文档库 最新最全的文档下载
当前位置:文档库 › 数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略
数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略

王海东

(江苏省丹阳市第五中学,212300)

数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有极其重要的地位.数列中不定方程的整数解问题逐渐成为一个新的热点,在近年来的高考模拟卷中,这类问题屡见不鲜,本文中的例题也都是近年来大市模考题的改编.本文试图对与数列有关的不定方程的整数解问题的解法作初步的探讨,以期给同学们的学习带来帮助。

题型一:二元不定方程 双变量的不定方程,在高中阶段主要是求出此类不定方程的整数解,方法较灵活,下面介绍3种常用的方法。

方法1. 因式分解法:先将不定方程两边的数分解为质因数的乘积,多项式分解为若干个因式的乘积,再由题意分类讨论求解。

题1(2014·浙江卷)已知等差数列{}n a 的公差d >0.设{}n a 的前

n 项和为n S ,11=a ,3632=?S S . (1)求d 及S n ; (2)求m ,k (m ,k ∈N *)的值,使得65...21=+++++++k m m m m a a a a .

解析(1)略 (2)由(1)得2,12n S n a n n =-=(n ∈N *)

=+++++++k m m m m a a a a ...21()2

122121-++-+k m m k )

()1)(12(+-+=k k m

所以65)1)(12(=+-+k k m ,由m ,k ∈N *知1112>+≥-+k k m

65151365?=?=,故???=+=-+5

11312k k m 所以???==45k m 点评 本题中将不定方程变形为()()135112?=+?-+k k m ,因为分解方式

是唯一的,所以可以得到关于k m ,的二元一次方程组求解。

方法2. 利用整除性质 在二元不定方程中,当其中一个变量很好分离时,可分离变量后利用整除性质解决.

题2.设数列{}n b 的通项公式为2121n n b n t

-=-+,问:是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.

解析:要使得12,,m b b b 成等差数列,则212m b b b =+ 即:312123121m t t m t -=+++-+ 即:431

m t =+- ∵,m t N *∈,∴t 只能取2,3,5 当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.

点评 本题利用t 表示 m 从而由431

m t =+-得到14-t 是整数,于是1-t 是4的约数,从而估计出可能的所有取值,再逐一检验即可,当然,本题也可以利用m 表示t 来处理.

方法 3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围或等式一边的范围,再分别求解。如转化为()()n g m f =型,利用()n g 的上界或下界来估计()m f 的范围,通过解不等式得出m 的范围,再一一验证即可。

题3:已知n n n b 3

=,试问是否存在正整数q p , (其中q p <<1),使q p b b b ,,1成等比数列?若存在,求出所有满足条件的数组(p ,q );若

不存在,说明理由.

解析:假设存在正整数数组(p ,q ),使成等比数列,则2

133

3p q p q =+. 2p ≥时,112(1)224333p p p p p p +++--=<0,故数列{23p p }( 2p ≥)为递减数列,

则t r s a a a +=2,t r s 2222+=?,等式两边同除以r 2,得r t r s --++=2121 因为等式左边为偶数,右边为奇数,矛盾.

∴假设不成立,故不存在任意三项能构成等差数列

题6.已知n

n a ??? ??=32, 证明{}n a 中任意三项不可能构成等差数列。 解析:假设}{n a 中存在三项,,r s t a a a ()t s r <<构成等差数列,

则t r s a a a +=2,t r s ??

? ??+??? ??=??? ???3232322,等式两边同乘以t 3,得 t r t r s t s 232321+?=?--+,等式两边再同除以r 2,得r t r t s t r s ---++=?2332-1 因为等式左边为偶数,右边为奇数,矛盾.

∴假设不成立,故不存在任意三项能构成等差数列

点评 题5和题6都是用反证法证明不存在满足题意的三项,考试中常见此题型,放在一起便于比较,题5中化简t r s 2222+=?时,等式两

边同除以r 2,t s 2,2中的最小值,题6中化简t

r s ??? ??+??? ??=??? ???3232322时,等式两边同乘以t s r 3,3,3中的最大值,将分数整数化,然后利用奇偶性寻找矛盾.

二.等式两边是有理数或无理数分析

题7.已知2+=n b n ,求证:数列{}n b 中任意不同的三项都不可能成为等比数例。

解析:假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,为互不相等的正整数)成等比数列,则2q p r b b b =.

即2(2)(2)(2)q p r +=. 2()(220q pr q p r ∴-+--=

p q r *∈N ,,, 2020q pr q p r ?-=∴?--=?,, 22()02p r pr p r p r +??∴=-=∴= ???,,.

