文档库 最新最全的文档下载
当前位置:文档库 › 高炉冶炼过程操作分析

高炉冶炼过程操作分析

高炉冶炼过程操作分析
高炉冶炼过程操作分析

浅谈高炉操作

摘要:高炉操作是一项生产实践与理论性很强的工艺流程。本文介绍了高炉冶炼对原燃料(精料)的要求和高炉冶炼的四大基本操作制度(装料制度、送风制度、热制度、造渣制度)以及冷却制度的内容与选择;也介绍了高炉的炉前操作对高炉冶炼的影响,高炉操作的出铁口维护等内容;同时,还阐述了高炉冶炼的强化冶炼技术操作如高炉的高压操作,富氧喷煤操作(富氧操作、喷煤粉操作、富氧喷煤操作),高风温操作(风温对高炉的影响和风温降焦比等)等操作细节。本文介绍的内容对高炉冶炼都很重要,望与高炉的实际情况结合,减少高炉操作失误,从而使高炉冶炼取得更好的经济技术指标。

关键词:基本操作制度、冷却制度、炉前操作、强化冶炼

绪论:

中国是世界炼铁大国,2007年产铁4.894亿吨,占世界49.5%,有力地支撑我国钢铁工业的健康发展。进入21世纪以来,我国钢铁工业高速发展,新建了大批大、中现代化高炉。在当前国内外市场经济竞争更加激烈的情况下,各企业都面临如何进一步降低生产成本的问题。在高炉炼铁过程中,如何操作,改善操作,保持炉况稳定进行,降低消耗,提高经济效益是高炉工作者的一项重要任务。在遵循高炉冶炼基本规则的基础上,根据冶炼条件的变化,及时准确地采取调节措施。

一.高炉炼铁以精料为基础

高炉炼铁应当认真贯彻精料方针,这是高炉炼铁的基础.,精料技术水平对高炉炼铁技术指标的影响率在70%,高炉操作为10%,企业现代化管理为10%,设备运行状态为5%,外界因素(动力,原燃料供应,上下工序生产状态等)为5%.。高炉炼铁生产条件水平决定了生产指标好坏。因此可见精料的重要性。

1.精料方针的内容:

·高入炉料含铁品位要高(这是精料技术的核心),入炉矿含铁品位提高1%,炼铁燃料比降低1.5%,产量提高2.5%,渣量减少30kg/t,允许多喷煤15 kg/t。

原燃料转鼓强度要高。大高炉对原燃料的质量要求是高于中小高炉。如宝钢要求焦炭M40为大于88%,M10为小于6.5%,CRI小于26%,CSR大于66%。一般高炉M40要求为大于80%,M10为小于7%,CRI小于30%,CSR大于60%。

·熟熟料比(指烧结矿和球团矿)要高。目前炼铁企业已不再追求高的熟料比,如宝钢熟料比为81%。增加高品位块矿,可有效提高入炉料含铁品位,有利于节能减排;减少造块过程中的能耗和环境污染。但我们认为熟料比不应小于80%。否则炼铁燃料比会升高。

·净即筛除粉末,保持炉料干净。粒度小于5mm的原料为粉末,无论是人造富矿或天然矿,含有粉末对高炉上部的透气性影响很大,粉末增多会导致炉况不顺,产量降低,焦比升高。我国一些先进高炉的入炉料经过多次筛分,使入炉料的粉末尽量少。

·稳即提高入炉矿石化学成分的稳定性,以保证高炉生产的稳定。矿石化学成分的波动会引起炉温、炉渣碱度和生铁成分的波动,从而破坏高炉的顺行,使高炉焦比升高,产量降低。另外“稳”也是高炉生产实现自动化的要求。

·匀即缩小原料粒度上下限的差别,保持粒度均匀。这样料柱透气性好,有利于高炉顺行,从而提高产量降低焦比。对于粒度相差较大的矿石要按粒度分级分别装入高炉。

·小即缩小原料粒度。矿石的还原过程是从表面向中心发展的,如果快度过大,当还原速度和炉料在炉内停留的时间一定时,就可能使矿石的中心部分来不及被气体还原,表面就已经软化了,从而引起直接还原度增加,导致焦比升高。缩小矿石的粒度对降低焦比具有积极意义。但粒度不能小于5mm因粒度过小会影响料柱透气性,使高炉炉尘增加。

二.高炉基本操作制度的选择

1 送风制度的选择

1.1送风制度

高炉炼铁是以风为本,要尽量实现全风量操作,并且要稳定送风制度,以维持好合理炉型,煤气流分布合理,炉缸活跃。

选择风量的原则:风量必须要与料柱透气性相适应,建立最低燃料比的综合冶炼强度在1.0~1.1t/m3·d的概念,是高炉炼铁节能降耗工作的重要指导思想。

冶炼每吨生铁消耗风量值(不富氧)(表1)

