文档库 最新最全的文档下载
当前位置:文档库 › 《三维设计》2016级数学一轮复习基础讲解指数与指数函数(含解析)

《三维设计》2016级数学一轮复习基础讲解指数与指数函数(含解析)

《三维设计》2016级数学一轮复习基础讲解指数与指数函数(含解析)
《三维设计》2016级数学一轮复习基础讲解指数与指数函数(含解析)

第七节指数与指数函数

[知识能否忆起]

一、根式 1.根式的概念

2.两个重要公式 (1)

n

a n

=???

a , n 为奇数,

|a |=?????

a (a ≥0),-a (a <0),

n 为偶数;

(2)(n a )n =a (注意a 必须使n

a 有意义). 二、有理数指数幂 1.幂的有关概念

(1)正分数指数幂:a m n =n

a m (a >0,m ,n ∈N *,且n >1);

(2)负分数指数幂:a -m n =1a m n =1

n

a m (a >0,m ,n ∈N *,且n >1);

(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质 (1)a r a s =a r +

s (a >0,r ,s ∈Q);

(2)(a r )s =a rs (a >0,r ,s ∈Q); (3)(ab )r =a r b r (a >0,b >0,r ∈Q). 三、指数函数的图象和性质

[小题能否全取]

1.(教材习题改编)化简[(-2)6]1

2-(-1)0的结果为( )

A .-9

B .7

C .-10

D .9

解析:选B 原式=(26)1

2

-1=7.

2.(教材习题改编)函数f (x )=1-2x 的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)

D .(-∞,+∞)

解析:选A ∵1-2x ≥0,∴2x ≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1

的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4)

D .(4,0)

解析:选A 当x =1时,f (x )=5.

4.若函数y =(a 2-3a +3)·a x 是指数函数,则实数a 的值为________. 解析:∵a 2-3a +3=1,∴a =2或a =1(舍). 答案:2

5.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 解析:由题意知0

得-2

1.分数指数幂与根式的关系:

分数指数幂与根式可以相互转化,通常利用分数指数幂的意义把根式的运算转化为

幂的运算,从而简化计算过程.

2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0

和a >1进行分类讨论.

典题导入

[例1] 化简下列各式(其中各字母均为正数). (1)(a 23·b -1)-12·a -12·b 136a ·b 5

(2)????2790.5+0.1-2+????21027-23-3π0+37

48. [自主解答] (1)原式=a -13b 12·a -12b 1

3

a 16

b 56

=a -13-12-16·b 12+13-56=1a

.

(2)原式=????25912+10.12+????6427-23-3+3748=53+100+916-3+3748

=100.

由题悟法

指数式的化简求值问题,要注意与其他代数式的化简规则相结合,遇到同底数幂相乘或相除,可依据同底数幂的运算规则进行,一般情况下,宜化负指数为正指数,化根式为分数指数幂.对于化简结果,形式力求统一.

以题试法

1.计算:

(1)(0.027)-1

3-???

?-17-2+????27912-(2-1)0;

(2)????14-12·(4ab -

1)30.1-2(a 3b -3)

1

2

.

解:(1)原式=????271 000-13-(-1)-2????17-2+????25912-1 =103-49+5

3-1=-45. (2)原式=412·43

2100·a 32·a -32·b 32·b -3

2

=425a 0·b 0=4

25.

典题导入

[例2] (2012·四川高考)函数y =a x -a (a >0,且a ≠1)的图象可能是( )

[自主解答] 法一:令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.

法二:当a >1时,y =a x -a 是由y =a x 向下平移a 个单位,且过(1,0),排除选项A 、B ; 当0

由题悟法

1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.

2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.

以题试法

2.(1)(2012·北京模拟)在同一坐标系中,函数y =2x 与y =????12x

的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称

D .关于直线y =x 对称

(2)方程2x =2-x 的解的个数是________.

