文档库 最新最全的文档下载
当前位置:文档库 › 动态光散射的基本原理及现代应用

动态光散射的基本原理及现代应用

动态光散射的基本原理及现代应用
动态光散射的基本原理及现代应用

动态光散射的基本原理及现代应用

电气本132班

张泽明 2013040211

贾东 2013040228

郑欣宇 2013040224

动态光散射的基本原理及现代应用

今天打开了高中时的物理课本,发现很多的知识已经都忘得差不多了。时而一翻,也有一中怀念的感觉。随便翻了一页,看到了这样一个陌生的词汇—动态光散射法,于是打开了电脑,到网上去查阅了一下资料。便写下了这篇论文。

一、什么是动态光散射

动态光散射,也称光子相关光谱,准弹性光散射,测量光强的波动随时间的变化。DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。

二、动态光散射的基本原理

1. 粒子的布朗运动导致光强的波动

微小粒子悬浮在液体中会无规则地运动

布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。

2. 光信号与粒径的关系

光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义。瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关。某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0。根据光学理论可得出光强相关议程。之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关。

大颗粒运动缓慢,小粒子运动快速。如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。附件五显示了大颗粒和小粒子的相关关系函数。可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。最后通过光强波动变化和光强相关函数计算出粒径及其分布。

3. 分布系数

4. 分布系数体现了粒子粒径均一程度,是粒径表征的一个重

要指标。

< 0.05单分散体系,如一些乳液的标样。

< 0.08近单分散体系,但动态光散射只能用一个单指数衰减的方法来分析,不能提供更高的分辨率。

0.08 - 0.7适中分散度的体系。运算法则的最佳适用范围。

> 0.7尺寸分布非常宽的体系,很可能不适合光散射的方法分析。

三、动态光散射的应用

1、测定蛋白质分子的均一性

蛋白质样品的均一性是生长晶体的前提条件,在无法直接观察蛋白质在溶液中状态的情况下,生长晶体是一个需要经验和运气的过程。但是用光散射技术,只需要几分钟就可以确切地告诉你,这个样品是否有长出晶体的可能性。你

还可以测定蛋白在不同溶液中的状态,从而确定出哪种溶液最适合生长晶体。

2、测定蛋白质分子的pH稳定性

有些蛋白质分子在不同的pH值条件下,会有不同的构型,或者形成聚合态,或是变性。如胰岛素在pH2.0时是以单体存在,而在pH3.0时则以二聚体形式存在,当pH升至7.0时则以六聚体存在。因为这种变化表现为大小的变化,所以光散射技术可以用来测定蛋白质分子的pH稳定性。

3、测定蛋白质分子的热稳定性

对一些热不稳定的蛋白,温度改变会导致分子变性聚合,因此可以观察到分子半径明显增大。所以可以利用光散射技术来研究蛋白质分子的热稳定性。

4蛋白质变复性及折叠的研究

蛋白质变性时往往是以聚合形式或较松散的状态存在,复性后,蛋白质折叠成天然状态,会发生结构的变化,这一变化可以导致流体动力学半径的变化,所以光散射技术可以用来检测这一动态变化的过程。

5、临界胶束浓度的测定

一定浓度的表面活性剂分子加到溶液中会形成微胶束,但浓度不同会影响胶束的大小以及是否能够形成胶束。如果浓度增加到一定程度,胶束就会形成,胶束的大小和单分子大小会有明显区别,利用光散射就可以确定胶束形成的临界浓度。

四、感悟

动态光折射是一种现代检测纳米制法,代表实验有动态光散射法监测纳米二氧化硅制备过程、测量Zeta电位、大分子的分子量等。是一种现代高科技技术,通过对于它的了解,我们小组知道了物理学在微观世界的研究已经非常成熟,同时在我国科技突飞猛进的今天,我们也要努力完成学业,用知识改编世界。