风机的选择为:送风量为炉容的二倍左右。目前中小高炉大多数是选择大风机。

1.2 固定风量操作

进行脱湿鼓风可使一年四季送风量均衡。

稳定操作制度,三个班的要求要统一,实行固定风量操作要求各班装料应装规定批数<±2批料。风量波动不大于正常风量的3%。

1.3 调剂风量的原则和方法

每次调剂风量要在总风量的3%左右,两次加风之间时间要大于20分钟,加风量每次不能超过原风量的10%。以透气性指数为依据进行调整风量。

一般炉热不减风。炉凉时要先提风温,提高鼓风温度,增加喷煤量,不能制止炉凉时可适度减风(5%~10%),使料速达到正常水平。

低料线大于半小时要减风,不允许长期低料线作业。

休风后复风一般用全风的70%左右(风压,压差不允许高于正常水平),待热风压力平稳或有下降趋势时才允许再加风,加风后的热风压力和压差不允许高于正常水平。

煤气流失常时,应以下部调剂为主,上部调剂为辅,上下不调剂相结合。

浅谈高炉操作

浅谈高炉操作 摘要:高炉操作是一项生产实践与理论性很强的工艺流程。本文介绍了高炉冶炼对原燃料(精料)的要求和高炉冶炼的四大基本操作制度(装料制度、送风制度、热制度、造渣制度)以及冷却制度的内容与选择;也介绍了高炉的炉前操作对高炉冶炼的影响,高炉操作的出铁口维护等内容;同时,还阐述了高炉冶炼的强化冶炼技术操作如高炉的高压操作,富氧喷煤操作(富氧操作、喷煤粉操作、富氧喷煤操作),高风温操作(风温对高炉的影响和风温降焦比等)等操作细节。本文介绍的内容对高炉冶炼都很重要,望与高炉的实际情况结合,减少高炉操作失误,从而使高炉冶炼取得更好的经济技术指标。 关键词:基本操作制度、冷却制度、炉前操作、强化冶炼 绪论:中国是世界炼铁大国,2007年产铁4.894亿吨,占世界49.5%,有力地支撑我国钢铁工业的健康发展。进入21世纪以来,我国钢铁工业高速发展,新建了大批大、中现代化高炉。在当前国内外市场经济竞争更加激烈的情况下,各企业都面临如何进一步降低生产成本的问题。在高炉炼铁过程中,如何操作,改善操作,保持炉况稳定进行,降低消耗,提高经济效益是高炉工作者的一项重要任务。在遵循高炉冶炼基本规则的基础上,根据冶炼条件的变化,及时准确地采取调节措施。 一.高炉炼铁以精料为基础 高炉炼铁应当认真贯彻精料方针,这是高炉炼铁的基础.,精料技术水平对高炉炼铁技术指标的影响率在70%,高炉操作为10%,企业现代化管理为10%,设备运行状态为5%,外界因素(动力,原燃料供应,上下工序生产状态等)为5%.。高炉炼铁生产条件水平决定了生产指标好坏。因此可见精料的重要性。 1.精料方针的内容: ·高入炉料含铁品位要高(这是精料技术的核心),入炉矿含铁品位提高1%,炼铁燃料比降低1.5%,产量提高2.5%,渣量减少30kg/t,允许多喷煤15 kg/t。 原燃料转鼓强度要高。大高炉对原燃料的质量要求是高于中小高炉。如宝钢要求焦炭M40为大于88%,M10为小于6.5%,CRI小于26%,CSR大于66%。一般高炉M40要求为大于

高炉强化冶炼详解

高炉强化冶炼技术及其进步 高炉炼铁生产的原则 高炉冶炼生产的目标是在较长的一代炉龄(例如5年或更长)内生产出尽可能多的生铁,而且消耗要低,生铁质量要好,经济效益要高,概括起来就是“优质,低耗,高产,长寿,高效益”。长期以来,我国乃至世界各国的炼铁工作者对如何处理这五者间的关系进行过,而且还在进行着讨论,讨论的焦点是如何提高产量及焦比与产量的关系。 众所周知,表明高炉冶炼产量与消耗的三个重要指标—有效容积利用系数(ηY)、冶炼强度(I)和焦比(K)之间有着如下的关系:ηY=I/K 显然,利用系数的提高,也即高炉产量的增加,存在着四种途径: (1)冶炼强度保持不变,不断地降低焦比; (2)焦比保持不变,冶炼强度逐步提高; (3)随着冶炼强度的逐步提高,焦比有所降低; (4)随着冶炼强度的提高,焦比也有所上升,但焦比上升的幅度不如冶炼强度增长的幅度大。 在高炉炼铁的发展史上,这四种途径都被应用过,应当指出在最后一种情况下,产量增长很少,而且是在牺牲昂贵的焦炭的消耗中取得的,一旦在冶炼强度提高的过程中,焦比升高的速率超过冶炼强度提高的速率,则产量不但得不到增加,反而会降低。因此,

冶炼强度对焦比的影响,成为高炉冶炼增产的关键。 在高炉冶炼的技术发展过程中,人们通过研究总结出冶炼强度与焦比的关系如图1所示。 图1 冶炼强度与产量(I)和焦比(K)的关系 a一美国资料,b一原西德资料,c一前苏联资料

在一定的冶炼条件下,存在着一个与最低焦比相对应的最适宜的冶炼强度I适。当冶炼强度低于或高于I适时,焦比将升高,而产量稍迟后,开始逐渐降低。这种规律反映了高炉内煤气和炉料两流股间的复杂传热、传质现象。在冶炼强度很低时,风量及相应产生的煤气量均小,流速低,动压头很小,造成煤气沿炉子截面分布极不均匀,表现为边缘气流过分发展,煤气与矿石不能很好地接触,结果煤气的热能和化学能不能得到充分利用,炉顶煤气中CO,含量低,温度高,而进入高温区的炉料因还原不充分,直接还原发展,消耗了大量宝贵的高温热量,因此焦比很高。随着冶炼强度的提高,风量、煤气量相应增加,煤气的速度也增大,从而改变了煤气流的流动状态,由层流转为湍流,风口前循环区的出现,大大改善了煤气流分布和煤气与炉料之间的接触,煤气流的热能和化学能利用改善,间接还原的发展减少了下部高温区热量的消耗,从而焦比明显下降,直到与最适宜冶炼强度儿相对应的最低焦比值。之后冶炼强度继续提高,煤气量的增加进一步提高了煤气流速,这将带来叠加性的煤气流分布,导致中心过吹或管道行程,在煤气流速过大时,它的压头损失可变得与炉料的有效质量相等或超过有效质量,炉料就停止下降而出现悬料。所有这些将引起还原过程恶化,炉顶煤气温度升高,炉况恶化,最终表现为焦比升高。 高炉炼铁工作者应该掌握这种客观规律,并应用它来指导生产,即针对具体生产条件,确定与最低焦比相适应的冶炼强度,使高炉顺行,稳定地高产。然而高炉的冶炼条件是可以改变的,随着技术的进步,例如加强原料准备,采取合理的炉料结构,提高炉顶

高炉操作基础技术2

高炉操作基础技术(选择题) 1.出铁次数是按照高炉冶炼强度及每次最大出铁量不应超过炉缸安全出铁量来确定。( ) A.按安全出铁量的60~80%定为每次出铁量 B.按安全出铁量的30~50%定为每次出铁量 答案:A 2.按照炉料装入顺序,装料方法对加重边缘的程度由重到轻排列为( )。 A.正同装-倒同装-正分装-倒分装-半倒装 B.倒同装-倒分装-半倒装-正分装-正同装 C.正同装-半倒装-正分装-倒分装-倒同装 D.正同装-正分装-半倒装-倒分装-倒同装 答案:D 3.炉缸边缘堆积时,易烧化( )。 A.渣口上部 B.渣口下部 C.风口下部 D.风口上部 答案:D 曲线的形状为:( )。 4.边缘气流过分发展时,炉顶CO 2 A.双峰型 B.馒头型 C.“V”型 D.一条直线 答案:B 5.影响炉缸和整个高炉内各种过程中的最重要的因素是( )。 A.矿石的还原与熔化 B.炉料与煤气的运动 C.风口前焦炭的燃烧 答案:C 6.根据高炉解剖研究表明:硅在炉腰或炉腹上部才开始还原,达到( )时还原出的硅含量达到最高值。 A.铁口 B.滴落带 C.风口 D.渣口

