]2)[(]2)[(52 55 5424 4 4--++ + --+ + =fB B f js h g p Z h g p Z h αυγ αυγ g h js s 2/ 2 5αυζ= 经验 )1(5.03 5 A A s - =' ζ g h s js 22 5αυζ'=' 实验结果及要求 1.记录,计算有关常数: d1=D1=1.03cm, d2=d3=d4=D2=1.95cm, d5=d6=D3=1.01cm, 122334455612,24,12,6,6,6B B l cm l cm l cm l cm l cm l cm ------======5198.0)1(2 21'=- =A A e ζ 3659.0)1(5.03 5'=-=A A s ζ 2.整理、记录并计算: 表1 局部阻力损失实验记录表 次数 流量,cm^3/s 测压管读数/cm 体积 时间 流量 1 2 3 4 5 6 1 915 7.15 127.972 14.3 18.5 18.1 18 0 0 2 1120 9.07 123.484 15.6 19.7 19.3 19.2 2.8 0 3 1420 13.04 108.8957 19.3 22.6 22.3 22.2 8.8 7.5 4 1150 15.06 76.36122 27.9 29.5 29.4 29.4 22.6 21.8 表2 局部阻力损失实验记录表 次数 阻力 流量cm^3/s 前断面cm 后断面 cm hj,cm § hj',cm αv^2/2g E αv^2/2g E 1 突扩 127.97 2 12.04719 26.6390 3 0.93777 19.81532 6.619626 0.549475 6.2621 2 123.484 11.21701 27.13538 0.873148 20.97519 5.956109 0.530989 5.8306 3 108.8957 8.723228 28.41711 0.679028 23.74025 4.523792 0.518591 4.5343

水管摩擦阻力计算表

DN15DN20DN25DN150DN200DN250DN300KW 0.6 2.3 3.6KW 666126719842828L 0.030.110.17L 31.860.594.7135R11439569R123715812096R218312086DN32R2295 196147118DN350KW 0.6 2.9 4.88.4KW 1337209329754211L 0.030.140.230.4L 63.899.9142201R124416311182R117613310787R2319 209150102DN40DN50R2218164131105DN400KW 3.8 6.110.513.823.0KW 14082200314344415468L 0.180.290.50.66 1.1L 67.2105150212261R124818012510175R11951481199684R2323 23115813193DN65R2241182145117103KW 7.112.616.627.745.7KW 14792305328946725740L 0.340.60.79 1.32 2.18L 70.6110157223274R125517614710677R121416213110593R2330 22518713295DN80R2266200160129113KW 14.719.332.353.275.4KW 15482430345749026013L 0.70.92 1.54 2.54 3.6L 73.9116165234287R123719314210382R1235178143115102R2DN100304 253179129102R2292 219176141124KW 13122.036.960.886.3KW 2535360351126285L 6.27 1.05 1.76 2.9 4.12L 121172244300R181256183133106R1194156126111R2101DN125328 233167133R2240192154135KW 14823041.568.397.0KW 2640377153426557L 7.0611 1.98 3.26 4.63L 126180255313R110277230167134R1211170137121R2 127 95 293 210 167 R2 261 209 168 147 动压Pd (Pa) 水流速v (m/s) 参数公称管径 DN(mm) L—流量(L/S) R1,R2—每米长水管的摩擦阻力(Pa/m)180 319 0.9 404 0.6 45 0.3 0.4 80 0.5 125 2.4 2875 2640 2.3 2.2 2416 2201 2.1 1996 2 1802 1.9 1.8 1617 动压Pd (Pa) 0.7 245 0.8 公称管径 DN(mm) L—流量(L/S) R1,R2—每米长水管的摩擦阻力(Pa/m)参数水流速v (m/s)

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

管道阻力损失计算(终审稿)

管道阻力损失计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 ? 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:

(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm;

D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力 B0=、温度t0=20℃、宽气密度ρ0=m3、运动粘度v0=×10-6m2/s、管壁粗糙度K=、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中 Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。 (2)空气温度和大气压力的修正 (6-1-6) 式中 Kt——温度修正系数。 KB——大气压力修正系数。 (6-1-7) 式中 t——实际的空气温度,℃。 (6-1-8) 式中 B——实际的大气压力,kPa。

关于阻力计算的公式

关于阻力计算的公式 一、圆形直管内的流动阻力: 1)计算水平圆管内阻力的一般公式—范宁(Fanning )公式: 22u d l f p ρ??λ=?① 其中λ为摩擦系数,量纲为一;l 为管长;d 为管径;ρ为流体密度;u 为流速。 本式表明流体流动阻力Δp f 与流动管道长度呈正比;与管道直径呈反比,与流体动能ρu 2/2呈正比。 层流时摩擦系数有准确计算公式,是将式①和式②联立计算,完全靠理论推导方法得出。公式如下: ρ η =λu d 64由此式可见,圆形直管内流体层流流动时,摩擦系数与流体黏度呈正比,与管径、流速、流体密度呈反比。 湍流流动摩擦系数是根据实验得到的公式,最为常用是莫狄(Moody )摩擦系数图。 2)层流时直圆管内的阻力计算公式—哈根-泊谡叶(Han gen-Poiseuille )公式: 2f lu 32p η=?② 由该式可见,层流时支管阻力Δp f 与管长l 、速度u 、黏度η的一次方成正比,与管径d 的平方呈反比。

二、局部阻力 流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。它还包括由于流通截面的扩大或缩小而产生的阻力。局部阻力可按式③计算: 2 u d l p 2 e f ρλ=?③或2u p 2f ρζ=?④ 其中l e 为当量长度,即将局部阻力折合成相当长度的直管来计算;ζ成为局部阻力系数。l e 和ζ都是由实验来确定的。 三、总阻力 若将流体在管路中流动阻力归结为直管阻力和局部阻力之和,对于流体流动等直径管路,如果将局部阻力以当量长度表示,则阻力计算式为: g 2u )d l l (g R h 2 u )d l l (R p 2e f 2 e f ∑+λ=∑=∑ρ∑+λ=∑ρ=?或 式中l —管路中直径为d 的直管长度,m; Σl e —管路上全部管件与阀门等的当量长度之和,m; u —流体流经管路的速度,m/s 如果还有部分局部阻力必须用阻力系数表示,则阻力计算式为:

相关文档