文档库 最新最全的文档下载
当前位置:文档库 › 高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用
高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用

摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。

关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析

1高炉渣处理工艺与综合利用

高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。

1.1高炉渣的化学成分

高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1

表 1 高炉渣的化学成分

高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。

1.2国内外高炉渣处理工艺概况

1.2.1 水淬粒化工艺

水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

量的硫化物,污染地下水源,渣粒研磨前必须干燥,能源消耗大,消除污染投资大,循环水系统的磨损大。

(1)底滤法

底滤法是在冲制箱内用多孔喷头喷射的高压水对高炉渣进行水淬粒化,然后进入沉渣池。沉渣池中的水渣由抓斗抓出堆放在干渣场继续脱水,沉渣池内的水及悬浮物由分配渠流入过滤池。过滤后的冲渣水经集水管由泵加压送入冷却塔冷却后重复使用。滤池的总深度较低;机械设备少,施工、操作、维修都较方便;循环水质好,水渣质量好;冲渣系统用水可实现100%循环使用,没有外排污水,有利于环保。其缺点是占地面积大,系统投资也较大。(2)因巴法

因巴法是由卢森堡PW公司和比利时西德玛公司共同开发的炉渣处理工艺,1981年在西德玛公司投入运行。因巴法分为热因巴、冷因巴和环保型因巴三种类型。其流程是: 高炉熔渣由熔渣沟流人冲制箱,经冲制箱的压力水冲成水渣进人水渣沟,然后经滚筒过滤器脱水排出。该法布置紧凑,可实现整个流程机械化、自动化,水渣质量好;冲渣水闭路循环,泵和管路的磨损小;无爆炸危险,渣中含铁量高达 20%时,该系统还能安全地进行炉渣的粒化;彻底解决烟尘、蒸汽对环境的污染,达到零排放的目标。该法因其为引进技术,故投资费用大。

(3)图拉法

图拉法首次在俄罗斯图拉厂2000m 3 高炉上应用,故称其为图拉法。该法与其他水淬法不同,在渣沟下面增加了粒化轮,炉渣落至高速旋转的粒化轮上,被机械碎、粒化,粒化后的炉渣颗粒在空中被水冷却、水淬,产生的气体通过烟囱排出。该法最显著特点是彻底解决了传统水淬渣易爆炸的问题。熔渣处理在封闭状态下进行,环境好;循环水量少,动力能耗低;成品渣质量好。

(4)拉萨法

拉萨法为英国RASA公司与日本钢管公司共同开发的炉渣处理工艺。该法炉渣处理量大、水渣质量较好,技术上有一定进步。但该法因工艺复杂、设备较多、电耗高及维修费用大等缺点,在新建大型高炉上已不再采用。

1.2.2干式粒化工艺

干式粒化工艺是在不消耗新水情况下,利用高炉渣与传热介质直接或间接接触进行高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的式处理工艺。干式粒化法包括风淬法、滚筒转鼓法、离心粒化法。20世纪70年代国外就开始研究此法,但目前尚无一种真正实现工业化。干式粒化工艺对钢铁厂节能和环保所产生的效益是巨大的,它有以下明显优势:高炉渣显热可有效收。据国外有关资料介绍,只要合理调节冷空气的比例,干式粒化法的冷却空气可被加热到400~600℃。投资费用低,工艺操作简单,节约大量的水,同时减少了爆炸的可能性。干式成粒的高炉渣质量好、强度高,是生产水泥的优质原料。由于无需对高炉渣进行干燥,可以减少环境污染,节约能源。

(1)风淬法

Mitsubishi和NKK建立了专门进行高炉渣热量回收的工厂,将液态渣倒入倾斜的渣沟中,渣沟下设鼓风机,液渣从渣沟末端流出时与鼓风机吹出的高速空气流接触后迅速粒化并被吹到热交换器内,渣在运行过程中从液态迅速凝结成固态,通过辐射和对流进行热交换,渣温从1500 ℃降到1000 ℃。渣在热交换器内冷却到300℃左右后,通过传送带送到储渣槽内。高炉渣经球磨后可作水泥厂原料,其各项性能参数均比水冲渣好,热回收率可达40%~45%。但因其用空气作为热量回收介质,故所需空气量大,鼓风机能耗高。日本在高温熔渣风淬粒化和余热回收方面研究深入,已有工业应用的先例。风淬与水淬相比冷却速度慢,为防止粒化渣在固结之前粘附到设备表面上,就要加大设备尺寸,存在设备体积庞大、结构复杂等不足。此外,风淬法得到的粒化渣的颗粒直径分布范围较宽,不利于后续处理

(2)滚筒转鼓法

日本NKK采用的另一种热回收设备是将熔融的高炉渣通过渣沟或管道注人到两个转鼓之间,转鼓中通入热交换气体(空气),渣在两个转鼓的挤压下形成一层薄渣片并粘附到转鼓上,薄渣片在转鼓表面迅速冷却,热量由转鼓内流动空气走。热量回收后用于发电、供暖等。其缺点是薄渣片粘在转鼓上需用耙子刮下,工作效率低,且设备的热回收率和寿命明显下降,所得冷渣以片状形式排出会影响其继续利用。滚筒法与内冷双滚筒法主要差别是当渣流冲击到旋转着的单滚筒外表面上时被破碎(粒化),粒化渣再落到流化床上进行热交换,可以回收50%~60%的渣显热。该方法属于半急冷处理,所得产品是混凝土骨料。住友金属的单滚筒工艺破碎粒化熔渣的能力低,渣粒的粒径分布范围大,与换热介质的换热面积小,换热效率低,粒化渣玻璃体含量不足,不能作水泥原料。

(3)离心粒化法

KvaernerMetals发明了一种干式粒化高炉渣热回收法,采用流化床技术,增加热回收率。它是采用一高速旋转的中心略凹的转杯作为粒化器,液渣通过覆有耐火材料的流渣槽或管道从渣沟流至转杯中心。当转杯旋转到一定速度时,液渣在离心力作用下从转杯的边缘飞出,粒化成粒。液态粒渣运行中与空气热交换至凝固,并打在冷却水管的设备内壁上,冷却水将一部分热量带走。凝固后的高炉渣继续下落到设备底部,凝固的渣在位于底部的流化床内与空气进一步进行热交换,热空气从设备顶部回收。这种设备可将渣均匀粒化并充分热交换,其处理能力可达到6t/min ,盘子转速为1500r/min ,以空气为热交换介质,其资源丰富、制取简单。但只用空气冷却,耗气量大,动力消耗亦大。离心粒化法比其他干式粒化方法更有效,设备简单,动力消耗小,处理能力大,适应性好,产品粒度分布范围窄,而且这种方法易于在实验室进行小规模实验以确定各种工艺参数。在实验中,当转杯转速为3000r/min,熔渣流量为2t/min时,所需要的电机功率约为12~15kW,能耗大大低于风淬粒化。若将离心粒化和风淬法相结合,利用机械力和风力同时破碎熔渣,可以避免设置专门的高压造粒风机,减少动力消耗并降低风量。