答案:C 7.高压操作使炉内压差降低的原因是( )。 A.冶炼强度较低 B.风压降低 C.煤气体积缩小 D.煤气分布合理答案:C 8.要使炉况稳定顺行,操作上必须做到“三稳定”,即( )的稳定。 A.炉温、料批、煤气流、 B.炉温、煤气流、碱度 C.煤气流、炉温、料批 D.煤气流、料批、碱度 答案:A 9.高炉冶炼过程中,P的去向有( )。 A.大部分进入生铁 B.大部分进入炉渣 C.一部分进入生铁,一部分进入炉渣 D.全部进入生铁 答案:D 10.高温物理化学反应的主要区域在( )。 A.滴落带 B.炉缸渣铁贮存区 C.风口带 答案:A 11.高炉中铁大约还原达到( )。 A.90% B.95% C.99.5% 答案:C 12.高炉中风口平面以上是( )过程。 A.增硅 B.降硅 C.不一定 D.先增后减 答案:A

高炉安全操作规程完整

炼铁分厂各岗位安全操作规程

1围 本表准规定了炼铁分厂安全生产的技术要求 本表准适用于炼铁分厂生产和设备检修。 2安全管理 2.1炼铁分厂建立健全安全管理制度、完善安全生产责任制。 厂长对本厂的安全生产负全面责任,各车间(工段)主要负责人对本车间(工段)的安全生产负责。 2.2炼铁分厂设置安全生产管理机构 并且配备专职安全生产管理员,负责管理本部门的安全生产工作。 2.3炼铁分厂根据GB622的有关规定,配备煤气监测、防护设施、器具及人员。 2.4炼铁分厂建立健全安全生产岗位责任制和岗位安全技术操作规程,严格执行交接班制度。 2.5炼铁分厂认真执行安全检查制度,对查出的问题提出整改措施,并限期整改。 2.6炼铁厂长应具备相应安全生产知识和管理能力。 2.7应定期对职工进行安全生产和劳动保护教育,普及安全知识和安全法规,加强业务技术培训。职工经考试合格方可上岗。 新工人进厂,首先接受分厂、车间、班组三级安全教育,经考试合格后由熟练工带领工作至少三个月,熟悉本工种操作技术并考试合格方可独立工作。

调换工种和脱岗三个月以上重新上岗的人员,应首先进行岗位安全培训,并经考试合格方可上岗。 外来参观或学习人员,要接受必要的安全教育,并由专人带领。 2.8特种作业人员和要害岗位、重要设备与设施的作业人员,均经专门的安全教育和培训,并经考试合格,取得操作,方可上岗。上述人员的培训、考试、发证及复审,应按国家有关规定执行。 2.9采用新工艺、新技术、新设备,应制定相应的安全技术措施;对有关生产人员,进行专门安全技术培训,并经考试合格方可上岗。 2.10炼铁分厂要求职工正确佩戴和使用劳动防护用品。 2.11炼铁分厂应对厂房、机电设备进行定期检查、维护和清扫,要害岗位的设备,实行操作牌制度。 2.12炼铁厂要建立火灾、爆炸、触电和毒物逸散等重大事故的应急救援预案,并配备必要的器材与设施,定期演练。 2.13安全装置和防护设施,不得擅自拆除。 2.14炼铁厂发生伤亡或其它重大事故时,厂长或其代理人应立即到现场组织指挥抢救,并采取有效措施,防止事故扩大。 发生伤亡事故,应按国家有关规定报告和处理。 事故发生后,应及时调查分析,查清事故原因,并提出防止同类事故发生的措施。 3炼铁分厂各岗位安全操作规程 3.1高炉工长安全操作规程 3.1.1 危险源 3.1.1.1 一级危险源 未按规定穿戴好劳动保护用品; 更换风、渣口时未戴好面罩; 接触高温工器具未戴手套; 风口镜片缺损; 监视出铁热辐射; 监视出铁渣铁喷溅、站位不当; 值班室操作配电盘和操作开关漏电; 在运行的电葫芦下走动; 高空擦玻璃; 开关炉顶人孔操作开关人孔盖站位不当。 3.1.1.2 二级危险源

高炉高压操作详解

高炉高压操作 20世纪50年代以前,高炉都是在炉顶煤气剩余压力低于30kPa 的情况下生产的,通常称为常压操作。1944-1946年美国在克利夫兰厂的高路上将炉顶煤气压力提高到70kPa,试验获得成功(产量提高12.3%,焦比降低2.7%,炉煤量大幅度降低),从这时起将炉顶煤气压力超过30kPa的高炉操作称为高压操作。在此后十年中,美国采用高压操作的高炉座数增加很多。苏联于1940年开始在彼得罗夫斯基工厂进行提高炉顶煤气压力操作的试验,它比美国的试验稍早一点,但初次试验并未成功,后来改进了提高炉顶煤气压力的设施后才取得进展,但其发展速度却很快,到1977年高压操作高炉冶炼的生铁占全部产量的97.3%。我国从50年代后期开始,也先后将1000m3级高炉改为高压操作,同样取得较好的效果,但是炉顶压力均维持在50-80kPa,而宝钢1号高炉(4063m3)的炉顶压力已达到250 kPa,进入世界先进行列。 一、高压操作系统 高炉炉顶煤气剩余压力的提高是由煤气系统中的高压调节阀组 控制阀门的开闭度来实现的。前苏联早期试验时,曾将这一阀组设置在煤气导出管上,它很快被煤气所带炉尘所磨坏,因而试验未获成功。后来改进阀组结构并将其安装在洗涤塔之后,才能取得成功(见图1)。我国1000m3级高炉的调压阀组是由三个φ700mm电动蝶式调节阀,一个设有自动控制的φ400mm蝶阀和一个φ200mm常通管道所组成。高压时,φ700mm阀常闭,炉顶煤气压力由φ400mm阀自动控