动态光散射基本原理及其在纳米科技中的应用——Zeta电位测量

【专题】动态光散射基本原理及其在纳米科技中的应用——Zeta电位测量 -------------------------------------------------------------------------------- 作者: 骑着蜗牛追火箭收录日期: 2009-11-28 发布日期: 2009-11-28 动态光散射基本原理及其在纳米科技中的应用——Zeta电位测量 前言:Zeta电位是纳米材料的一种重要表征参数。现代仪器可以通过简便的手段快速准确地测得。大致原理为:通过电化学原理将Zeta电位的测量转化成带电粒子淌度的测量,而粒子淌度的测量测是通过动态光散射,运用波的多普勒效应测得。 1.Zeta电位与双电层(图1) 粒子表面存在的净电荷,影响粒子界面周围区域的离子分布,导致接近表面抗衡离子(与粒子电。荷相反的离子)浓度增加。于是,每个粒子周围均存在双电层。围绕粒子的液体层存在两部分:一是内层区,称为Stern层,其中离子与粒子紧紧地结合在一起;另一个是外层分散区,其中离子不那么紧密的与粒子相吸附。在分散层内,有一个抽象边界,在边界内的离子和粒子形成稳定实体。当粒子运动时(如由于重力),在此边界内的离子随着粒子运动,但此边界外的离子不随着粒子运动。这个边界称为流体力学剪切层或滑动面(slippingplane)。在这个边界上存在的电位即称为Zeta电位。 ZETA电位是一个表征分散体系稳定性的重要指标。由于带电微粒吸引分散系中带相反电荷的粒子,离颗粒表面近的离子被强烈束缚着,而那些距离较远的离子形成一个松散的电子云,电子云的内外电位差就叫Zeta电位。也称电动电位(只有当胶粒在介质中运动时才会表现出来),实际上就是扩散层内的电位差。ξ电位较高时,粒子能保持一定距离消弱和抵消了范德华引力从而提高了颗粒悬浮系统的稳定性。反之,当ξ电位较低时,粒子间的斥力减小并逐步靠近,进入范德华引力范围内,粒子就会互相吸引、团聚。ξ电位与液体递质内的粒子质量分数有关,改变液体的pH值、增加体系的盐含量都会引起双电层压缩,改变粒子的ξ电位,降低颗粒间的静电排斥作用,从而影响颗粒悬浮系统的稳定性。 2.Zeta电位与胶体的稳定性(DLVO理论) 在1940年代Derjaguin, Landau, Verway与Overbeek 提出了描述胶体稳定的理论,认为胶体体系的稳定性是当颗粒相互接近时它们之间的双电层互斥力与范德瓦尔互吸力的净结果。此理论提出当颗粒接近时颗粒之间的能量障碍来自于互斥力,当颗粒有足够的能量克服此障碍时,互吸力将使颗粒进一步接近并不可逆的粘在一起。(图2) Zeta电位可用来作为胶体体系稳定性的指示: 如果颗粒带有很多负的或正的电荷,也就是说很高的Zeta电位,它们会相互排斥,从而达到整个体系的稳定性;如果颗粒带有很少负的或正的电荷,也就是说它的Zeta电位很低,它们会相互吸引,从而达到整个体系的不稳定性。 一般来说, Zeta电位愈高,颗粒的分散体系愈稳定,水相中颗粒分散稳定性的分界线一般认为在+30mV或-30mV,如果所有颗粒都带有高于+30mV或低于-30mV的zeta电位,则该分散体系应该比较稳定 3.影响Zeta电位的因素 分散体系的Zeta电位可因下列因素而变化: A. pH 的变化 B. 溶液电导率的变化

动态规划基本原理

动态规划基本原理 动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目 需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经 不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采 取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了 一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供 选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可 以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策 略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最 短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可 能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点 必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离 加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析, 有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10,

动态光散射测定

动态光散射仪测定粒径的操作步骤 Brookhaven BI-200SM laser light scattering spectrometer 该测试可以获得以下实验参数:流体力学粒径 需要准备的样品:一份浓度适宜的样品溶液 1. 制样 注意:制样是实验成功的关键;无论是测试瓶、溶剂还是样品溶液都需要进行严格的除尘处理(通常采用注射器滤膜反复过滤),否则会引入较大的误差。 2. 打开光散射仪 打开光源、检测器、恒温循环水的电源,在样品池内放入待测样品。 3. 打开软件:BIC Dynamic Light Scattering Software 4. 调出测量窗口 (1)将检测器调至“C档” (2)依次调出以下测定窗口 A、在Correlation Functions下拉菜单中调出Correlator Control Window B、在Graphs下拉菜单中调出Correlation Function Window C、在Graphs下拉菜单中调出Count Rate History Window D、在ISDA下拉菜单中调出NNLS Window E、在ISDA下拉菜单中调出Contin Window (3)在Windows下拉菜单中点击Smart Tile,优化窗口布局 (4)您将得到如下界面 5. 设置参数 在左上角窗口点击Dur调出测量时间参数窗口,依据当前的实际情况设置测量时间(如下图),点击“OK”在左上角窗口点击M.Bass调出测量基线参数窗口,选择Auto选项(如下图),点击“OK” 在左上角窗口点击Params调出样品参数窗口,按照下图中的方框提示填写相应的值,点击“OK” 注1、如溶剂为非水相体系,请在溶剂选项的下拉框中选择对应的体系(如下图) 注2、如溶剂体系为软件提供的选项之外的情况,请在溶剂选项的下拉框中选择Unspecified,并手动输入相应的粘度和折光指数(如下图) 在左上角窗口点击Display调出显示选项窗口,按照下图点勾,点击“OK” 在左下角CF窗口点击Scale,在弹出的窗口中按照下图勾选Show Fit,然后在下面点选NNLS或Contin,点击“OK” 6. 检测器设置:孔径选择100或200,波长根据激光源选择。 注、孔径选择使检测光强在50KCPS~500KCPS左右。如选择100,检测光强仍过强,考虑通过中密度滤光轮衰减入射光功率或者对样品进行稀释。 7. 测定 (1)点击主界面左上方的绿色圆形图标开始测试 (2)测试结束(如下图) (3)NNLS/Contin结果分析 点击Layout弹出窗口,根据需要选择图像表现形式(如下图) 点击Summary弹出窗口,点Copy For Spreadsheet数据复制(可在EXCEL,TXT文件中处理),点Copy