1.2.3化学法

化学粒化工艺是将高炉渣的热量作为化学反应的热源回收利用。其工艺流程是先使用高速气体吹散液态炉渣使其粒化,并利用吸热化学反应将高炉渣的显热以化学能的形式储存起来,然后将反应物输送到换热设备中,再进行逆向化学反应释放热量。参与热交换的化学物质可以循环使用。通过甲烷(CH4)和水蒸汽( H 2O)的混合物在高炉渣高温热的作用,生成一定的氢气(H 2)和一氧化碳 (CO)气体,通过吸热反应将高炉渣的显热转移出来,其化学反应式如下:

CH 4(g)+H 2 O(g)=3H 2 (g)+CO(g)

此反应所需热量来自于液渣冷却成小颗粒时放出的热量。用高速喷出的CH 4和 H 2 O混合气体对液渣流进行冷却粒化,二者进行强烈的热交换,液渣经破碎和强制冷却后粒化成细小颗粒,生成的气体进人下一反应器,在一定条件下氢气和一氧化碳气体反应生成甲烷和水蒸汽,放出热量。高温甲烷和水蒸汽的混合气体经热交换器冷却,重新返回循环使用,其化学反应式如下:

3H 2(g)+CO(g)=CH 4(g)+H 2 O(g)

热量经处理后可供发电和高炉热风炉等使用。在回收热量过程中因其伴随化学反应,故热利用率较低。

2转炉渣综合利用

转炉钢渣是转炉炼钢过程中产生的废渣,主要来源于铁水与废钢中所含元素氧化后形成的氧化物,金属炉料带入的杂质,加入的造渣剂(如石灰石、萤石、硅石) 、氧化剂、脱硫产物和被侵蚀的炉衬材料等。根据中国冶金报统计,2010年世界粗钢产量为14.14 亿t,中国粗钢产量为6.2665亿t、排放的转炉渣量约7000万t。当前国内积存的转炉钢渣已有2亿t 以上。目前,转炉渣在我国尚未实现真正意义上的完全利用,其利用率中的大部分是建筑回填与道路基础。

2.1 转炉渣的利用历史

20世纪70年代前,世界各钢铁企业对转炉渣利用的主要目的是回收其中的金属铁,尾渣多弃置,因产钢量较小,转炉渣对环境和生态带来的影响尚未引起人们的足够重视。此后,伴随冶金技术的日新月异,一些西方经济发达国家钢产量大幅上升,尤其是当时的冶金大国日本,大工业的冶金生产带来的环境与生态问题凸显。世界第二次石油危机以后,日本进行了产业结构重组和调整,冶金工业由此开始向“资源节约型”与“生态友好型”方向发展。为此,解决包括转炉渣资源化在内的各类冶金二次资源利用问题,开始被逐步纳入政府管理的政策与法规范畴内,各冶金企业纷纷成立冶金渣利用研究所或相应的机构,可以认为,这是真正意义上对转炉渣规模化利用的开始,或称转炉渣利用的第一阶段。而我国钢铁企业建立转炉渣规模化利用研究机构并引起政府层面的的关注与干预,则在本世纪初,晚于西方20 多年。

在转炉渣规模化利用初期,基本采用的是未加处理的粗放式直接利用,在含铁组分回收后,尾渣大都用于建筑回填、铺路、填海造地等。后来发现,一些用于建筑领域的利用技术

实施后问题很多,甚至事故频发,以致转炉渣大宗量规模化利用技术长时间难以突破。一直到20世纪80年代,对转炉渣的利用技术,无论国内、国外,均无重大进展,规模化利用的模式并未建立。一些西方国家政府不得已开始采用对企业进行补贴的负经济效益方式加以利用,以解决其带来的环境污染问题。其主要原因在于:此前的很多基础研究多致力于熔渣的冶金性能,关注其冶金功用,而对凝渣本身的物理化学特性及资源化利用过程中的行为等均不清楚,相关基础研究非常薄弱,很多今天看来是显而易见的道理,在当时却困惑了冶金、环境乃至材料方面的专家多年。由于认识不清,致使转炉渣大宗量、高效利用的技术长时间无法突破。20世纪80年代以后,关于转炉渣碱度高、自由氧化钙高、亚稳相多( 因快冷过程相的非平衡演化导致),以及其时效分相导致氧化钙游离及结构的重组与破坏等,这些带有本质性的系列问题才基本清晰。

2.2 转炉渣利用技术

2.2.1 转炉渣“稳定化”预处理技术

为解决上述转炉渣利用问题,人们认识到:转炉渣组成与物性的不合理,使其无法直接利用,只有将转炉渣出炉后先进行预处理,预处理好的渣一方面利于其中含铁组分的回收,另一方面要保证其组成与结构的基本稳定。具体包括:首先将出炉渣进行预处理,或“稳定化”处理,其主旨是预先消除或消解以自由及游离氧化钙为主的亚稳相,使转炉渣在被利用前组成与结构基本稳定,并利于渣、铁分离。其次,将预处理好的转炉渣依据需要,进行资源化利用。为此,相继开发出转炉渣的多种预处理技术,如热泼法、热闷法、盘泼法、滚筒法、风碎法等。这类可称之为两步法的转炉渣利用技术,一直延续到今天,并仍起着主导作用。这类渣处理技术的出现及发展,是转炉渣利用第二阶段的本质标志。一些代表性的渣预处理技术,各有特色与利弊。