制在规定的剩余压力,这样自风机到调压阀组的整个管路和高炉炉内均处于高压之下,只有将所有阀门都打开,系统才转为常压,长期以来,由于炉顶装料设备系统中广泛使用着双钟马基式布料器,它既起着封闭炉顶,又起着旋转布料的作用,布料器旋转部位的密封一直阻碍着炉顶压力的进一步提高。只有到70年代实现了“布料与封顶分离”的原则,即采用双钟四阀,无钟炉顶等以后,炉顶煤气压力才大幅度提高到150kPa,甚至到200-300 kPa。 图1 高压操作工艺流程图 图2 余热发电工艺流程图

炼铁炉前操作基础知识

炼铁厂炉前操作基础知识 一、作业过程内容概述 通过使用开堵口设备、渣铁分离设备、起重设备,按规定时间将炉内高温液态生铁、炉渣排放到铁罐和渣处理系统。 二、本岗位存在的主要危害因素和高风险作业 A、高温铁水 B、煤气中毒 C、机械伤害 D、粉尘 E、高空落物 F、爆炸 G、窒息 H、触电 I、火灾 J、高压气体 K、高空作业 L、交叉作业P、起重作业Q、出铁作业 三、进入工作岗位前 1、工作时正确穿戴劳保防护用品,严禁穿化纤衣物,严禁班前、班中酒后上岗。 2、必须熟悉炉前设备状况及安全操作规程,熟练掌握事故应急预案。 3、会辨识本岗位危险源点及熟悉自我防范措施。 四、安全注意事项 (一)炉前工安全注意事项: 1、严格遵守炼铁厂安全、技术、设备各项管理制度、规程、作业指导书、作业标准及要求; 2、炉前严格执行炉前出铁确认制,杜绝“三违”作业。 3、启动操作设备时,必须打铃警示,认真观察周围有无人员和障碍物。 4、作业过程中,确认周围环境是否安全,上下楼梯时应扶好扶手,确保安全。。 5、清扫卫生时必须两人以上协同清扫, 互相监护;严禁在运转部位清扫加油,清扫卫生、 点检设备时,要离运转的部位至少300㎜的距离,注意防止衣袖被运转的机械设备咬住。 6、地面上的散料、杂物、积水要及时清理,防止作业时滑倒摔伤。 7、电线接头裸露,绝缘老化,灭火器材不齐全、失效,必须及时汇报处理。 8、要认真检查本岗位的安全防护装置及安全附件、照明设施是否完好,发现损坏要及时 汇报联系处理。保持现场安全通道畅通。 9、更换岗位照明灯泡时,必须断电、挂检修牌,使用安全登高工具应系好安全带,两人 以上更换(一人更换,一人在下面扶好梯子,做好监护),照明损坏要立即通知电工维修,严禁岗位工更换爆裂的照明灯泡。

高炉炼铁设备操作

喷煤操作规程及管理制度 1. 岗位职责 1.1. 煤粉喷吹操作。 2. 工作内容 2.1. 准备工作 2.1.1. 将直吹管装配好经检查合格的弹子阀。 2.1.2. 检查喷枪长度,确保喷枪位置适宜。 2.1. 3. 插枪时准备好管钳,大锤等工具。 2.2. 喷煤 2.2.1. 将喷枪插入风口直吹管时,喷枪阀门应关闭,调整好喷枪角度,连接好胶皮管或金属软管。 2.2.2. 检查分煤器各阀门,直通阀及旁通阀应关闭。 2.2. 3. 打开分煤器下部放散阀。 2.2.4. 联系喷吹工送风,确认管道送风正常后关闭放散阀,打开分煤器各直通阀及喷枪阀门。 2.2.5. 通知工长,具备送煤条件,由工长通知喷吹工送煤后,检查煤粉枪喷吹情况。 2.3. 风口停喷条件 2.3.1. 风口损坏漏水时。 2.3.2. 风口向凉,升降多,挂渣,涌渣,灌渣。 2.3.3. 风口未全开时。 2.3.4. 直吹管内有异物时。

2.3.5. 喷枪烧坏磨风口时。 2.3.6. 直吹管不严,跑风,吹管前端发红时。 2.4. 喷煤突然停风,停电的处理 喷煤突然停风停电,配管工应立即关闭喷枪阀门,防止热风倒流造成事故,同时打开分煤器放散阀,然后更换烧坏的喷枪或喷煤管,待喷吹正常后再按正常程序送煤。 2.5. 休复风时的喷煤操作 2.5.1. 休风后应关闭喷枪阀门,分煤器直通阀,打开放散阀。 2.5.2. 复风时应先通知喷吹工送风,然后按正常程序送煤。 2.6. 喷枪故障检查与排除 2.6.1. 喷枪堵塞时,应先关闭分煤器直通阀,打开分煤器上旁通,利用炉内热风压力进行倒冲,若倒冲无效,可关闭旁通阀,打开压缩空气或氮气吹扫阀门进行吹扫。 2.6.2. 若分煤器至喷枪部分管路堵塞经吹扫无效后,可打开喷枪连接软管进行吹扫处理。 2.6. 3. 若分煤器出口至分煤器直通阀部分堵塞可打开分煤器下部旁通阀进行处理。 2.6.4. 若喷枪堵塞清扫无效经确认管路畅通,应更换喷枪。 2.6.5. 若分煤器主管堵塞应关闭分煤器所有直通阀,打开放散阀,进行放散,正常后关闭放散阀,打开分煤器直通阀,必要时联系喷吹工进行处理。 2.6.6. 若喷枪全堵,经检查主管畅通,应分别清理至正常。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉四大操作制度讲义精编版