与p r ≠矛盾.

所以数列{}n b 中任意不同的三项都不可能成等比数列.

点评 在反证法中利用有理数性质产生矛盾.若02≠--r p q ,则等式化为r

p q q pr ---=222,等式左边为无理数,右边为有理数,矛盾。 题8(选修2-2教材P84第9题)证明:12,3不可能是一个等差数列中的三项.

解析:假设1,2,3是某一公差为d 的等差数列的三项,则有,12md +=nd +=13)(*,N n m ∈。由上两式消去d ,得n n m 22=+,易见上式左边为有理数,右边为无理数,故等式不能成立。所以1,2,3不可能是等差数列的三项。

点评:书本中的每个习题都要重视,是命题的来源,下面的这个高考题中就可以找到题7,题8的影子。

题9(2008江苏第19题改编)求证:对于给定的正整数n (4n ≥),

存在一个各项及公差均不为零的等差数列12b b ,,,

n b ,其中任意三项(按原来的顺序)都不能组成等比数列.

解析:假设对于某个正整数n ,存在一个公差为d 的n 项等差数列n b b b ,......,21,其中111,,x y z b b b +++(01x y z n ≤<<≤-)为任意三项成等比数列,则2

111y x z b b b +++=?,即2111()()()b yd b xd b zd +=+?+,化简得

221()(2)y xz d x z y b d -=+- (*)

由10b d ≠知,2y xz -与2x z y +-同时为0或同时不为0

当2y xz -与2x z y +-同时为0时,有x y z ==与题设矛盾.

故2

y xz -与2x z y +-同时不为0,所以由(*)得212b y xz d x z y -=+- 因为01x y z n ≤<<≤-,且x 、y 、z 为整数,所以上式右边为有理数,从而1b d

为有理数.

于是,对于任意的正整数)4(≥n n ,只要1b d 为无理数,相应的数列就是满足题意要求的数列.

如题7中的数列2+=n b n 就是满足题意的数列。

上面给出了数列中不定方程的常见解题策略,这些策略有一个共同的特征,就是对等式两边适当的变形选择等式一边的特征进行解

题,如整除的性质,范围上界或下界,因数分解的形式,是否为有理数,奇偶性等。数列与不定方程(函数或不等式)的交汇使得试题变化多样,精彩纷呈,解法也有很大的灵活性.以上仅列举了几种常用的探求方法,具体问题还需具体分析,根据题设条件灵活处理.

高考数列万能解题方法

数列的项n a 与前n 项和n S 的关系:1 1 (1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果 {}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比 数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差) 可裂项为: 11 1111 ()n n n n a a d a a ++=-?,

1 d = 等差数列前n项和的最值问题: 1、若等差数列{}n a的首项10 a>,公差0 d<,则前n项和 n S有最大值。 (ⅰ)若已知通项 n a,则 n S最大? 1 n n a a + ≥ ? ? ≤ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最大; 2、若等差数列{}n a的首项10 a<,公差0 d>,则前n项和 n S有最小值 (ⅰ)若已知通项 n a,则 n S最小? 1 n n a a + ≤ ? ? ≥ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知 n S(即 12 () n a a a f n +++= L)求 n a,用作差法:{11,(1),(2) n n n S n a S S n - = =-≥。 已知 12 () n a a a f n = g g L g求 n a,用作商法: (1),(1) () ,(2) (1) n f n f n a n f n = ?? =?≥ ?- ? 。 ⑶已知条件中既有 n S还有 n a,有时先求 n S,再求 n a;有时也可直接求 n a。 ⑷若 1 () n n a a f n + -=求 n a用累加法: 11221 ()()() n n n n n a a a a a a a --- =-+-++- L 1 a +(2) n≥。 ⑸已知1() n n a f n a +=求 n a,用累乘法:12 1 121 n n n n n a a a a a a a a - -- =???? L(2) n≥。 ⑹已知递推关系求 n a,用构造法(构造等差、等比数列)。 特别地,(1)形如 1 n n a ka b - =+、 1 n n n a ka b - =+(,k b为常数)的递推数列都可以用待 定系数法转化为公比为k的等比数列后,再求n a;形如1n n n a ka k - =+的递推数列都可以除以 n k得到一个等差数列后,再求 n a。 (2)形如1 1 n n n a a ka b - - = + 的递推数列都可以用倒数法求通项。