(1)钢渣预热自解热闷法

此法是较早开发的转炉渣预处理技术,也是国内钢企最早采用及引进的处理工艺。原理是将出炉渣置于可封闭罐内,利用出炉渣自身的显热与潜热,喷水对其作用,产生带压蒸汽,从而对钢渣强行“消解”。对欲处理钢渣没有特殊要求,钢渣消解较彻底,渣铁易于分离,回收铁组分后的尾渣矿物组织比较稳定、均匀,利于后续粗放式利用。缺点是,间歇性处理,处理效率很低,占用处理场地大,处理时间偏长,综合处理成本偏高,安全性控制要求也较高。正因为如此,该工艺不太适合钢产量大的企业,所以前些年一些企业在产能扩张后,摒弃了该工艺。

(2)水淬法

液态高温渣在流出、下降过程中,被压力水分割、击碎、速凝,在水幕中进行粒化。水淬工艺会因炼钢设备工艺布置、排渣特点不同而不同。如盘泼—水淬法,滚筒—水淬法等。盘泼法优点是:用水强制快速冷却,处理时间短,生产能力大;处理过程粉尘少;钢渣粒度小,可减少破碎、筛分的工作量,便于金属料回收;钢渣游离氧化钙含量较低,改善了钢渣的稳定性,有利于综合利用。缺点是:设备投资比较大;处理过程蒸汽直接排放量较大,对

厂房和设备寿命有一定影响;操作工艺比较复杂;对钢渣的流动性有一定要求,粘度高、流动性差的钢渣不能用该方法处理。目前宝钢股份公司使用浅盘法。

滚筒水淬法是将熔渣以适宜流速进入滚筒,在离心力和喷淋水作用下,熔渣被水激散并凝成小块而被收集。在滚筒内同时完成冷凝、破碎及渣、钢分离。宝钢经过多年探索,将1995年从俄罗斯拉乌尔钢铁公司引进的滚筒技术进行了多项改进,成功应用于宝钢、马钢等企业。改进后技术兼具工艺简化、流程短、设备布局紧凑、占地小等优点。

水淬法目前是我国采用较多的方法之一。该类方法优点是,处理量大、效率较高,处理后的钢渣游离氧化钙较低、粒化较为均匀且粒度分布较为理想,自由氧化钙消解也较为理想,渣中铁较少氧化,多以二价铁或金属铁存在,利于后续磁选分离。缺点是,对渣流动性要求较高,因冷却速度快,凝渣的相析出经历淬冷的非平衡演化完成,因此其结构内应力较大,化学活性相对较高,并存在时效相变的潜在机制。

(3)风碎法( 钢渣风碎粒化技术)

将出炉熔渣倒入中间罐,运到风淬装置处进行处理。处理时,熔渣流被高速喷出气流打碎并呈抛物线运动,最终落入水池并被捕集。用于风碎的气体可以是空气、惰性气体或高压蒸汽等,被加热的气体可通过另外热交换装置进行热量回收。该法处理获得的渣粒粒径较小、粒径分布范围较窄,此法处理的渣冷凝速度最快,自由氧化钙消解也最为彻底,各晶相分布均匀,晶粒非常细小。颗粒硬度较大,相对其他处理方式,凝渣的结构内应力最大,往往会在一周内或稍长时间出现时效相变与结构重组,重组后的主晶相主要是硅酸二钙,且晶粒变大。用该法处理转炉熔渣,如采用不同的气体做风碎介质,得到的凝渣微粒在性能上存在较大差异。如以空气或纯氧为介质,熔渣氧化剧烈,凝渣中铁以三价铁为主,后续铁组分基本无法磁选回收,因此铁损较大。如以氮气为介质,则凝渣中铁以二价铁为主,并有少量金属铁与之共存,经时效相变后可磁选部分回收金属铁。采用风碎工艺处理时,同样要求钢渣有良好的流动性与低粘度。日本福山制铁所最早开发并采用风碎法,回收预热。我国马钢1988 年开发出同类技术,而后在成都钢铁厂(1991年)开始初步应用,以氮气为载气,马钢则于2007年投入运行,以压缩空气为载气。

2.2.2 转炉渣的应用

(1)转炉渣在筑路方面的应用

转炉渣作为道路建筑集料,美国和日本等认为转炉渣集料力学性能较轧制碎石好,不但耐磨,而且具有一定的水化活性,适合作为沥青混合料骨料和基层集料,并制定了转炉渣道路集料的技术标准和施工规范。2009 年,美国副产转炉渣产量680万t,其中约20%用于沥青混凝土集料;德国副产转炉渣约700万t,其中95%被用作道路集料。国内转炉渣集料的研究虽取得了一定成果,但研究的不够系统,并且由于各个钢厂原材料的矿物成分和冶炼工艺不尽相同,排放的转炉渣成分也有所区别,因此成果不能在各个地区通用。马钢、武钢和柳钢做了许多有益的尝试,但均未能在在国内实现大规模应用。宝钢经过不懈努力,终于成功地开发出彩色转炉渣混凝土路面砖,在2010年上海世博会中大显身手,60%以上的透

水和透气路面均使用此砖。鉴于中国公路人均里程数较低的现状和今后数年内公路建设高速增长的态势,道路建设中的路基和路面材料仍是转炉渣大宗量应用的一个重要领域。但目前借助冷却介质进行稳定化处理的转炉渣应用于道路建设材料、特别是路面材料,其时效稳定性仍难以满足高质量工程的要求。问题的关键是转炉渣的资源禀赋较低所致。

(2)转炉渣作为钢渣微粉的应用

将转炉渣磨细为符合应用规定的钢渣微粉并掺和在水泥中应用,已成为国内外研究与应用的一个热点。孙家英等以无熟料转炉渣水泥(熟料用量≤5%)代替普通硅酸盐水泥,发现无熟料转炉渣水泥可以提高水泥稳定再生集料的延时强度。杨杨等采用高温煅烧石膏激发转炉渣的活性,制得了强度达到42.5的转炉渣无熟料水泥,其安定性和膨胀性均符合国家标准。王玉吉等研究转炉渣及其在水泥应用中的胶凝性问题,取得一定的效果。国内一般认为转炉渣在生料中的掺量以10%~15%为宜,但也有专家认为掺量可达20%~30%。与用作筑路材料相比,转炉渣微粉的附加值相对较高,但仍属大宗量低附加值利用的范畴。随着转炉渣处理技术的发展,我国主要钢铁企业均将转炉渣微粉作为转炉渣大宗量利用的方向之一。然而,应该看到,目前转炉渣微粉的规模化利用受到两大因素制约: ①以介质冷却为主导的转炉渣稳定化处理技术无法彻底解决组织稳定性差以及组分不合理问题,所以其只适合于工程质量要求较低的项目,发展空间因此受到制约;②转炉渣自身成分波动较大,加之采用的是非平衡变化处理过程,其组织与结构性能波动也很大。会因冶炼时间、地点不同,所炼钢种不同,入炉原料组成波动或种类、配料不同等诸多影响因素的不确定,而很难实现对转炉渣成分、组织性能实现稳定化、均匀化的有效控制,进而在对其进行大宗量利用时就很难实现对其质量实现稳定化、标准化控制。所以,中国目前正在制定用于混凝土的《钢铁渣粉》的国家标准,力图通过“标准”来实现对质量的控制,但实际上很难做到,这就给钢渣微粉未来的规模化利用打上了问号。所以,转炉钢渣微粉作为水泥掺和料加以利用,同样存在其资源禀赋不理想的问题。