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

激光光散射技术及其应用.

激光光散射技术及其应用 Laser Light Scattering System Technology and Application BROOKHA VEN INSTRUMENTS CORPORATION (BEIJING OFFICE) 地址:北京市海淀区牡丹园北里甲1号中鑫嘉园东座A105室美国布鲁克海文公司公司北京技术服务中心 邮编:100083 电话:8610-62081909 传真:8610-6208189

激光光散射技术和应用 近年来,光电子和计算机技术的飞速发展使得激光光散射已经成为高分子体系和胶体科学研究中的一种常规的测试手段。现代的激光光散射包括静态和动态两个部分。在静态光散射中,通过测定平均散射光强的角度和浓度的依赖性,可以得到高聚物的重均分子量M w,均方根回旋半径R g和第二维利系数A2;在动态光散射中,利用快速数字相关器记录散射光强随时间的涨落,即时间相关函数,可得到散射光的特性弛豫时间τ,进而求得平动扩散系数D和与之对应的流体力学半径R h。在使用过程中,静态和动态光散射有机地结合可被用来研究高分子以及胶体粒子在溶液中的许多涉及到质量和流体力学体积变化的 过程,如聚集和分散、结晶和溶解、吸附和解吸、高分子链的伸展和卷缩以及蛋白质长链的折叠,并可得到许多独特的分子量参数。 一、光散射发展简史: Tynadall effect(1820-1893) 1869年,Tyndall研究了自然光通过溶胶颗粒时的散射,注意到散射光呈淡淡的蓝 色,并且发现如果入射光是偏振的,这散射光也是偏振的。Tyndall由此提出了19 世纪气象学的两大谜题:为什么天空是蓝色的?为什么来自天空的散射光是相当偏 振的? James Clerk Maxwell (1833-1879) 解释了光是一种电磁波,并正确地计算出光的速度。 Lord Rayleigh(1842-1919) 1881年,Rayleigh应用Maxwell的电磁场理论推导出,在无吸收、无相互作用条件下,光学各向同性的小粒子的散射光强与波长的四次方成反比。并解释了蓝天是太阳光穿透大气层所产生的散射现象。 Abert Einstein(1879-1955) 研究了液体的光散射现象。 Chandrasekhara V.Raman (1888-1970) 1928年,印度籍科学家Raman提出了Raman 效应(也称拉曼散射),即光波在被散射后频率发生变化的现象。 Peter Debye(1884-1966) 延续了 Einstein的理论,描述了分子溶解于溶剂中所产生的光散射现象,提出用Debye plot 。1944 年,Debye利用散射光强测得稀溶液中高分子的重均分子量。 Peter Debye Lord Rayleigh Tyndall effect