解析:(1)∵y =????12x =2-x ,∴它与函数y =2x 的图象关于y 轴对称. (2)方程的解可看作函数y =2x 和y =2-x 的图象交点的横坐标,分

别作出这两个函数图象(如图).

由图象得只有一个交点,因此该方程只有一个解. 答案:(1)A (2)1

典题导入

[例3] 已知函数f (x )=????23|x |-a .则函数f (x )的单调递增区间为________,单调递减区间为________.

[自主解答] 令t =|x |-a ,则f (x )=????23t ,

不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增, 又y =????23t 是单调递减的,

因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞). [答案] (-∞,0] [0,+∞)

在本例条件下,若f (x )的最大值等于9

4,则a =______.

解析:由于f (x )的最大值是94,且94=????23-2

所以g (x )=|x |-a 应该有最小值-2, 从而a =2. 答案:2

由题悟法

求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.

以题试法

3.(1)(2012·福州质检)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >b

D .b >c >a

(2)(2012·上海高考)已知函数f (x )=e |x -

a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.

解析:(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .

(2)结合函数图象求解.因为y =e u 是R 上的增函数,所以f (x )在[1,+∞)上单调递增,只需u =|x -a |在[1,+∞)上单调递增,由函数图象可知a ≤1.

答案:(1)A (2)(-∞,1]

[典例] 函数y =????14x -????12x

+1在x ∈[-3,2]上 的值域是________.

[常规解法] y =????14x -????12x

+1=????????12x 2-????12x +1=????????12x -122+34, 因为x ∈[-3,2],所以14≤???

?12x

≤8.

当????12x =12时,y min =34;当????12x =8时,y max =57. 所以函数y 的值域为???

?3

4,57.

[答案] ???

?3

4,57 ——————[高手支招]—————————————————————————— 1.解答本题可利用换元法,即令t =????12x ,把函数化为y =t 2-t +1,其中t ∈????14,8,然后求在这个闭区间上的二次函数的最大值和最小值即可确定函数的值域.

2.对于含a x 、a 2x 的表达式,通常可以令t =a x 进行换元,但换元过程中一定要注意新元的范围,换元后转化为我们熟悉的一元二次关系.

——————————————————————————————————————

[巧思妙解] 因为x ∈[-3,2],若令t =????12x

,则t ∈????14,8.则y =t 2-t +1=????t -122+34. 当t =12时y min =3

4;当t =8时,y max =57.答案为????34,57. 针对训练

若0

则原函数化为y =(t +1)2-2(t >0).

因为0

a , 此时f (t )在????a ,1

a 上为增函数. 所以f (t )max =f ????1a =????1a +12

-2=14. 所以????1a +12=16, 所以a =-15或a =13.

又因为a >0,所以a =1

3.

答案:13

1.下列函数中值域为正实数集的是( )

A .y =-5x

B .y =????131-x

C .y =

???

?12x -1

D .y =1-2x

解析:选B ∵1-x ∈R ,y =????13x

的值域是正实数集, ∴y =????131-x 的值域是正实数集.

2.已知f (x )=2x +2-

x ,若f (a )=3,则f (2a )等于( )

A .5

B .7

C .9

D .11

解析:选B 由f (a )=3得2a +2-

a =3, 两边平方得22a +2-2a

+2=9,

即22a +2

-2a

=7,故f (2a )=7.

3.函数f (x )=2|x -

1|的图象是( )

解析:选B ∵f (x )=????

?

2x -1

,x ≥1,????12x -1,x <1,

∴根据分段函数即可画出函数图象.

4.已知f (x )=3x -

b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域( )

A .[9,81]

B .[3,9]

C .[1,9]

D .[1,+∞)

解析:选C 由f (x )过定点(2,1)可知b =2,因f (x )=3x

-2

在[2,4]上是增函数,可知C 正

确.