(3)转炉渣的内部循环利用

内部循环是钢铁企业一直重视和普遍采用的转炉渣利用方式。转炉渣作冶炼熔剂返回烧结工序,可以回收转炉渣中钙、镁、锰、钒、铁的氧化物和稀有元素等成分,能大量节约石灰石、萤石等造渣剂用量,降低焦比,提高利用系数,降低成本。因此,世界上几个产钢大国一直坚持转炉渣返回做熔剂,而且占转炉渣资源化综合利用的比例较大,目前美国把转炉渣配入烧结和高炉等再利用,利用率大约为56%,德国约为24%,日本19%,但磷元素的循环富集限制了其大比例利用。转炉渣中含有大量的Fe(约20%左右)及他有用组分,若其外部循环必然造成这些金属资源的极大浪费;若其内循环则受制于转炉渣中较高的磷含量,因此,转炉渣脱磷一直是钢铁企业普遍关注的问题。目前,国内外尚没有可靠的、经济的和适合产业化推广的转炉渣脱磷技术。以往的技术或者成本太高(如高温还原法),或者脱磷率低(如选矿法),其原因在于这些方法没有针对转炉渣中的磷的富集状态而采取针对性技术措施。

近年来出现的转炉渣改性技术着眼于转炉渣组织的重构以提高其资源禀赋,有望从磷富集和分离的角度解决这一难题。宝钢的产品质量在国内同行业中居于领先地位,转炉渣用于内部循环的技术开发则显得尤为重要。因此,着力研发基于热态转炉渣改性处理的磷富集和分离技术,对提高转炉渣内循环利用比例、有效回收转炉渣中的Fe等有价组分,具有重要的意义。

(4)转炉渣制备微晶玻璃

利用废渣制备微晶玻璃起于高炉渣。1959年,前苏联学者最先在实验室制备成功。欧美、日本等国对废渣微晶玻璃的工艺技术进行了改进,解决了废渣微晶玻璃化的一些关键性技术问题。与国外相比,我国转炉渣微晶玻璃应用研究起步较晚,利用高炉渣、矿渣和尾矿制备微晶玻璃也取得了一定的成绩。但与高炉渣、矿渣和尾矿相比,转炉渣应用性能更差,制备微晶玻璃难度更大,国内外报道不多。利用转炉渣制备的微晶玻璃具有很高的耐磨性、轻质高强、很好的热性能和化学耐腐蚀性能等,可以代替铸石和陶瓷用作建筑材料、装饰材料和化工机械材料等,市场容量非常可观,是转炉渣高附加值利用领域之一。但是,转炉渣具有化学成分复杂(尤其铁的含量很高)、熔化温度高和晶化时间长等特点,用其制备微晶玻璃的工艺相对复杂,成本高,制成的微晶玻璃颜色较深,应用范围较窄,因此目前转炉渣在制备微晶玻璃中的利用比例一直很低。但是,转炉渣用来替代现有原料制备微晶玻璃的市场前景是巨大的。其关键是如何低成本解决转炉渣中铁分离、降低熔化温度和控制晶化时间的问题,而这些问题均涉及转炉渣资源禀赋的改善。通过转炉渣的热态改性技术,选择合适的改性剂对渣中的物相构成进行重构,可以从根本上改善转炉渣的资源禀赋,使其适合微晶玻璃的生产。因此,热态转炉渣改性,将是转炉渣用于微晶玻璃制备领域最合适的技术。(5)转炉渣高附加值利用

转炉渣的高附加值利用是近年来转炉渣利用研究新出现的热点。该类研究针对转炉渣含有多种有价组分的特点,或将其材料化制备具有特定功能的材料,如利用其制备锂离子电池阳极材料、制备水处理剂。这类研究将有效拓展转炉渣高附加值利用的途径,大大提升其利用的附加值,但困难依然是如何解决转炉渣低资源禀赋的瓶颈问题。

综上,在两步法主导的现行转炉钢渣利用模式下,开拓了转炉渣很多利用途径,也取得了很多瞩目的成果,在一定规模上实现了转炉渣的有效利用。但也毋庸讳言,转炉渣真正意义上的大宗量、高效利用技术至今未能有效突破,尤其在我国超大钢铁产能下,转炉渣的问题处于亟待彻底解决、而又一时无法解决的尴尬局面。除了相关技术基础研究比较薄弱外,现行转炉渣利用模式是导致该局面的主因。尽管转炉渣现行预处理技术多达十几种,但本质都是通过消解预处理解决转炉渣结构稳定问题,而无法赋予转炉渣较好的资源特性,即转炉渣仍然是“劣质资源禀赋”,所以,现行的预处理技术无论如何先进,仍无法、也不可能使转炉渣在低成本、大宗量、多途径利用技术上出现根本性的突破。从这个意义上讲,革新现有转炉渣利用模式的局限,是实现未来转炉渣利用技术突破的关键。

2.3 未来转炉渣利用趋势

目前,以赋予转炉渣较好资源特性为目标的转炉渣热态改性(或余热改性)研究,正成为国内外研究热点。由此构筑开发未来转炉渣利用技术的前沿,并日渐成为主流趋势。可以认为,转炉渣利用由此已逐步进入到第三阶段。未来,传统的转炉渣利用模式将发生根本性的变革,以提升转炉渣的资源特性为主旨,从本质上解决其劣质资源禀赋问题,并向大宗量、多途径、高附加值利用方向发展。与现行预处理技术不同,其特点为:

(1)改性是以提高转炉渣资源禀赋为目的,而不是仅仅考虑改性后渣的结构稳定性与渣铁简单分离问题。

(2)因改性是为获取渣某种用途或赋予其某种资源特性而进行,所以改性方法具多样性与针对性。

(3)渣的结构稳定性可以直接通过改性而较好地解决,因而无需再通过现行水“消解“方式来解决问题。

理论上,好处在于:利于促成转炉渣低成本、大宗量、多途径利用技术的根本性的突破;不足之处:因为针对性强,某些改性方式的普适性和一些利用技术的移植性相对较差。这种以提高转炉渣资源禀赋为主旨的转炉渣热态改性研究国内起步也相对较早,2003年以来,安徽工业大学、宝钢、马钢、北京科技大学等进行过相应的研究或合作,并都取得一些较好的阶段性成果,所以,以赋予转炉渣较好资源特性为目标的转炉渣热态改性(或余热改性)研究,将逐步形成转炉渣利用技术研发的主流趋势,由此构建转炉渣大宗量、多途径、可循环利用的新模式,实现真正意义上的转炉渣高效利用与全部利用,将是转炉渣未来利用的大趋势。

高炉渣余热利用技术的现状及发展趋势 余热发电

高炉渣余热利用技术的现状及发展趋势 摘要: 本文系统的分析了高炉渣湿法与干法处理工艺及其余热利用的国内外现状,简述了底滤法(OCP)、因巴法(INBA)、拉萨法(RASA)、图拉法(TYNA)等典型的水淬法工艺,总结了水淬渣方式存在的诸多弊端,对风淬法、双内冷却转筒粒化法、Merotec 熔渣粒化流化法、机械粒化法、连铸连轧法、化学法等干法处理技术的研究进展和发展现状进行了总结。最后得出结论: 离心粒化等干式余热回收技术在利用高炉渣的高品质热源时,不会造成水资源的浪费, 不会产生硫化氢、二氧化硫等有害气体,在克服水渣法固有缺点的同时,还可以得到玻璃化程度高的高附加值成品渣,是今后高炉渣余热回收工艺的发展趋势。 关键词:高炉渣;余热利用;水淬;干式粒化 1 前言 中国目前是全球最大的钢铁生产国。中国钢铁产量已连续16年保持世界第一,并且遥遥领先于其他国家。同时伴随我国高炉冶炼生产排出的含丰富热能的高炉渣数量也是巨大的,从节能与环保以及提高钢铁厂的经济效益的角度来看,对高炉渣的热量进行回收和高炉渣的资源化利用是十分必要的。炉渣的出炉温度一般在1400~1550℃之间。每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤的热值[1]。每生产1吨生铁要副产0.3吨高炉渣,每生产1吨钢要副产0.13吨钢渣[2],以目前我国的钢铁产量6.83亿吨进行计算,可产生2.9亿吨以上的高炉渣和转炉渣,其显热量相当于1740万吨标准煤,尽管并非可以全部回收高炉渣的热能,但若能部分回收利用,其节能效益也是显著的,非常具有市场开发潜力。就目前应用大量应用水淬技术情况来看,这部分高温热源显然是被浪费了,该高温热源就温度品质来说,完全符合高品位能源的要求,如果能回收这部分热量得以重新利用,就可以为社会和企业带来可观的经济、社会和环保效益。 开展余热余能的回收利用不仅是钢铁企业节约能源降低成本,提高竞争力的重要手段,而且也符合国家钢铁工业的政策要求。在我国的钢铁工业“十二五”发展规划中明确指出要大力发展清洁生产和循环经济,积极研发和推广使用节能减排和低碳技术,加强废弃物的资源化综合利用[2]。在节能减排方面提出以下几个重要指标,单位工业增加值能耗和二氧化碳排放分别下降18%,重点统计钢铁企业平均吨钢综合能耗低于580千克标准煤,吨钢耗新水量低于4.0立方米,吨钢二氧化硫排放下降39%,吨钢化学需氧量下降7%,固体废弃物综合利用率97%以上。在钢铁工业的节能减排技术方面重点提到了高炉渣、钢渣等显热回收利用技术、冶金渣综合利用技术和余热余压综合利用技术等。 2 高炉渣处理现状 目前我国常见的处理高炉渣的方法有干渣坑冷却法和水冲渣法。干渣坑冷却法将熔

钢渣综合利用的方法

钢渣的综合利用 钢渣是在转炉、电炉或精炼炉熔炼过程中产生的由炉料杂质、造渣材料等熔化形成的以氧化物为主、有时还含有少量氟化物、硫化物及渣钢渣粒的冶炼废物,发生量约占钢铁企业固废总量的25%。近年来,我国钢铁业发展迅猛,粗钢产量年均增长22.4%,2010年1~9月已达4.75亿t计,由此产生近1亿t的钢渣。钢渣中富含Ca、Si、Fe、Mg、A1等有价元素,蕴含大量热能,是一种宝贵的次生资源,而有效处理和利用钢渣,不仅有利于节能降耗和温室气体减排,还是钢铁企业实现可持续发展和循环经济的必由之路。 1钢渣的种类与来源 冶金企业生产工艺的各异导致渣的种类也不尽相同,特别是化学成分和物理性能存在巨大差异。鞍钢长流程生产工艺所产生的渣,大体上分为脱硫渣、转炉炼钢渣、连铸渣和精炼渣等:①脱硫渣。转炉炼钢前进行铁水预处理,在脱硫站脱硫扒渣,炉渣碱度较高。一般,因脱硫渣的硫过高而须脱硫处理,否则,其冶金用途不大。②转炉钢渣。鞍钢日产5000t左右的转炉钢渣,占钢厂渣总量的60%以上,是一种利用范围较广和使用价值最高的钢渣。③连铸渣。鞍钢采用全流程的连铸生产工艺,连铸过程中的保护渣成分在使用前后变化不大,理论上可循环使用。但现实中因连铸保护渣随二冷水流走并与其它杂质混杂,且含较多难以回收的氟,故大部分堆放在渣场,目前利用率偏低,其应用问题还有待于进一步研究。④精炼渣。鞍钢采用炉外精炼等措施冶炼高纯净度的钢水,精炼过程产生大量副渣,其除含高碱度的碱性氧化物外,还有非常高的三氧化二铝和非常低的金属铁量,适合制造水泥和耐火材料。同时,国外已开展对精炼渣深人利用的研究,如日本己对LF炉的顶渣利用课题立项,开展了热渣循环利用的研究。 2钢渣的基本物性 2.1钢渣的物理性质 钢渣呈黑色,外观像结块的水泥熟料,其中夹带部分铁粒,硬度大,密度为