高炉四大操作制度讲义 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

高炉四大操作制度讲义 高炉操作的任务: 高炉操作的任务是在已有原燃料和设备等物质条件的基础上,灵活运用一切操作手段,调整好炉内煤气流与炉料的相对运动,使炉料和煤气流分布合理,在保证高炉顺行的同时,加快炉料的加热、还原、熔化、造渣、脱硫、渗碳等过程,充分利用能量,获得合格生铁,达到高产、优质、低耗、长寿、高效益的最佳冶炼效果。实践证明,虽然原燃料及技术装备水平是主要的,但是,在相似的原燃料和技术装备的条件下,由于技术操作水平的差异,冶炼效果也会相差很大,所以不断提高高炉操作水平、充分发挥现有条件的潜力,是高炉工作者的一项经常性的重要任务。 通过什么方法实现高炉操作的任务: 一是掌握高炉冶炼的基本规律,选择合理的操作制度。二是运用各种手段对炉况的进程进行正确的判断和调节,保持炉况顺行。实践证明,选择合理的操作制度是高炉操作的基本任务,只有选择好合理的操作制度之后,才能充分发挥各种调节手段的作用。 高炉有哪几种基本操作制度: 高炉有四大基本操作制度:(1)热制度,即炉缸应具有的温度与热量水平;(2)造渣制度,即根据原料条件,产品的品种质量及冶炼对炉渣性能的要求,选择合理的炉渣成分(重点是碱度)及软熔带结构和软熔造渣过程;(3)送风制度,即在一定冶炼条件下选择合适的鼓风参数;(4)装料制度,即对装料顺序、料批大小和料线高低的合理规定。选择合理操作制度的根据: 高炉的强化程度、冶炼的生铁品种、原燃料质量、高炉炉型及设备状况等是选定各种合理操作制度的根据。 通过哪些手段判断炉况: 高炉顺行是达到高产、优质、低耗、长寿、高效益的必要条件。为此不是选择好了操作制度就能一劳永逸的。在实际生产中原燃料的物理性能、化学成分经常会发生波动,气候条件的不断变化,入炉料的称量可能发生误差,操作失误与设备故障也不可能完全杜绝,这些都会影响炉内热状态和顺行。炉况判断就是判断这种影响的程度和顺行的趋向,即炉况是向凉还是向热,是否会影响顺行,它们的影响程度如何等等。判断炉况的基本手段基本是两种,一是直接观察,如看入炉原料外貌,看出铁、出渣、风口情况;二是利用高炉数以千、百计的检测点上测得的信息在仪表或计算机上显示重要数据或曲线,例如风量、风温、风压等鼓风参数,各部位的温度、静压力、料线变化、透气性指数变化,风口前理论燃烧温度、炉热指数、炉顶煤气曲线、测温曲线等。在现代高炉上还装备有各种预测、控制模型和专家系统,及时给高炉操作者以炉况预报和操作建议,操作者必须结合多种手段,综合分析,正确判断炉况。 调节炉况的手段与原则: 调节炉况的目的是控制其波动,保持合理的热制度与顺行。选择调节手段应根据对炉况影响的大小和经济效果排列,将对炉况影响小、经济效果好的排在前面,对炉况影响大,经济损失较大的排在后面。它们的顺序是:喷吹燃料——风温(湿度)——风量——装料制度——焦炭负荷——净焦等。调节炉况的原则,一是要尽早知道炉况波动的性质与幅度,以便对症下药;二是要早动少动,力争稳定多因素,调剂一个影响小的因素;三是要了解各种调剂手段集中发挥作用所需的时间,如喷吹煤粉,改变喷吹量需经过3~4小时才能集中发挥作用(这是因为刚开始增加煤量时,有一个降低理论燃烧温度的过程,只有到因增加煤气量,逐步增加单位生铁的煤气而蓄积热量后才有提高炉温的作用),调节风温(湿度)、风量要快一些,一般为~2小时,改变装料制度至少要装完炉内整个固体料段的时间,而减轻焦炭负荷与加净焦对料柱透气性的影响,随焦炭加入量的增加而增加,但对热制度的反映则属一个冶炼周期;四是当炉况波动大而发现晚时,要正确采取多种手段

高炉炉前安全操作规程(新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高炉炉前安全操作规程(新版)

高炉炉前安全操作规程(新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1出铁安全规程 1.1出铁前必须穿戴好劳保用品。 1.2禁止潮铁口出铁,铁沟、铁罐必须干净,无潮物。 1.3炉前所用工具必须烤干,严禁用铁管捅铁口和铁水。 1.4出铁时禁止跨越主沟、撇渣器和渣沟。 1.5开口前要修好泥套,开口机、泥炮要试好,并设专人操作。 1.6出铁时,冲渣流嘴附近禁止站人。 1.8严禁使用氧气管捅铁口。 1.9人工开铁口需使用氧气时,氧气瓶必须离开明火10米以外,氧气瓶严禁正对铁口所用工具必须经脱脂,双脚不准站在铁沟内或正对铁口。 1.10保持炉前,平台上下清洁,不准有积水。 1.11液压系统出现问题及时通知维检人员处理,并通知高炉工长,不得随意对各类阀门、压力表进行调节。

2撇渣器安全规程 1工作前必须按规定穿戴好防护用品,检查设备及工作场地。 2开铁口前,检查撇渣器是否有凝盖,挡好砂坝。 3开始放下渣时,应视铁流情况分层落沙坝,不得落的过猛。。 4堵铁口后,落砂坝应慢,严禁一下将砂坝推出,防止渣沟过铁。 5下渣沟流嘴应糊泥铺河沙。 3泥炮安全规程 3.1装泥时,禁止往炮膛内打水,不准将手伸入装泥孔,不准使用冻泥、稀泥和混有杂物的炮泥。 3.2开动泥炮时,其活动半径内不许有人。 3.3带铁堵铁口时,要提前烤热炮嘴。 3.4开炮人必须熟悉炮性能。设专人操作。 3.5出铁前应仔细检查泥炮各部位的工作是否灵活,正常。 3.6泥炮顶泥时炮嘴正前方严禁有人,炮嘴结焦应抠净,出泥要圆,抠炮嘴结焦硬泥时, 不得正对炮泥操作。 4烧氧气安全规程 4.1使用氧气烧铁口、风口,要保证人员分工明确密切配合。