动态光散射

动态光散射原理-Dynamic Light Scattering (DLS) 动态光散射(DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位等的能力。因此,被广泛地应用于描述各种各样的微粒系统,包括合成聚合物(如乳液、PVC、等等),水包油、油包水型乳剂、囊泡、胶束、生物大分子、颜料、染料、二氧化硅、金属溶胶,陶瓷和无数其他胶体悬浮液和分散体。美国PSS粒度仪Nicomp380系列,就是采用的这种检测原理。 动态光散射:扩散的影响 经典的光散射测得的是平均时间散射光强度,认为散射强度与时间没有关系,实际上光散射强度是随时间波动的,这是由于检测点内不同的粒子发出的不同的光波相干叠加的或“重合”的结果,这个物理现象被称为“干涉”。每个单独的散射波到达探测器时建立一个对应入射激光波的相位关系。在光电倍增管检测器前方的一个狭缝处相互混合发生干涉。光电倍增管检测器在一个特定的散射角(90度角的DLS模块)处测量净散射量。 光的衍射(Diffraction):又称为绕射,波遇到障碍物或小孔后通过散射继续传播的现象.衍射现象是波的特有现象,一切波都会发生衍射现象。 光的散射(Scattering):光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射. 为了更好的理解粒子分散和散射强度中 波动结果的相关性,我们假设只有两个悬浮 粒子存在的简单情况。如图2所示。检测器 (远离散射单元,针孔孔径) 所检测到的净强 度是一个只有两个散射波叠加的结果。在图 2中,我们定义了两个光路长度、 L1 = l1a + l1b 和 L2 = l2a + l2b。(更准 确地说,折射光折射率会影响光程。但为了 简单起见,我们假设折射率为1.0,这样光程 L1和L2是就可以简化为图2所示)。 当两个粒子所处的位置恰好使两个散射图2:简化的散射模型:两个扩散粒子 波在到达探测器时?L = L1 - L2刚好等于激 光的波长λ整数倍时,两个散射光波就会增强。这就是常说的“相长”干涉,在探测器内产生最大可能的强度。还有一种极端,你有可能发现两个粒子位置是这样的;?L等于半波长λ/ 2的奇数倍。在这种情况下,两个散射波到达探测器时彼此完全抵消。这完全是“相消”干涉,由此产生的净强度为零。随着时间的推移,粒子的扩散将导致探测器接收到的净强度在这两个极端值之间波动——就像一个典型的“噪音”信号。如图3所示,为一个具有代表性的总信号强度。当光程在受到半波长λ/ 2(增加或减少)的影响时。信号强度会在最大值和最小值之间变化。真正构成DLS粒子粒径测量的关键物理因素就是是图3所示的——波动随时间的表现取决于粒子的大小。

动态规划基本原理

动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析,

有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10, 所以A到D的最短距离是10,最短路径是A→B1→C2→D。 二、动态规划的术语 1.阶段 把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k 表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。 在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。 2.状态 状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。 在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。 过程的状态通常可以用一个或”一组数”来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。 当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。 3.无后效性 我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发

城市规划基本原理学习笔记纯手打

* 第一章 城市与城市发展 城市的产生: 1、城市最早是政治统治、军事防御和商品交换的产物,城指军事防御产生的,市指商品交换产生的 2、城市是生产力发展、社会剩余产品交换和争夺、社会分工和产业分工的产物 3、城市是伴随着私有制和阶级分化,在原始社会向奴隶制社会过度时期出现的 4、世界最早的城市出现在我国的黄河中下游、埃及的尼罗河下游、西亚的两河流域,都是农业发达较早的地区 [ 5、城市一直被认为是人类文明的象征 6、城市是社会经济发展到一定历史阶段的产物,是技术进步、社会分工的结果 城市产生的定义:是社会经济发展到一定阶段的产物,具体说是人类第三次社会大分工的产物。 城市聚集的定义:城市的本质特点是聚集,高密度的人口、建筑和信息是城市的普遍特征。 当前所获得的共识:城市是非农业人口集中,以从事工商业等非农业生产活动的居民点,是一定地域范围内社会、经济、文化活动的中心,是城市内外各部门、各要素有机结合的大系统。

城市的基本特征: 1、城市的概念是相对存在的 ' 2、城市是以要素聚集为基本特征的 3、城市的发展是动态变化和多样的 4、城市具有系统性 乡村的基本特征: 1、人的活动、建筑的区域、居住地、生产地等的相对分散是基本特征 2、同一地区的人们生活有明显的同质性 3、大部分生活资料可直接来源于土地 4、社会结构较单一 ¥ 5、能源使用多样 6、如同城市的变化一样,在经济发展和社会变革的驱使之下,乡村在各地也发生着不同程度的变化 城市与乡村的基本区别: 1、聚集规模差异 2、生产效率差异 3、生产力结构差异 4、职能差异 ~

5、物质形态差异 6、文化观念差异 城市与乡村的基本联系 1、他们有着很多不同之处,但仍是一个统一体,不存在截然的界线 2、随着社会经济的发展,以及交通、通信条件的改善与进步,城乡一体化发展的现象愈发明显 3、城乡社会、经济以及景观和聚落都具有连续性 城市与乡村联系的要素: * 1、物质联系 2、经济联系 3、人口移动联系 4、技术联系 5、社会作用与联系 6、服务联系 7、政治、行政组织联系 | 城市社会经济的特点: 1、工业和服务业可称之为非农经济,是城市社会经济的主要特点 2、城市社会的经济形式多样