5.(2012·深圳诊断)设函数f (x )=a -|x |

(a >0,且a ≠1),f (2)=4,则( ) A .f (-2)>f (-1) B .f (-1)>f (-2) C .f (1)>f (2)

D .f (-2)>f (2)

解析:选A ∵f (2)=4,∴a

-|2|

=4,∴a =1

2

∴f (x )=????12-|x |=2|x |,∴f (x )是偶函数,当x ≥0时,f (x )=2x

是增函数,∴x <0时,f (x )是减函数,∴f (-2)>f (-1).

6.若(2m +1)12>(m 2+m -1)1

2,则实数m 的取值范围是( )

A.? ?

?

??

-∞,

5-12 B.??

????

5-12,+∞

C .(-1,2)

D.??

??

?

?5-12,2

解析:选D 因为函数y =x 1

2的定义域为[0,+∞),且在定义域内为增函数,所以不等

式等价于????

?

2m +1≥0,m 2

+m -1≥0,

2m +1>m 2

+m -1,

解2m +1≥0,得m ≥-12;

解m 2+m -1≥0,

得m ≤-5-12或m ≥5-12

解2m +1>m 2+m -1,即m 2-m -2<0,得-1

5-1

2

≤m <2. 7.????32-13×????-760+814×42- ????-2323

=________.

解析:原式=????2313×1+234×214-????231

3=2. 答案:2

8.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.

解析:∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x 在R 上递增,由f (m )>f (n ),得m >n . 答案:m >n

9.若函数f (x )=a |2x -

4|(a >0,a ≠1)且f (1)=9.则f (x )的单调递减区间是________.

解析:由f (1)=9得a 2=9,∴a =3.因此f (x )=3|2x -4|,

又∵g (x )=|2x -4|的递减区间为(-∞,2],∴f (x )的单调递减区间是(-∞,2]. 答案:(-∞,2]

10.求下列函数的定义域和值域. (1)y =????122x -x 2

;(2)y = 32x -

1-19

.

解:(1)显然定义域为R. ∵2x -x 2=-(x -1)2+1≤1, 且y =????12x 为减函数. ∴????122x -x 2≥????121=12.

故函数y =????122x -x 2的值域为????12,+∞. (2)由32x -1-19≥0,得32x -1≥1

9=3-2,

∵y =3x 为增函数,∴2x -1≥-2, 即x ≥-1

2

此函数的定义域为????-1

2,+∞, 由上可知32x -1-1

9≥0,∴y ≥0.

即函数的值域为[0,+∞).

11.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a

2,求a 的值.

解:当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a . ∴a 2-a =a

2.即a (2a -3)=0.

∴a =0(舍)或a =32>1.∴a =3

2.

当0

在x ∈[1,2]上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a

2.∴a (2a -1)=0,

∴a =0(舍)或a =12.∴a =1

2.

综上可知,a =12或a =3

2

.

12.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x 的最值. 解:由3-4x +x 2>0,得x >3或x <1, ∴M ={x |x >3,或x <1},

f (x )=-3×(2x )2+2x +2=-3????2x -162+2512. ∵x >3或x <1,∴2x >8或0<2x <2, ∴当2x =16,即x =lo

g 21

6时,f (x )最大,

最大值为25

12

,f (x )没有最小值.

1.(2013·绍兴一中模拟)函数f (x )=a |x +

1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)

的关系是( )

A .f (-4)>f (1)

B .f (-4)=f (1)

C .f (-4)

D .不能确定

解析:选A 由题意知a >1,又f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 2.(2012·衡水模拟)已知函数f (x )=|2x -1|,a f (c )>f (b ),则下列结论中,一定成立的是________.

①a <0,b <0,c <0;②a <0,b ≥0,c >0; ③2-

a <2c ;④2a +2c <2.