管理制度高炉四大操作制度讲义

(管理制度)高炉四大操作 制度讲义

高炉四大操作制度讲义 高炉操作的任务: 高炉操作的任务是于已有原燃料和设备等物质条件的基础上,灵活运用壹切操作手段,调整好炉内煤气流和炉料的相对运动,使炉料和煤气流分布合理,于保证高炉顺行的同时,加快炉料的加热、仍原、熔化、造渣、脱硫、渗碳等过程,充分利用能量,获得合格生铁,达到高产、优质、低耗、长寿、高效益的最佳冶炼效果。实践证明,虽然原燃料及技术装备水平是主要的,可是,于相似的原燃料和技术装备的条件下,由于技术操作水平的差异,冶炼效果也会相差很大,所以不断提高高炉操作水平、充分发挥现有条件的潜力,是高炉工作者的壹项经常性的重要任务。 通过什么方法实现高炉操作的任务: 壹是掌握高炉冶炼的基本规律,选择合理的操作制度。二是运用各种手段对炉况的进程进行正确的判断和调节,保持炉况顺行。实践证明,选择合理的操作制度是高炉操作的基本任务,只有选择好合理的操作制度之后,才能充分发挥各种调节手段的作用。 高炉有哪几种基本操作制度: 高炉有四大基本操作制度:(1)热制度,即炉缸应具有的温度和热量水平;(2)造渣制度,即根据原料条件,产品的品种质量及冶炼对炉渣性能的要求,选择合理的炉渣成分(重点是碱度)及软熔带结构和软熔造渣过程;(3)送风制度,即于壹定冶炼条件下选择合适的鼓风参数;(4)装料制度,即对装料顺序、料批大小和料线高低的合理规定。 选择合理操作制度的根据: 高炉的强化程度、冶炼的生铁品种、原燃料质量、高炉炉型及设备情况等是选定各种合理操作制度的根据。 通过哪些手段判断炉况: 高炉顺行是达到高产、优质、低耗、长寿、高效益的必要条件。为此不是选择好了操作制度

高炉冶炼工艺

第四章高炉冶炼工艺 课时:2学时 授课内容: 第三节热风炉操作 目的要求: 1.了解热风炉燃料; 2.知道影响热风的因素; 3.掌握热风炉的操作特点、燃烧制度; 4.掌握送风制度和换炉操作。 重、难点: 1.影响热风的因素、热风炉的燃烧制度、送风制度和换炉操作。 教学方法: 利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。 讲授重点内容提要 第三节热风炉操作 一.热风炉燃料 1.燃料品种及其化学成分、发热量 热风炉的燃料为煤气。 表4—15分别列出几种热风炉常用煤气的成分和发热值。 表4—15 热风炉常用煤气成分及发热值 2.煤气及助燃空气的质量 含尘量:煤气含尘量低于10mg/m3。助燃空气含尘量尽量减少。 煤气含水量:在热风炉附近的净煤气管道上设置脱水器或,使用干法除尘。 净煤气压力:净煤气支管处的煤气应有一定的压力,见表4—16。 表4—16 热风炉净煤气吉管处的煤气压力 3.气体燃料可燃成分的热效应 气体燃料可燃成分的热效应(见表4—17) 表4—17 1 m3气体燃料中各可燃成分l%体积的热效应 二.影响热风温度的因素 1.拱顶温度 ◆限制拱顶温度的因素:

①耐火材料理化性能。实际拱顶温度控制在比拱顶耐火砖平均荷重软化点低l00℃左右(也有按拱顶耐火材料最低荷重软化温度低40~50℃控制)。 ②煤气含尘量。不同含尘量允许的拱顶温度不同(见表4—18)。 表4—18 不同含尘量允许的拱顶温度 ③燃烧产物中腐蚀性介质。为避免发生拱顶钢板的晶间应力腐蚀,必须将拱顶温度控制在不超过l400℃或采取防止晶间应力腐蚀的措施。 ◆热风炉实际拱顶温度低于理论燃烧温度70~90℃。 ◆大、中型高炉热风炉拱顶温度比平均风温高120~220℃。小型高炉拱顶温度比平均风温高l50~300℃。 2.废气温度 允许的废气温度范围:大型高炉废气温度不超过350~400℃,小型高炉不得超过400~450℃。 废气温度与热风温度的关系:提高废气温度可以增加热风温度。在废气温度为200~400℃范围内,每提高废气温度100℃约可提高风温40℃。 影响废气温度的因素:单位时间燃烧煤气量、燃烧时间、蓄热面积。 3.热风炉工作周期 热风炉一个工作周期:燃烧、送风、换炉三个过程自始至终所需的时间。 送风时间与热风温度的关系:随着送风时间的延长,风温逐渐降低。 合适的工作周期:合适的送风时间最终取决于保证热风炉获得足够的温度水平(表现为拱顶温度)和蓄热量(表现为废气温度)所必要的燃烧时间。 4.蓄热面积与格子砖重量 当格子砖重量相同并采用相同工作制度时,蓄热面积大的供热能力大。 格子砖重量大,周期风温降小,利于保持较高风温。 单位风量的格子砖重量增大时,热风炉送风期拱顶温度降减少,即能提高风温水平。 单位风量的格子砖重量相同时,蓄热面积大的拱顶温度降小。 5.其他因素 ◆燃烧器形式和能力 陶瓷燃烧器的煤气和空气、混合较好,燃烧能力大,完全可以满足要求。 ◆煤气量(煤气压力) 煤气量不足或煤气压力波动,拱顶温度不能迅速稳定地升高,热风炉蓄热量减少。 ◆高炉操作 高炉顺行、热风炉工作稳定,能最大限度地保持较高风温水平。 三.热风炉的操作 1.蓄热式热风炉的传热特点 热风炉内的传热主要是指蓄热室格子砖的热交换。 高炉热风温度的高低,取决于蓄热室贮藏的热量及拱顶温度。 2.热风炉的操作特点 ◆热风炉操作是在高温、高压、煤气的环境中进行。 ◆热风炉的工艺流程: ①送风通路:热风炉除冷风阀、热风阀保持开启状态外,其他阀门一律关闭; ②燃烧通路:热风炉冷风阀和热风阀关闭外,其他阀门全部打开; ③休风:所有热风炉的全部阀门都关闭。 ◆蓄热式热风炉要储备足够的热量。 ◆热风炉各阀门的开启和关闭必须在均压下进行。 ◆高炉热风炉燃烧可以使用低热值煤气,提供较高的风温。