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

高中数学必修5 用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

构造数列总结

构造数列 林森 本文主要淡淡构造法在高中数列问题的应用。 一、型如 ( 为常数且 , )的数列,其本身并不是等 差或等比数列,但经过适当的变形后,即可构造出一个新数列,利用这个数列可求其通项公式。 1. (为常数),可构造等比数列求解. 例1 已知数列满足,(),求通项. 解 由,得,又,所以数列 是首项为,公比为的等比数列,∴. 注:一般地,递推关系式 (p 、q 为常数,且p ≠0,p ≠1)可等价 地改写成 ,则{}为等比数列,从而可求. 2. 为等比数列,可构造等差数列、等比数列求解。如 (为常 数) ,两边同除以,得,令,则可转化为的 形式求解. 例2 (1)已知数列{a n }中,, ,求通项. (2)已知数列 满足 , ,求通项 . 解 (1)由条件,得,令,则,即 ,又,,∴数列为等比数列,故有

,即,∴. (2)由条件,得,即,故数列是以为 首项,以为公差的等差数列,∴,故.3.为等差数列,如型递推式,可构造等比数列求解. 例3已知数列满足,(),求 . 解令,则,∴,代入已知条件,得,即, 令,,解得=-4,=6,所以,且,∴是以3为首项、以为公比的等比数列,故,故.注此例通过引入一些尚待确定的系数,转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 4.为非等差、非等比数列,可构造等差、等比数列求解. 法一、构造等差数列求解: 例4在数列中,(1)若,其中 ,求数列的通项公式;(2)若,求通项. 解(1)由条件可得,∴数列是首 项为0,公差为1的等差数列,故,∴. (2)由条件可得:,∴数列是首项为

,公差为2的等差数列,∴. 法二、构造等比数列求解: 例5已知数列满足,,求数列的通项公式.解设,将已知条件代入此式,整理后得 ,令,解得,∴有,又, 且,故数列是以为首 项,以3为公比的等比数列,∴,故. 二、形如的复合数列,可先构造等差数列或等比数列,再用叠加法、叠乘法、迭代法等方法求解. 例6在数列中,,,,求. 解由条件可得,∴数列是以为首 项,以为公比的等比数列,∴, 故==… === . 例7已知数列满足,,(),求. 解由已知可得:,又,所以数 列是首项为、公比为的等比数列,∴,即

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

数列之 求通项公式之 构造新数列之 其他方法

数列之 求通项公式之 构造新数列之 其他方法 1.已知数列{}n a 满足n n n a a n n a a 求,1 ,3211+==+ 2.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =_______________ 4.()n f pa a n n +=+1 ())(b kn n f +=。 解法(待定系数法):只需把原递推公式转化为:)1(1+++n g a n =p [)(n g a n +],其中s tn n g +=)(,再构造等比数列)}({n g a n +求解。 4.已知数列{}n a 中,11=a ,1231-+=+n a a n n ,求n a . 5.n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 11+=+再待定系数法解决。 5.在数列{}n a 中,11a =,122n n n a a +=+,求n a 。 6.已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 7.已知数列{a n }满足a 1=1,且1n n a a +=1n n +,则a 2012=() A.2010 B.2011 C.2012 D.2013 8.已知各项均不为零的数列{}n a ,定义向量()1,+=n n n a a c ,()1,+=n n d n ,n ∈*N . 下列命题中真命题是( ) A .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等差数列 B .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等比数列 C .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等差数列 D .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等比数列 答案 1.解:由条件知,1 1+=+n n a a n n 分别令n=1,2,3, ……(n-1), 代入上式得(n-1) 个等式累乘之,即 n a a n n a a a a a a a a n n n 1143322111342312=?-??????????=????????- 又∵,321=a ∴n a n 32= 2.n 1

构造法求数列通项公式

构造法求数列通项公式 求数列通项公式就是高考考察的重点与热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A(其中A 为常数)形式,根据等差数列的定义知)(n f 就是等差数列,根据等 差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12 ,1n a +=33n n a a +(n N + ∈),求数列{}n a 通项公式、 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }就是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 就是其前n 项与,且S n ≠0,a 1=1,a n =12 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 222-n n S S ,变形整理得S n -S n-1= S n S n-1两 边除以S n S n-1得,n S 1-11-n S =2,∴{ n S 1}就是首相为1,公差为2的等差数列 ∴ n S 1=1+2(n-1)=2n-1, ∴ S n = 121 -n (n ≥2),n=1 也适合,∴S n = 1 21-n (n ≥1) 当n ≥2时,a n =S n -S n-1= 1 21-n -321-n =- 3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 8422 ≥=+--n n n n 评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11000 0><≥≤???+ 当,,由可得达到最小值时的值。a d a a S n n n n 11 000 0<>≤≥???+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 3311 3 = +===