解析:画出函数f (x )=|2x -1|的图象(如图),

由图象可知,a <0,b 的符号不确定,c >0. 故①②错;

∵f (a )=|2a -1|,f (c )=|2c -1|, ∴|2a -1|>|2c -1|,即1-2a >2c -1, 故2a +2c <2,④成立; 又2a +2c >2

2a +c ,∴2a +c <1,

∴a +c <0,∴-a >c ,∴2-a >2c ,③不成立. 答案:④

3.已知函数f (x )=????13ax 2-4x +3.

(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

解:(1)当a =-1时,f (x )=????13-x 2

-4x +3, 令t =-x 2-4x +3,

由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =????13t 在R 上单调递减,

所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).

(2)令h (x )=ax 2-4x +3,f (x )=????13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有

???

a >0,12a -16

4a =-1,

解得a =1.

即当f (x )有最大值3时,a 的值等于1.

1.已知实数a ,b 满足等式????12a =????13b

,下列五个关系式: ①0

D .4个

解析:选B 函数y 1=????12x

与y 2

=????13x 的图象如图,

由????12a =????13b

得a

2.求函数y =a 2x -2a x -1(a >0,a ≠1)的单调区间和值域. 解:y =(a x -1)2-2(a >0,a ≠1),设u =a x .

∵y =(u -1)2-2在u ∈[1,+∞)时是关于u 的增函数,在u ∈(-∞,1)时是关于u 的减函数,

∴当a x ≥1时,原函数的单调性与u =a x 的单调性相同;当a x <1时,原函数的单调性与u =a x 的单调性相反.

若a >1,a x ≥1?x ≥0;a x <1?x <0,

∴在[0,+∞)上,函数y =a 2x -2a x -1是增函数; 在(-∞,0)上,函数y =a 2x -2a x -1是减函数. 若00,

∴在(0,+∞)上,函数y =a 2x -2a x -1是增函数; 在(-∞,0]上,函数y =a 2x -2a x -1是减函数. ∵a x >0,∴函数值域是[-2,+∞).

第八节

对数与对数函数

[知识能否忆起]

1.对数的概念 (1)对数的定义:

如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N .

(2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1.

③对数恒等式:a log a N =N . ④换底公式:log a b =log c b

log c a

.

推广log a b =1

log b a ,log a b ·log b c ·log c d =log a d .

(3)对数的运算法则:

如果a >0,且a ≠1,M >0,N >0,那么:

①log a (M ·N )=log a M +log a N ; ②log a M

N =log a M -log a N ;

③log a M n =n log a M (n ∈R); ④log am M n =n

m log a M .

2.对数函数的概念

(1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x 的反函数,函数y =a x 与y =log a x (a >0,a ≠1)的图象关于y =x 对称.

3.对数函数的图象与性质

[小题能否全取]

1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =?

???

??

y |y =???

?12x ,0

2,+∞ C.????12,1

D .(0,2)

解析:选C ∵A ={y |y >0},B =?

???

??y |12

∴A ∩B =?

???

??

y |12

2.函数y =log a (3x -2)(a >0,a ≠1)的图象经过定点A ,则A 点坐标是( ) A.???

?0,2

3

B.????

23,0

C .(1,0)

D .(0,1)

解析:选C 当x =1时y =0. 3.函数y =lg |x |( )

A .是偶函数,在区间(-∞,0)上单调递增

B .是偶函数,在区间(-∞,0)上单调递减

C .是奇函数,在区间(0,+∞)上单调递减

D .是奇函数,在区间(0,+∞)上单调递增

解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增.

4.(2012·江苏高考)函数f (x )=

1-2log 6x 的定义域为________.

解析:由1-2log 6x ≥0,解得log 6x ≤1

2?0<x ≤6,故所求定义域为(0, 6 ].

答案:(0, 6 ]

5.(2012·北京高考)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 解析:由f (ab )=1得ab =10,于是f (a 2)+f (b 2)=lg a 2+lg b 2=2(lg a +lg b )=2lg(ab )=2lg 10=2.