动态光散射测定

动态光散射测定 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

动态光散射仪测定粒径的操作步骤 BrookhavenBI-200SMlaserlightscatteringspectrometer 该测试可以获得以下实验参数:流体力学粒径 需要准备的样品:一份浓度适宜的样品溶液 1.制样 注意:制样是实验成功的关键;无论是测试瓶、溶剂还是样品溶液都需要进行严格的除尘 处理(通常采用注射器滤膜反复过滤),否则会引入较大的误差。 2.打开光散射仪 打开光源、检测器、恒温循环水的电源,在样品池内放入待测样品。 3.打开软件:BICDynamicLightScatteringSoftware 4.调出测量窗口 (1)将检测器调至“C档” (2)依次调出以下测定窗口 A、在CorrelationFunctions下拉菜单中调出CorrelatorControlWindow B、在Graphs下拉菜单中调出CorrelationFunctionWindow C、在Graphs下拉菜单中调出CountRateHistoryWindow D、在ISDA下拉菜单中调出NNLSWindow E、在ISDA下拉菜单中调出ContinWindow (3)在Windows下拉菜单中点击SmartTile,优化窗口布局 (4)您将得到如下界面 5.设置参数 在左上角窗口点击Dur调出测量时间参数窗口,依据当前的实际情况设置测量时间(如下 图),点击“OK”

在左上角窗口点击M.Bass调出测量基线参数窗口,选择Auto选项(如下图),点击“OK” 在左上角窗口点击Params调出样品参数窗口,按照下图中的方框提示填写相应的值,点击“OK” 注1、如溶剂为非水相体系,请在溶剂选项的下拉框中选择对应的体系(如下图) 注2、如溶剂体系为软件提供的选项之外的情况,请在溶剂选项的下拉框中选择Unspecified,并手动输入相应的粘度和折光指数(如下图) 在左上角窗口点击Display调出显示选项窗口,按照下图点勾,点击“OK” 在左下角CF窗口点击Scale,在弹出的窗口中按照下图勾选ShowFit,然后在下面点选NNLS或Contin,点击“OK” 6.检测器设置:孔径选择100或200,波长根据激光源选择。 注、孔径选择使检测光强在50KCPS~500KCPS左右。如选择100,检测光强仍过强,考虑通过中密度滤光轮衰减入射光功率或者对样品进行稀释。 7.测定 (1)点击主界面左上方的绿色圆形图标开始测试 (2)测试结束(如下图) (3)NNLS/Contin结果分析 点击Layout弹出窗口,根据需要选择图像表现形式(如下图) 点击Summary弹出窗口,点CopyForSpreadsheet数据复制(可在EXCEL,TXT文件中处理),点CopyToClipboard进行图像复制(如下图) 8.后续 (1)点击“Clear”可以清除当前的实验数据,开始另一样品的测试 (2)主界面上方菜单“File”?“Database”?可以中调出已测定的样品数据

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

城市规划基础知识和经典理论

城市规划基础知识和经典理论 一现代城市规划理轮的早期探索 1.1898霍华德出版了《明天:通往真正改革的和平之路》为题的论著,提 出了——田园城市。(田园城市的定义:田园城市是为健康,生活以及产业而设计的城市,它的规模能足以提供丰富的社会生活,但不应超过这一程度,四周要有永久性农业地带围绕,城市的土地归公众所有,由委员会受托管理。)它的实质就是城市与乡村的结合。(代表作,世界上的第一座田园城市——莱奇沃思) 2.柯布西埃的现代城市设想。1922年勒.柯布西埃出版了《明天的城市》一 书。(阐述了他从功能和理性主义角度出发的对现代城市的基本认识,从现代建筑运动思潮中所引发的关于现代城市规划的基本构思。)1931年,柯布西埃发表了他的“光辉城市”的规划方案。他认为所有的城市应当是“垂直的花园城市”。(代表作——昌迪加尔) 3.西班牙工程师索里亚于1882年提出了线性城市的理论。(线性城市就是 沿交通运输线布置的长条形的建筑地带,城市不再是一个一个分散的不同地区的点而是由一条铁路和道路干道相串联在一起的,连绵不断的城市 带。) 4.20世纪初法国建筑师戛涅提出了工业城市理论。1917年出版了名为《工 业城市》的专著。(阐述了他关于工业城市的具体设想,其目的在于探讨现代城市在社会和技术进步的背景中的功能组织。戛涅将各类用地按照使用功能划分得非常明确,使它们各得其所,这是工业城市设想的最基本思路。) 上述四条,主要集中在通过新建城市来解决城市中已经存在的问题。他们紧对现有城市的问题进行批判,而没有提出改进的意见。