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

2020届高三数学复习 数列解题方法集锦

2020届高三数学复习 数列解题方法集锦 数列是高中数学的重要内容之一,也是高考考查的重点。而且往往还以解答题的形式出 现,所以我们在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。 一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系 它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n 对于这类问题,可以用公式a n =???≥-=-) 2()1(11 n S S n S n n . 1.2 已知a n 求S n 这类问题实际上就是数列求和的问题。数列求和一般有三种方法:颠倒相加法、错位相 减法和通项分解法。 2.递推数列:?? ?==+) (11n n a f a a a ,解决这类问题时一般都要与两类特殊数列相联系,设 法转化为等差数列与等比数列的有关问题,然后解决。 例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为 等差数列。 解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6, 两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =???≥-=) 2(32)1(2 n n n . 又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。 注意:一般地,数列{a n }是等差数列?S n =an 2 +bn ?S n 2 ) (1n a a n +. 数列{a n }是等比数列?S n =aq n -a. 例2 已知数列{a n }的前n 项的和S n = 2 ) (1n a a n +,求证:数列{a n }是等差数列。 证明:因为S n = 2)(1n a a n +,所以,2 ) )(1(111++++=n n a a n S

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

(精选)构造法待定系数法求一类递推数列通项公式

构造法、待定系数法求一类递推数列通项公式 陕西省周至中学 尚向阳 邮编710400 摘要:求数学通项公式是学习数列时的一个难点,在教学过程中,笔者发现求解递推数列通项公式是学生学习的难点,这也是高考考查的重点、热点问题,如何来突破这个难点,很好的解决这个问题,其核心思想是构造新的数列,转化为学生熟悉的等差数列或等比数列来解决,下面笔者重点介绍用构造法和待定系数法来求下列六类递推数列模型通项公式的解决策略。 关键字:数列、数列通项、构造法、待定系数法、叠加法 由等差数列联想推广到的递推数列模型: 【模型一】b ka a n n +=+1 (0≠kb )。 (1) 当1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2) 当1≠k 时,采用待定系数法,构造新的数列---等比数列 }1{-+k b a n 解:由已知1≠k 时,可设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-=k b m ∴构造 新的数列 }1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n 例1:已知}{n a 满足31=a ,121+=+n n a a 求通项公式。 解:设)(21m a m a n n +=++ m a a n n +=+21 ∴ 1=m ∴ }1{1++n a 是以4为首项,2为公比为等比数列 ∴ 1241-?=+n n a ∴ 121-=+n n a 【模型二】叠加法(或迭代法)求解)(1n f a a n n =-+ 由已知)(1n f a a n n =-+,若)(n f 可求和,则可用叠加(或迭代法)消项的方法求解。 例2:已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式.

数列常见解题方法

数列解题方法 一、基础知识: 数列: 1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每 一个数叫做数列的项 . 2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 . 3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示 项的位置序号,因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类: ①按项的数量分: 有穷数列 、 无穷数列 ; ②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化X 围分:有界数列、无界数列. 6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数 关系可以用一个公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数

列的通项公式在形式上未必唯一. 7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项 a n 与它的前一项a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式a n =f (a 1n -)(n =2,3,…) (或a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =1n i i a =∑=a 1+a 2+… +a n ,如果S n 与项数n 之间的函数关系可以用一个公式S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系: 通项公式a n 与求和公式S n 的关系可表示为:11(1) (n 2)n n n S n a S S -=?=?-≥? 等差数列与等比数列:

高考数列万能解题方法定稿版

高考数列万能解题方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

数列的项n a 与前n 项和n S 的关系:1 1(1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数 列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差)

可裂项为: 111111()n n n n a a d a a ++=-? 1 d = 等差数列前n 项和的最值问题: 1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10 n n a a +≥??≤?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?1 0n n a a +≤??≥?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 已知12 ()n a a a f n =求n a ,用作商法:(1),(1)() ,(2) (1) n f n f n a n f n =??=?≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

构造法求数列通项公式(完整资料).doc

【最新整理,下载后即可编辑】 构造法求数列通项公式 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 1 2,1n a +=33n n a a +(n N +∈),求数列{}n a 通 项公式. 解析:由a n+1= 3 3+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131, 设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31 n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求 出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1=1 2 22-n n S S , 变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-1 1-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴

相关文档
相关文档 最新文档