高炉渣处理、回收利用技术的现状

高炉渣处理、回收利用技术的现状与进展 学院:矿业工程学院 班级:矿加10 姓名:范明阳 学号:120103707026

高炉渣处理、回收利用技术的现状与进展 范明阳 (辽宁科技大学矿业工程学院) 摘要:介绍了目前国内外高炉渣处理、回收利用的现状,对比分析了高炉渣各种处理工艺的优点和不足,指出目前的高炉渣处理存在新水消耗大、炉渣物理热无法回收和二氧化硫、硫化氢等污染物排放的问题,提出了解决高炉渣处理和回收利用过程中渣粒化及热量回收问题的新方法,并展望了高炉渣综合利用的发展趋势. 关键词:高炉渣;处理;回收利用;发展趋势 Abstract:The current status of the recovery and utilization of blast furnace slag both at home and abroad a.re described,andthe advantages and the disadvantages of various treatment processes compared in the present discussion.It is indieated thatthe treatment method of blast furnace slag now in use has the shortcomings of large fresh water consumption,impossibility torecover the physical heat of the slag,and emission of contaminants SO2 and H2 S. Key words:blast furnace slag;treatment;recovery and utilization;developing trend 0 .前言 钢铁工业是我国国民经济的重要基础产业.高炉渣是一种性能良好的硅酸盐材料,可作为生产水泥的原料.高炉渣的主要成分是氧化钙、氧化镁、三氧化二铝、二氧化硅,属于硅酸盐质材料,其化学组成与天然矿石、硅酸盐水泥相似.在急冷处理的过程中,熔态炉渣中的绝大部分物质没能形成稳定的化合物晶体,以无定形体或玻璃体的状态将没能释放的热能转化为化学能储存起来,从而具有潜在的化学活性,是优良的水泥原料.据统计,我国冶金企业每年用于处理废弃炉渣资金高达上亿元,尤其是对于高炉渣的显热,国内还没有一家钢铁联合企业将

炉渣粉煤灰综合利用项目

炉渣粉煤灰综合利用项目可行性研究报告 (代项目建议书)

目录 第一章总论 (1) 1.1项目名称及建设单位 (1) 1.2报告编制依据和范围 (1) 1.3推荐方案 (2) 1.4结论 (4) 第二章项目的背景及建设的必要性 (5) 2.1墙体材料现状及存在的问题 (5) 2.2“十一五”新型墙体材料发展面临的形势 (7) 2.3墙体材料革新的指导思想、发展目标和发展重点 (9) 2.4主要对策和措施 (12) 2.5建设的必要性 (14) 第三章市场预测及建设规模 (16) 3.1市场预测 (16) 3.2生产规模 (18) 第四章建设单位基本情况 (19) 第五章建设地点 (20) 5.1城市概括 (20) 5.2建设条件 (21) 第六章建设方案 (23) 6.1建设内容 (23) 6.2产品介绍 (23) 6.3生产工艺 (29) 6.4主要设备选择 (30) 6.5主要原辅材料、燃料、动力消耗指标 (32) 6.5土建工程 (33) 6.6给排水 (33) 6.7供电 (34)

第七章环境保护 (36) 7.1主要污染源 (36) 7.2设计采用的环境保护标准 (37) 7.3治理措施 (38) 7.4环境管理 (39) 7.5环境影响评价结论 (40) 第八章消防 (41) 8.1设计依据 (41) 8.2工程概述 (41) 8.3消防措施 (41) 8.4电气消防 (42) 8.5生产过程中的职业危害因素 (42) 8.6采用的主要防范措施 (43) 第九章节约能源 (45) 9.1概述 (45) 9.2工艺生产上的节能措施 (45) 第十章企业组织与劳动定员 (47) 10.1企业组织及工作制度 (47) 10.2劳动定员 (47) 10.3劳动力来源及技术人员培训 (47) 第十一章项目实施进度建议 (48) 第十二章工程招标 (49) 12.1招投标管理的基本原则 (49) 12.2招标依据 (50) 12.3项目招标范围 (50) 12.4项目招标程序 (50) 12.5项目招标内容 (51) 第十三章投资估算 (53) 13.1编制依据 (53) 13.2投资估算说明 (53) 13.3编制基数 (53)

铜冶炼三种方法

铜冶炼三种方法 This model paper was revised by the Standardization Office on December 10, 2020

目前,中国已引进世界上最先进的炼铜新工艺有:闪速炉熔炼、艾萨熔炼、奥斯麦特熔炼、诺兰达熔炼等。国内自主创新的有白银法熔炼、金川合成炉熔炼、东营方圆的氧气底吹熔炼。后3种都是中国人自己研制的,都具有自主知识产权。这7种也算世界上较先进的炼铜法。通过多年的实践,国外的先进技术尚存不足之处,分述如下: 1、双闪速炉熔炼法: 投资大,专利费昂贵,熔剂和原料先进行磨细再进行深度干燥,需额外消耗能源这不尽合理。熔炉产出的铜硫需要水碎再干燥再细磨,工序繁杂。每道工序均难以保证100%回收率,会产生部分机械损失;热态高温铜锍水碎物理热几乎全部损失,水碎后再干燥,再加上炉内大量水套由冷却水带走热量,热能利用也不尽合理。铜锍水碎需要大量的水冲,增加动力消耗。破碎、干燥要增加人力和动力的消耗。这些都是多年来该工艺没有得到大量推广的重要原因。 2、艾萨法和澳斯麦特法均属于顶吹冶炼系列: 顶吹都要建立高层厂房,噪音大、高氧浓度低烟气量大、顶吹的氧枪12米长,3天至一周要更换一次,不锈钢消耗量大、投资大、操作不方便。都用电炉做贫化炉,渣含铜一般大于%不合国情。 3、三菱法的不足 4个炉子(熔炼炉、贫化电炉、吹炼炉、阳极炉)自流配置,第一道工序的熔炼炉需要配置在较高的楼层位置,建筑成本相对较高,炉渣采用电炉贫化,弃渣含铜量达%~%,远远高于我国多数大型铜矿开采的矿石平均品位,资源没有得到充分的利用。 4、诺兰达和特尼恩特连续吹炼法,尚在工业试验阶段。