高炉操作01高炉冶炼的特点

高炉操作 第1章 高炉冶炼的特点 1.1 高炉冶炼的根本任务 把铁矿石冶炼成合格生铁是高炉冶炼的根本任务。 高炉冶炼过程是在密闭的竖炉内进行,经历一个极为复杂的物理化学的反应过程,实质上冶炼过程基本上是氧的传输与热的交换过程。铁矿石在炉内不断下降,随着温度的升高氧化铁逐渐失氧而被还原、熔化,其他元素的还原,最终冶炼成合格铁。 1.2 高炉日常操作 1.2.1 日常操作 新建或大修后的高炉开始操作称为点火,完全停止高炉的操作称为停风。 装料是把焦炭和矿石按规定的方式分层装入,让炉料落到根据探尺判断的预定落点;装入一组料称做一批,以控制气流分布为主要目;确定一次的装入量,有定焦批重装入法和定矿石批重装入法,其他的量根据燃料比的变动而改变。 出铁作业单铁口高炉每1~2h一次,有渣口的高炉出渣作业也在每次出铁作业前进行,出渣过程中见渣中带铁或跑风既停止,无渣口的高炉出渣作业通过铁口随出铁一起进行。大型高炉出铁作业基本是连续的,间隔只有5~10min,出渣作业也是通过铁口随出铁一起进行。 高炉操作中把出铁温度、铁水含硅量、铁水含硫量、渣的成分组成、送风压力、流量、炉料下降情况、炉顶煤气成分等作为重要指标来判定炉况,作为调节炉况的依据。 1.2.2 炼铁单耗和产品 生产lt铁所需要的原料称做炼铁单耗,它因原料质量和操作方法的不同而变化。 炼铁的产品为铁水,副产品为炉渣、煤气、炉尘(瓦斯灰)。 1.3 高炉冶炼的工艺特点 高炉生产工艺与其他冶金工艺过程比较,具有以下几大特点: (1)生产过程的连续性 (2)生产过程中炉料与煤气相对运动

(3)高炉炼铁反应在密闭的容器中进行 (4)庞大的生产体系与巨大的生产能力 1.4 高炉操作 高炉工长的技术操作水平应该表现在: (1)能及时掌握炉况波动的因素,准确地把握外界条件的变化; (2)能尽早知道炉况不稳定的原因; (3)在错综复杂的矛盾中抓住主要矛盾,对炉况做出及时、正确的判断; (4)及早采取恰当的调节措施,具有处理炉况波动的方法与手段,能控制炉况变化的规律。 上述水平来源于长期的生产实践,日常细心与准确的观察,只有对炉况变化的情况明白,才能处理正确,效果显著。 1.5 高炉的关键部分 1.5.1 软熔带结构与作用 矿焦层装的高炉,软熔带结构也是层状的。一层矿石一层焦炭,矿焦相间,其形状受等温线分布的影响。 作用:高炉内软熔带起煤气分布器作用。 从目前研究结果看,煤气流的分布状态受下列因素影响而变化:

第二节 高炉炉前操作

第二节高炉炉前操作 一、炉前操作的任务 1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。 2..、完成渣、铁口和各种炉前专用设备的维护工作。 3、制作和修补撇渣器、出铁主沟及渣、铁沟。 4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。 二、高炉不能及时出净渣铁,会带来以下不利影响: 1、影响炉缸料柱的透气性,造成压差升高,下料速度变慢,严重时还会导致崩料、悬料以及风口灌渣事故。 2、炉缸内积存的渣铁过多,造成渣中带铁,烧坏渣口甚至引起爆炸。 3、上渣放不好,引起铁口工作失常。 4、铁口维护不好。铁口长期过浅,不仅高炉不易出好铁,引起跑大流、漫铁道等炉前事故,直至烧坏炉缸冷却壁,危及高炉的安全生产,有的还会导致高炉长期休风检修,损失惨重。 三、炉前操作平台 1.风口平台 ◆概念:在风口下方沿炉缸四周设置的高度距风口中心线1150~1250mm的工作平台,称为风口平台。 ◆作用:为便于观察风口和检查冷却设备以及进行更换风、渣口等冷却设备的操作。 ◆要求:宽敞平坦;留有一定的泄水坡度;设有环形吊车。 2.出铁场 出铁场的要求: ◆采用环形或矩形出铁场。 ◆上空设有天棚。 ◆设有排烟机和除尘装置。 ◆设有各种出铁设备。 ◆铺设有铁水主沟。 铁水主沟是从铁口泥套外至撇渣器的铁水沟,铁水和下渣都经此流至撇渣器,一般坡度为5%~l0%。各种类型高炉主沟长度数据见表4—8。 表4—8各种类型高炉主沟长度参考 数据 大型高炉一般采用贮铁式主沟,沟内经常贮存一定深度的铁水(450~600 mm),使铁水流射落时不致直接冲击沟底,见图4—5。贮铁式主沟的另一个优点是可避免大幅度急冷急热的破坏作用,延长主沟的寿命。

高炉炼铁仿真操作系统操作规程

高炉炼铁仿真操作系统实训指导书 绪论 高炉炼铁仿真操作系统功能 实训项目 实训目标

实训项目1 高炉炼铁工艺流程实训 任务按照要求熟练打开仿真操作系统的操作界面 任务熟练说出高炉炼铁车间构筑物的名称及作用 任务熟练说出高炉炼铁车间主要设备的名称及作用 知识链接 高炉内型尺寸

实训项目2 高炉上料实训 仿真实训条件: (一)高炉槽下筛分、称量、运输系统的组成 高炉槽下系统由矿槽、焦槽以及皮带机三部分组成,矿槽采用双排,设有大小矿槽12个,大矿槽测为6个烧结矿槽,小矿槽侧由2个普通球团矿槽、2个块矿槽、2个熔剂或锰矿槽构成设有5个焦槽,各矿槽下均设给料机、振动筛、称量漏斗等设备。配置一个矿石中间称量漏斗与一个焦炭中间称量漏斗,矿焦通过中间称量漏斗、经皮带上炉顶。同时拥有小块焦回收系统,1A-6A按烧结矿考虑,1B-6B按球团矿、锰矿熔剂、生矿考虑。 4.1.1 各高炉矿槽、焦槽配备(见表4—1) 表4—1 各高炉矿槽配备情况 项目 炉别矿槽数(个)焦槽数(个) 烧结矿槽球团矿槽块矿槽焦丁槽 1、2号高炉6×m3 2×m3 2×m3

1×m3 4×m3 储存时间(h):焦炭:8h;烧结矿:12h;球团矿:12h;碎焦:8h;碎矿:8h。 槽下筛分、秤量设备(见表4—2,表4—3) 表4—2 筛分设备表4—3 秤量 类别 规格焦炭筛烧结矿筛类别 名称矿焦 型式BTS-150-330 BTS-150-330 称量物烧结矿 球团矿 块矿焦炭 能力(t/h) 200 250 筛面尺寸(mm) 筛分效率秤容积(m3) 装料制度OC或C OL(大粒度矿)、OS(小粒度矿) (二)主要控制功能 矿焦槽所有入炉原料采用分散筛分、分散称量+集中称量流程。按预先设定的排料程序,