5.法国巴黎建筑师埃纳于19世纪中叶发表了巴黎改建研究。提出了大城市 改建的一些基本原则。 6.西谛的城市形态研究。(即,在主要广场和街道的设计中强调艺术布局, 而在次要地区则可以强调土地的最经济适用。)现代城市设计之父西谛于1889年出版了《根据艺术原则建设城市一书》。(他通过对城市空间的各类构成要素,揭示了这些设施位置的选择,布置以及交通,建筑群体布置之间建立艺术的和宜人的相互关系的一些基本原则,强调人的尺度,环境的尺度与人的活动以及他们的感受之间的协调,从而建立起城市空间的丰富多彩和人的活动空间的有机构成。) 7.盖达斯的学说。盖达斯于1915年出版《进化中的城市》。(他把对城市 的研究建立在对客观现实研究的基础上,通过周密分析地域环境的潜力和限度对于居住地布局形式与地方经济体系的影响关系,突破了当时常规的城市概念,提出把自然地区作为规划的基本框架。)由此形成了区域规划的思想。盖达斯的名言“先诊断后治疗”,由此形成了影响至今的现代城市规划过程的公式:“调查——分析——规划”。(通过对城市现实状况的调查,分析城市未来发展的可能,预测城市中各类要素之间的互相关系,然后依据这些分析和预测,制定规划方案。) 二现代城市的发展理论 1.城市分散发展理论。 20世纪20年代恩温提出了卫星城理论。(田园城市,卫星城和新城的思想都是建立在通过建设小城市来分散大城市的基础上,但在含以上仍有一些差别,他们应当被看作是同一个概念随着社会经济状况的变化而不断发展深化的结果)

动态光散射的基本原理及现代应用

动态光散射的基本原理及现代应用 电气本132班 张泽明 2013040211 贾东 2013040228 郑欣宇 2013040224

动态光散射的基本原理及现代应用 今天打开了高中时的物理课本,发现很多的知识已经都忘得差不多了。时而一翻,也有一中怀念的感觉。随便翻了一页,看到了这样一个陌生的词汇—动态光散射法,于是打开了电脑,到网上去查阅了一下资料。便写下了这篇论文。 一、什么是动态光散射 动态光散射,也称光子相关光谱,准弹性光散射,测量光强的波动随时间的变化。DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。 二、动态光散射的基本原理 1. 粒子的布朗运动导致光强的波动 微小粒子悬浮在液体中会无规则地运动 布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。 2. 光信号与粒径的关系 光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义。瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关。某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0。根据光学理论可得出光强相关议程。之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关。 大颗粒运动缓慢,小粒子运动快速。如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。附件五显示了大颗粒和小粒子的相关关系函数。可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。最后通过光强波动变化和光强相关函数计算出粒径及其分布。 3. 分布系数 4. 分布系数体现了粒子粒径均一程度,是粒径表征的一个重 要指标。 < 0.05单分散体系,如一些乳液的标样。

动态规划

动态规划的特点及其应用 摘要:本文的主要内容就是分析它的特点。第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。这对我们的解题实践有一定的指导意义。本文介绍了动态规划的基本思想和基本步骤,通过实例研究了利用动态规划设计算法的具体途径,讨论了动态规划的一些实现技巧,并将动态规划和其他一些算法作了比较,最后还简单介绍了动态规划的数学理论基础和当前最新的研究成果。 关键词: 动态规划,阶段 1 引言 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2 动态规划的基本思想 一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解

城市规划原理重点

城市规划原理重点 第二章城市规划学科的产生和发展 【中国古代城市规划】 1、中国古代城市规划理念的演变 ?我国古代城市规划思想最早形成的时代--周代 ?我国古代城市规划思想的多元化时代—春秋战国时期 ?(1)儒家提倡的礼制思想-皇权至上-《周礼.考工记》-统治中国长达3000年-规矩 结构布局:以宫殿为中心组成中轴线构成城市的骨架; 平面布局:以宫城的内城为中心,其外再建外城。 用地布局:功能分区和齐整的道路系统。 ?(2)以管子、老子为代表的自然观-自然至上-"因天材,就地利"-变通 2、案例:1)长安城规划布局特点: 总体布局:总体平面为规整的长方形,中轴对称;宫城居中偏北,宫城之南的皇城,集中布置官府机构及官办手工业作坊与军营。宫城、皇城东西南三面为居住坊里,用城墙分隔,以体现“官民不相参’’的思想。 道路系统: 完整的方格网的棋盘式道路。 宽度极大,纯交通性道路。