国内矿渣综合利用现状

xx大学xx (250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨,(其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到 600m2/kg以上,国内仅有几家粉磨站生产。主要原因是: 进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣

炉渣利用技术炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

高炉炉渣资源化利用研究与现状

高炉炉渣资源化利用研究与现状 摘要:钢铁生产行业在高速发展的同时,高炉炼铁工艺产生的高炉渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量土地资源,并对周边的土壤及水体环境造成了污染。有效利用高炉矿渣等二次资源,减少高炉矿渣对环境的污染,达到高炉矿渣的减量化、无害化、资源化处理,并进一步提高高炉矿渣基产品的附加值,是我国钢铁行业可持续发展的有力保障,对于建立环境友好型、资源节约型社会具有促进意义。 关键词:高炉矿渣;制备方法;陶瓷纤维;资源化 高炉矿渣是在高炉炼铁过程中,铁矿石中含有的SiO},A1}03等杂质与熔剂中的CaO,Mg0等反应生成硅酸盐熔融物,经水淬处理得到含有较多孔隙且无定形、不规则的副产物[y0作为我国国民经济一大支柱的钢铁生产行业,在全行业高速发展的同时,其主要的冶炼工艺—高炉炼铁工艺产生的高炉矿渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量的土地资源,并对周边的土壤及水体环境造成了污染。就普通的炼铁工艺而言,每冶炼It铁矿石会产生0.5一0.9t的矿渣,如不能合理地处理大储存量的高炉矿渣,不仅会造成环境污染,浪费大量能源,且会给我国经济建设带来巨大的压力,不利于钢铁行业的可持续发展。近年来,国内的高炉矿渣主要应用于建筑材料和混凝土掺合料,其附加值较低,大量高炉矿渣等二次资源被浪费。因此,如何对高炉矿渣更好的资源化利用,是当今钢铁行业面临的又一主要问题[0据不完全统计,我国矿业固体废弃物累计超过70亿t,占地6万多h时。高效的开发和利用工业二次资源,变废为宝、化害为利,实现工业的可持续发展显得尤为重要[[3]

普通高炉炼铁渣的利用现状

普通高炉炼铁渣的利用现状 随着我国钢铁工业的发展,高炉矿渣排量日益增多,我国每年排放高炉渣达数千万吨,而这些炉渣都用到什么地方了呢? 首先,我们先来了解一下什么是高炉渣,高炉矿渣是冶炼生铁时从高炉中排出的一种废渣,是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质所组成的易熔混合物,从其化学组成成分上来看,主要是SiO2、CaO、Al2O3等,这些成分都属于硅酸盐质,便于加工成多品种的建筑材料;除此之外,高炉矿渣还可以用来生产一些用量不大而产品价值高,又有特殊性能的高炉渣产品。 我们通过对相关资料的了解,大体上总结了一下当今普通高炉炼铁渣的利用情况。下面详细介绍一下具体的利用途径。 (一)在建筑材料方面的应用,从《高炉矿渣处理和利用》[1]一文中,我们了解了高炉炼铁渣在建筑方面的利用,例如,水淬成粒状矿渣(简称水渣)是生产水泥、矿渣砖瓦和砌块的好原料;经急冷加工成膨胀矿渣珠或膨胀矿渣,可做轻混凝土骨料;吹制成矿渣棉可制造各种隔热、保温材料;轧制成型可做微晶玻璃。 生产的矿渣水泥包括以下几种:1、矿渣硅酸盐水泥;2、石膏矿渣水泥;3、石灰矿渣水泥。它们都是将矿渣与其他生产水泥的原材料按一定比例配合磨细而成的。这种水泥对其抗拉和抗压强度没什么影响,具有较好的抗硫酸盐侵蚀和抗渗透性,生产成本较低。 矿渣砖是用水渣加入一定量的水泥等胶凝材料,经过搅拌、成型和蒸汽养护而成的,用于普通房屋建筑和地下建筑,这样就节省了普通砖的消耗量。 膨胀矿渣珠主要用作混凝土轻骨料,也用作防火隔热材料,用膨胀矿渣制成的轻质混凝土,不仅可以用于建筑物的围护结构,而且可以用于承重结构。并且具有工艺简单,不用燃料,成本低廉等优点。 矿渣棉是以矿渣为主要原料,在熔化炉中熔化后获得熔融物再加以精制而得到一种白色棉状矿物纤维。它具有保温、隔音、绝冷等性能。 微晶玻璃[2]是综合玻璃和陶瓷技术发展起来的一种新型材料, 微晶玻璃是由结晶相与玻璃相组成,其物理化学性能集中了玻璃和陶瓷的双重优点, 既具有陶瓷的强度, 又具有玻璃的致密性和耐酸、碱、盐的耐蚀性。 (二)上文提及的利用途径在当前的技术已经是十分成熟的了,所以高炉渣的利用必然向一个更高层次发展,经过近几年的研究,又开发出来了高炉渣新的利用途径,从其简单的物理