高炉岗位操作规程完整

华菱钢管 质量管理体系作业文件 炼铁分厂 高炉工段岗位操作规程文件编号:QZ/HG 38 009-2009 控制状态:受控(OA) 发放编号:38— 生效日期:2009年4月15日

目录 工长岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1 副工长岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 见习工长岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥76 炉前岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥83 槽下岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥93 配岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥105 干法除尘岗位操作规程‥‥‥‥‥‥‥‥‥‥‥‥‥‥109

一、高炉值班室工长岗位操作规程 1 目的 为确保作业人员正确操作,保证设备有效运行,特制定本工艺技术操作标准。 2 适用围 适用于高炉值班室工长岗位。 3 工作程序 3.1 炉况正常的标志 正常的炉况主要特征是炉缸均匀工作活跃,气流分布合理、渣铁热量充沛、炉温稳定、下料均匀、顺畅。它主要表现在: 3.1.1探尺下降均匀、没有停滞陷落、时快时慢现象,两探尺下降差别不大于0.2m,每次加料后,料面深度基本一致。 3.1.2风口工作均匀、焦炭活跃明亮,但不耀眼,无凝块生降现象,不挂渣、不涌渣,风口破损少。 3.1.3渣温充足且流动性良好。 3.1.4铁水物理热充沛,同次铁前后温度均匀,相邻两次铁水温度波动不大,断面为灰口。 3.1.5煤气分布合理。 3.1.6炉喉温度各点接近且稳定在一定围,波动不大; 3.1.7炉顶温度曲线带较稳定,带宽在20~60℃之间,随上料前后波动在一定围,较为稳定。 3.1.8 十字测温各点温度活跃,随布料有规律波动,中心点在300~650℃,边缘温度在100~250℃。 3.1.9 布料时炉顶煤气压力没有猛然上升的尖峰。随压力降低即恢复到正常位置。 3.1.10 热风压力及冷风流量微微波动,无锯齿状,且风量与料速相适应。 3.1.11压差及风量相对稳定在正常围。 3.1.12 除尘器瓦斯灰量无大波动。 3.1.13各段冷却壁水温差在正常围波动。 3.1.14 炉体各层温度相对稳定在一定的围,波动小。 3.2 高炉基本操作制度 高炉冶炼的基本操作制度包括:送风制度、装料制度、热制度、冷却制度与造渣制度。 合理的操作制度,能保证合理的操作炉型,促使高炉稳定、顺行,达到“安全、环保、高产、优质、低耗、长寿”的冶炼效果。选择高炉合理操作制度的依据是:根据生产任务的要求决定高炉的冶炼强度。 冶炼生铁品种的要求。 原、燃料的质量。 高炉炉型及设备状况。 日常操作和控制 3.2.1日常调剂炉温: 3.2.1.1调剂原则: 调节炉温顺序应是煤粉→风温→富氧→风量→负荷;

高炉冶炼目的

高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作: 一、炉前操作的任务 1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。

高炉冶炼学

1.影响高炉软熔带形状的因素有哪些? 答:根据高炉解剖研究及矿石的软熔特性,软熔带形状与炉内等温线相适应,而等温线又与煤气中CO2分布相适应。在高炉操作中炉喉煤气CO2曲线形状主要靠改变布料制度调节,其次是受送风制度影响。因此,软熔带的形状主要是受装料制度与送风制度影响,前者属上部调剂,后者属下部调剂,对正装比例为主的高炉,一般都是接近倒V 形软熔带;对倒装为主或全倒装的高炉,基本上属V形状软熔带;对正、倒装各占一定比例的高炉,一般接近W形软熔带。 2.高炉冶炼过程中铁水含P、Cu能否控制?为什么? 答:在高炉的冶炼过程中不能控制铁水中的P、Cu。原因是根据化学热力学的基本原理,通过查看多种氧化物的氧势图可知:Cu极易被CO所还原,因此在高炉的条件下Cu几乎100%被还原为金属态,可溶入液态Fe中形成合金。而P在较高温度下可被固体C还原,其还原反应的开始温度大约是870oC,所以,P在高炉中几乎100%还原。 3.高炉中降低rd的措施有哪些? 答:生产中采用降低r d的主要措施有:高压操作、高风温、富氧、喷吹燃料及加入精料等。 压力对还原的影响是通过压力对反应CO2+C=2CO的影响体现的,压力的增加有利于反应向左进行,有利于的CO2存在,这就有利于间接还原的进行。 富氧对间接还原发展有利的方面是炉缸煤气中CO浓度的提高与氮含量降低。 喷吹燃料以后,改变了铁氧化物还原和碳气化的条件,炉内温度变化使焦炭中的碳与CO2发生反应的下部区温度降低,而氧化铁间接还原的区域温度升高,这样明显有利于间接还原的发展和直接还原度的降低。

由于精料是使用高品位、低渣量、高还原性、低FeO的自熔性富矿,这有助于间接反应的进行。 4.为什么高压操作的高炉有利于降低焦比和炉况顺行? 答:高炉采用高压操作后,使炉内煤气流速降低,从而减小煤气通过料柱的阻力可使炉况顺行。 如果维持高压前煤气通过料柱的阻力,则可获得增加产量的效果,并且减少炉尘吹出量,所以根据焦比的公式可知,高压操作可降低焦比。 5.为什么铁水含[Si]可作为炉热状态的标志? 答:由于Si还原是强吸热反应,一般还原出1kgSi需热量约相当于从FeO中荒原出1kgFe所需的热量的8倍。所以生铁中含Si量愈高,炉温也升高,生产中常以生铁含Si的高低来反应炉温变化。 6.影响焦比的因素有哪些? 答:焦比是指冶炼每吨生铁消耗的干焦(或综合焦炭)的千克数: 影响焦比的因素主要有入炉品位,精料的使用,直接还原度,以及利用煤气的热能和化学能的状况;高炉采用的改进操作制度,如是否采用高压操作,喷吹燃料,高温风,高富氧等技术在改变焦比方面有重要的影响。 7 .影响炉渣粘度的因素有哪些? 答:对于均相的液态炉渣来说,决定其粘度的主要因素是成分及温度。而在非均相状态下,固态悬浮物的性质和数量对粘度有重大影响。 温度降低到一定值后,粘度急剧上升称为“短渣”;随温度下降粘度上升缓慢者称为“长渣”。高炉渣多为短渣。

相关文档
相关文档 最新文档