答案:2

1.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n

=n log a |M |(n ∈N *,且n 为偶数).

2.对数值取正、负值的规律:

当a >1且b >1,或00; 当a >1且01时,log a b <0. 3.对数函数的定义域及单调性:

在对数式中,真数必须大于0,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论.

典题导入

[例1] 求解下列各题.

(1)12lg 3249-4

3lg 8+lg 245=________; (2)若2a =5b =m ,且1a +1

b =2,则m =________.

[自主解答] (1)12lg 3249-4

3lg 8+lg 245

=12×(5lg 2-2lg 7)-43×32lg 2+1

2(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+1

2lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12

. (2)由2a =5b =m 得a =log 2m ,b =log 5m , ∴1a +1

b =log m 2+log m 5=log m 10. ∵1a +1

b

=2, ∴log m 10=2,即m 2=10. 解得m =10(∵m >0). [答案] (1)1

2 (2)10

由题悟法

对数式的化简与求值的常用思路

(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.

(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.

以题试法

1.化简:(1)lg 3

7+lg 70-lg 3-lg 23-lg 9+1;

(2)?

??

?

?lg 4-lg 60lg 3+lg 53-45×2-11.

解:(1)原式=lg 3

7

×703-

lg 23-2lg 3+1

=lg 10-

(lg 3-1)2

=1-|lg 3-1|=lg 3. (2)原式=?

??

??lg 4-(lg 4+lg 15)lg 153-210×2-11

=?

??

??-lg 15lg 153-2-1

=-32.

典题导入

[例2] (1)(2012·烟台调研)函数y =ln(1-x )的图象大致为( )

(2)(2012·新课标全国卷)当0

A.?

??

?

0,

22 B.??

?

?

22,1

C .(1,2)

D .(2,2)

[自主解答] (1)由1-x >0,知x <1,排除选项A 、B ;设t =1-x (x <1),因为t =1-x 为减函数,而y =ln t 为增函数,所以y =ln(1-x )为减函数,可排除D 选C.

(2)法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0

2,即222,所以a 的取值范围为???

?2

2,1.

法二:∵04x >1,∴0

则有412=

2,log 121

2

=1,显然4x

[答案] (1)C (2)B

若本例(2)变为:若不等式(x -1)2

解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2

当01时,如图,

要使x ∈(1,2)时f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只

需f 1(2)≤f 2(2),即(2-1)2≤log a 2,

又即log a 2≥1.

所以1

由题悟法

1.对一些可通过平移、对称变换能作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合求解.

2.一些对数型方程、不等式问题的求解,常转化为相应函数图象问题,利用数形结合法求解.

以题试法

2.已知函数f (x )=????

?

3x

,x ≤1,log 13

x ,x >1,则y =f (1-x )的大致图象是( )

解析:选C 由题意可得f (1-x )=????

?

31-x

,x ≥0,log 13(1-x ),x <0,因此当x ≥0时,y =f (1-x )为

减函数,且y >0;当x <0时,y =f (1-x )为增函数,且y <0.

典题导入

[例3] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (x )定义域为R ,求a 的取值范围; (2)若f (1)=1,求f (x )的单调区间;

(3)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. [自主解答] (1)因为f (x )的定义域为R , 所以ax 2+2x +3>0对任意x ∈R 恒成立. 显然a =0时不合题意,

从而必有????? a >0,Δ<0,即?????

a >0,4-12a <0,

解得a >13

.

即a 的取值范围是???

?1

3,+∞. (2)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).

由-x 2+2x +3>0得-1

则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,

所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (3)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,

因此应有???

a >0,

3a -1

a =1,

解得a =1

2

.

故存在实数a =1

2

使f (x )的最小值为0.

由题悟法

研究复合函数y =log a f (x )的单调性(最值)时,应先研究其定义域,分析复合的特点,结合函数u =f (x )及y =log a u 的单调性(最值)情况确定函数y =log a f (x )的单调性(最值)(其中a >0,且a ≠1).