分为全市性的干道及坊里内部的地区性道路。 里坊 管制严格,面积大; 在建城时巳划定,然后逐步填满; 坊里中有很多大的府第及寺庙。 商肆 集中设置东市和西市,对称布置。 大小与附近的坊里相同,但内部呈井字形,宽度不大。 市中设有管理机构,管平价、收税及治安。同样的商店,往往集中在一条街上。 2)开封规划布局特点:总体布局 总平面为正方形,但不甚规整,三套城墙。 宫城居正中,为皇室办公、居住服务,城南正门为宣德门是城市中轴线的起点。 内城又称里城,呈不规则方形,主要布置衙署、寺观、民居、商店、作坊等。 最外为罗城,又称外城,呈不规则的方形,主要作防御之用 道路系统 城市道路系统基本上是方格网形,但不对称、不规整。 道路宽度小,主要街道宽40—50m。 道路与商业街相结合。 居住区

静(动)态光散射仪的工作原理

静态光散射功能 对于悬浮于液体中的颗粒,利用Mie散射形成光强与角度的函数关系,从而得到颗粒粒度大小与形状的信息。 对于高分子溶液,光强与角度、浓度形成的依赖关系(即浓度依赖性与角度依赖性),利用Zimm图(或其他类似的方法)可以得到以下参数: 1) 绝对重均分子量(Mw) 2) 第二维里系数(A2) 3) 均方根回旋半径(Rg) 4) Zimm, Berry和Debye曲线 2. 静态光散射应用领域 1) 石油化工:包括PS、PMMA等等多种聚合物的研究与表征 2) 生命科学:如各种人造组织(合成高聚物)的研究与改性 3) 生物医学:蛋白质、多肽,及多糖等的研究和表征 4) 环境化学:絮凝方面的研究 产品:zeta电位、便携式示波表、碳硅分析仪、电子温湿度计、污水处理设备、FLUKE钳表、微机继电保护测试仪、浊度仪、无转子硫化仪、微量水分测定仪、经济型数控机床等。

动态光散射仪的工作原理 动态光散射技术(dynamiclightscattering,DLS)是指通过测量样品散射光强度起伏的变化来得出样品颗粒大小信息的一种技术。之所以称为“动态”是因为样品中的分子不停地做布朗运动,正是这种运动使散射光产生多普勒频移。动态光散射技术的工作原理可以简述为以下几个步骤:首先根据散射光的变化,即多普勒频移测得溶液中分子的扩散系数D,再由D= KT/6πηr可求出分子的流体动力学半径r,(式中K为玻尔兹曼常数,T为绝对温度,η为溶液的粘滞系数),根据已有的分子半径-分子量模型,就可以算出分子量的大小。 光在传播时若碰到颗粒,一部分光会被吸收,一部分会被散射掉。如果分子静止不动,散射光发生弹性散射时,能量频率均不变。但由于分子不停地在做杂乱无章的布朗运动,所以,当产生散射光的分子朝向监测器运动时,相当于把散射的光子往监测器送了一段距离,使光子较分子静止时产生的散射光要早到达监测器,也就是在监测器看来散射光的频率增高了;如果产生散射的分子逆向监测器运动,相当于把散射光子往远离监测器的方向拉了一把,结果使散射光的频率降低。日常生活中,但我们听到救护车由远而近时,声音的频率越来越高,也是同样的道理。实际上我们可以根据声音频率变化的快慢来判断救护车运动的速度。 光散射技术就是根据这种微小的频率变化来测量溶液中分子的扩散速度。由D=KT/6πηr可知,当扩散速度一定时,由于实验时溶剂一定,温度是确定的,所以扩散的快慢只与流体动力学半径有关。蛋白质多方面的性质都直接和它的大小相关。因此,光散射广泛应用与蛋白质及其它大分子的理化性质研究。 动态光散射技术的优点: 1.样品制备简单,不需特殊处理,测量过程不干扰样品本身的性质,所以能够反映出溶液中样品分子的真实状态; 2.测量过程迅速,而且样品可以回收利用; 3.检测灵敏度高,10kD蛋白质,浓度只需0.1mg/mL,样品体积只需20-50μL即可;4.能够实时监测样品的动态变化。 二、动态光散射技术的应用 溶液中的颗粒物质(如生物大分子、高分子聚合物、胶束等),其颗粒大小的变化往往可以反应出某些性质方面的变化。由于光散射实际上是首先 通过测量大分子物质的扩散系数,进而推导出其它参数。所以,光散射不仅可以用来进行静态测量,还可以检测一些动态过程的变化。 下面以大家熟悉的生物学中的几个具体实例来介绍动态光散射技术的应用。 1.测定蛋白质分子的均一性

动态规划的基本概念

动态规划的基本概念 基本概念 设我们研究某一个过程,这个过程可以分解为若干个互相联系的阶段。每一阶段都有其初始状态和结束状态,其结束状态即为下一阶段的初始.状态。第一阶段的初始状态就是整个过程的初始状态,最后一阶段的结束状态就是整个过程的结束状态。在过程的每一个阶段都需要作出决策,而每一阶段的结束状态依赖于其初始状态和该阶段的决策。动态规划问题就是要找出某种决策方法, 使过程达到某种最优效果。 这种把问题看作前后关联的多阶段过程称为多阶段决策过程, 可用图9.1表示。下面介绍动态规划的术语和基本概念。 (l)阶段 把所研究的过程恰当地分为若干个互相联系的相对独立过程。 (2)状态变量 用来描述系统所处状态的变量称为状态变量。通常用s k 表示第k 阶段的初始状态,则s k +1表示第k 阶段结束时(也就是第k+l 阶段开始时)过程的状态。 通常要求状态变量具有无后效性, 即过程在第k 阶段以后的变化只与该阶段结束时的状态有关, 而与系统如何到达此状态的过程无关。 (3)决策变量的状态转移方程。系统在第k 阶段中的变化过程, 通常我们并不关心,但我们希望知道该阶段的初始状态与结束状态之间的关系。我们用以影响该系统的手段,也用一个变量x k 表示,称为决策变量, 则第k 阶段结束时的状态s k +1是决策变量x k 和初始状态s k 的函数, 即 s k +1=T (s k ,x k ) (9-1) (9-1)称为状态转移方程。 (4)权函数 反映第k 阶段决策变量x k 的效益函数W k (s k ,x k ) 称为权函数。 (5)指标函数 判断整个过程优劣的数量指标称为指标函数。当第k 阶段初始状态为s k 时,设我们在此阶段及以后各阶段均采取最优策略时,所获得的效益为f k (s k ), 那么有 ))}(),,(({)(11++∈=k k k k k k D x k k s f x s W F opt s f k k (9-2) 其中opt 表示最优,按具体问题可取为max 或min , D k 是决策变量x k 的定义域;F k 是某一个函数; s k +1=T (s k ,x k ). 图9.1

光散射原理及其应用上课讲义

光散射原理及其应用

安徽大学 本科毕业论文(设计、创 作) 题目: 光散射原理及其应用 学生姓名:彭果学号:B21114051 院(系):物理与材料科学学院专业:光信息科学与技术入学时间:二〇一一年九月 导师姓名:喻远琴所在单位:安徽大学物理与材料科学学院完成时间:二〇一五年六月

光散射原理及其应用 彭果 (安徽大学物理与材料科学学院,安徽合肥 230061) 摘要:光通过不均匀物质时朝四面八方散射的现象称为光散射。本文 首先简要阐述了光散射的原理和分类;然后运用光散射的知识解释了 一些生活中常见的大气现象,例如蓝天、白云、朝霞、晚霞以及夕阳 等;最后介绍了光散射在医疗和摄影等方面的应用。 关键词:光散射,瑞利散射,拉曼散射,偏振 Light scattering principle and application Pengguo (School of Physics & Material Science, Anhui University, Hefei 230061, China) Abstract: Light scattering by the light passing through the inhomogeneous material is called light scattering. In this paper, the principle and classification of optical scattering are briefly introduced. Introduces the application of light scattering in the phenomenon of life, and the application of light scattering in medical treatment, photography, etc Key words: Light scattering and Rayleigh scattering, Raman scattering, polarization 晚霞满天,一片又一片的火烧云,把天空织成美丽的锦缎,真是一幅绮丽的奇景,晚霞有多少种颜色?红色,黄色,金色,紫色,蓝色,或许还有别的颜色。这是小学语文课文的《火烧云》,火烧云的形成其实包含了光散射的原理。在生活中光散射的现象随处可见,蓝天、白云、晓霞、彩虹、雾中光的传播等等常见的自然现象中都包含着光的散射现象。 随着科技的发展,光散射在各个科学技术部门中有广泛应用。例如,根据胶体体系中光散射理论,光散射可用于判断溶胶还是分子液体,照相补光,利用共振光散射法做DNA的定量分析,基于光散射流式细胞仪的广泛应用,瑞利光散射光谱法研究牛血红蛋白与镝(Ⅲ)的相互作用等,复杂结构光散射的射线跟踪方法及其应用。光散射的应用在生活中的各方面都有重要意义。

相关文档
相关文档 最新文档