以题试法

3.已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.

解:(1)由a x -1>0得a x >1,当a >1时,x >0; 当0

∴当a >1时,f (x )的定义域为(0,+∞); 当01时,设0

故当a >1时,f (x )在(0,+∞)上是增函数.

类似地,当0

数.

1.函数y =1-lg (x +2)的定义域为( ) A .(0,8] B .(2,8] C .(-2,8]

D .[8,+∞)

解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则?

????

x +2≤10,

x +2>0,解

得-2

2.(2012·安徽高考)(log 29)·(log 34)=( )

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

高一数学上册指数函数知识点及练习题含答案

课时4指数函数 一. 指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n n 次方 根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等 于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈

二.指数函数及其性质(4)指数函数

三.例题分析 1.设a 、b 满足00且a ≠1),则下列等式中不正确的是( D ) A.f(x+y)=f(x)f(y) B.f(x-y)= ) () (y f x f

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

高中数学练习:指数与指数函数

高中数学练习:指数与指数函数 基础巩固(时间:30分钟) 1.函数y=a x-(a>0,且a≠1)的图象可能是( D ) 解析:若a>1时,y=a x-是增函数; 当x=0时,y=1-∈(0,1),A,B不满足; 若00,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A ) (A)y= (B)y=|x-2| (2x) (C)y=2x-1 (D)y=log 2 解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1). 4.设x>0,且10时,11.

因为x>0时,b x0时,()x>1. 所以>1,所以a>b.所以11,b<0 (B)a>1,b>0 (C)00 (D)00,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D ) (A)c0, 所以2m=3-2-m>2,b=2f(m)=2×3=6, a=f(2m)=22m+2-2m=(2m+2-m)2-2=7, c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8, 所以b0,b>0)化简结果是-24; ③+的值是2π-9; ④若x<0,则=-x.

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

高一数学_指数函数对数函数幂函数练习(含答案)

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 153 ,a a 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高一数学指数函数题型复习(一)

第四课:指数函数(一) 知识点一、指数幂的运算 ??? ?? ???==-r s r s r s r s a a a a 1 该式成立的条件必须是:_________ 反例: ?? ?-=____ , ____ ,为当为当n a n a a n n 正例: 1、字母化简 例1:已知0,0>>b a ,化简: (1) ()6 a - (2)a a a a (3) ??? ? ??-÷--- 32653 14 1412b a b a 练习:(1) 3 4 3 5 3 5 2 3a b b a ? (2)31 31 31 323131323 1 2124)8(a a b a b a b b a a ?????? ??-÷++- 2、例2:(1)63125.132?? (2) 21 4 10 3 101.0168187)064.0(-+?? ? ??+??? ??--

3、“双重根式”的化简 例3:223- (2)324+ (3)2611- 练习:(1)625+ (2)32- (3)53+ 4、条件求值——整体法 高考必备:立方和(差)公式: 例4:已知()032 12 1>=+-x x x ,求下列各式的值: (1)1-+x x (2)22-+x x (3) 2 32 3-+x x 练习:已知433=--x x ,求下列各式的值: (1)x x 1 - (2)22-+x x (3)x

知识点二、指数函数 1、定义:R x a y x ∈=,. 底数.10≠>a a 且 例:1:下列函数中,哪些是指数函数__________ ; 121)12()8(;)7(;4)6(;)5(;)4()4(;4)3(;)2(;4)1(24?? ? ??≠>-====-=-===a a a y x y y y y y x y y x x x x x x x 且πx x y y -+==8)10(;4)9(1 2、指数函数的图像和性质 3、比较指数幂大小 (1)同底不同指:1.01.075.0_____75.0- 方法一:考查指数函数: 方法二:考查幂函数: 练习: 7.08.03_____3

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

相关文档 最新文档