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

高炉渣的综合利用。

再生金属冶金学课程论文 高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

铜冶炼炉渣混合浮选工艺研究及生产实践

铜冶炼炉渣混合浮选工艺研究及生产实践 张鑫,惠兴欢,朱江,杞学峰,王礼珊 (楚雄滇中有色金属有限责任公司,楚雄) 摘要:本文针对楚雄滇中有色金属公司铜冶炼过程产生的电炉渣、转炉渣进行了混合浮选研究。混合渣含铜,磨至细度为后进入浮选作业,通过二次粗选、二次扫选、粗精矿不磨三次精选的工艺流程,可获得铜精矿品位为,尾矿品位以下,回收率以上的工艺指标。在实际生产中,通过对工艺流程的改造,又进一步优化了浮选指标。 关键词:电炉渣;转炉渣;浮选 , , , , ( . ,,) :( ) . . ( ) . , ( ) . . : , , 引言 我国铜炉渣数量大,其中大量铜及相当数量的贵金属和稀有金属长期堆存,占用大量用地,严重污染环境。随着冶炼技术的发展,髙效率熔炼炉的应用,炉渣含金属量还有上升趋势。因此,开发利用铜炉渣资源具有重要意义和十分可观的经济效益。 近年来,国内外很多单位对铜渣的利用进行了不同规模的研究,主要集中在以下两方面:()提取有价金属[];()生产化工产品和制备建筑材料等[].尽管取得一定成绩,但是铜渣综合利用水平低,循环力度弱的状况仍未改变。铜渣的贫化方法有熔炼法和缓冷选矿法,选择何种方法,要根据渣中金属存在形态和经济效果的对比来决定。魏明安[]研究了转炉渣的特性和铜转炉渣选矿的一般特点。并在此基础上,针对国内某铜转炉渣中铜赋存状态复杂、嵌布粒度细及难磨等的特点,提出处理该转炉渣的适宜技术条件为阶段磨矿阶段选别,在浮选机充气量3.3L和高浓度浮选的条件下,取得了铜精矿铜品位、回收率为的实验室闭路试验指标。云南耿马铜渣由于其含铜品位低,回收利用难,研究结果表明,浮选可以很好地对其进行回收利用,浮选条件为:磨矿细度-0.074mm占、捕收剂用量为162g、活化剂硫化钠用量为3.4kg的条件下得到了品位、回收率的较好试验结果[]。宋温等[]针对某转炉冶炼厂的炉渣硬度大、难磨且氧化程度较高的情况,采用一粗一精二扫中矿循序返回的浮选流程。药剂采用丁黄药、松醇油。原矿品位为,得到了铜精矿品位,铜回收率的浮选指标。 采用选矿方法从炉渣中可以回收大部分铜,不但可获得一定的经济效益,而且还可实现铜资源最大限度的合理利用,这符合当前发展循环经济,建设节约型社会的基本国策。 铜渣的工艺矿物学研究 楚雄滇中有色金属有限责任公司冶炼厂采用的铜冶炼工艺为:富氧顶吹熔炼电炉沉降转炉吹炼,沉降电炉排出的渣含铜品位约~左右,转炉渣不返入电炉(品位约),转炉渣分解破碎后大部分进入艾萨熔炼系统,使得生产成本急剧增加,同时也会造成电炉渣含铜增加,每年损失大量铜金属,为此,需要对炉渣贫化进行专门研究。 铜渣的物理特性 楚雄滇中有色金属有限责任公司冶炼铜渣经缓冷后,外观呈黑色,松散容重2.4g,密度。性质比较稳定,嵌布粒度较细。铜渣含铁量很高,故它的质地致密、坚硬,莫氏硬度达到度,

高炉渣综合利用现状及发展趋势

高炉渣综合利用现状及发展趋势 闫兆民,周扬民,杨志远,仪垂杰 (青岛理工大学,青岛266033) 摘 要:介绍高炉渣干法与湿法处理工艺及其余热利用方式的国内外研究和应用现状,评述了底滤法(O CP)、因巴法(INBA )典型的水淬法工艺,重点概括了风淬法、双滚筒法、离心粒化法3种干法处理技术的研究进展和发展趋势。最后得出结论:离心粒化处理工艺在充分利用高炉渣的高品质热源同时,不会产生硫化氢、二氧化硫等有害气体,不会造成水资源的浪费,是今后高炉渣处理工艺的发展趋势。关键词:高炉渣;干法粒化;热量回收 中图分类号:X756 文献标识码:A 文章编号:1001 1447(2010)02 0053 04 Present situation and development trend of blast furnace slag comprehensive utilization YAN Zhao min,ZH OU Yang min,YA NG Zhi yuan,YI Chui jie (Qingdao T echno logy U niversity,Qingdao 266033,China) Abstract:This paper introduces the research and application status of dry and w et blast fur nace slag treatment pr ocesses,as w ell as their w aste heat utilization w ays bo th hom e and o bro ad.The typical w ater quenching slag treatm ent metho ds,including OCP,IN BA are com mented,w ith fo cus on three kinds of dry g ranulation processing technolog y,i.e air blast gr anulation,tw in dr um g ranulatio n and centr ifugal granulation.Finally ,it is co ncluded that the centrifug al g ranulatio n can not only make full use of high quality heat source,but also avoid pr oducing H 2S 、SO 2and o ther harmful gases,and it can sav e w ater consumption as w ell.T herefore,the centrifugal g ranulation can be considered the trend o f blast furnace slag treatment process for the future.Key w ords:blast furnace slag;dry granulation;heat recycle 基金项目:钢铁研究联合基金重点项目(50934010) 作者简介:闫兆民(1984-),男,硕士生,主要从事高炉渣余热回收的研究. 高炉渣是钢铁冶炼过程的主要副产品,每炼出lt 生铁大约产生300~350kg 的高炉渣[1],按照我国年生铁年产量46944万t 计算 [2] ,产渣量 达14000万t 。高炉渣出渣温度达1400 以上,每吨渣含有相当于60kg 标准煤的热量[3]。因此,做好高炉渣的余热回收和综合利用,是钢铁行业节能降耗的有效途径。 1 高炉渣湿法处理工艺 湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一般也称为水淬工艺。高炉渣水淬方式很多,主要处理工艺有:底滤 法(OCP)、因巴法(INBA)、拉萨法(RASA )、图拉法(T YNA)、明特克法(M TC)等。国内生产大部分采用底滤法(OCP);国外生产大部分采用因巴法(INBA) [4] 。 1.1 底滤法(OCP)工艺 底滤法(OCP)工艺流程见图1[5 6]。高炉熔渣在冲制箱内由多孔喷头喷出的高压水进行水淬,水淬渣流经粒化槽,然后进入沉渣池。沉渣池中的水渣由抓斗吊抓出堆放于渣场继续脱水。沉渣池内的水及悬浮物通过分配渠流入过滤池,过滤池内设有砾石过滤层,过滤后的水经集水管由泵加压后送入冷却塔冷却,循环使用。 53 2010年 4月第38卷第2期钢铁研究 Research on Iron &Steel Apr. 2010 Vo l.38 No.2

冶金出渣

冶金出渣项目 一、炼钢出渣 1、出渣工艺 炼钢过程中由于铁和渣密度不同而自然分层,并按生产顺序先后排出炉外,出渣时温度接近1100℃。 2、钢渣成分 钢渣按照所选取的冶炼工艺的不同分为平炉钢渣、转炉钢渣以及电炉渣;平炉渣又可分为初期渣、精炼渣、出钢渣和浇钢余渣,电炉渣可分为氧化渣、还原渣。 由下表可看出,钢渣的主要成分为氧化铁、氧化铝、氧化钙、氧化镁等成分,还有一定的三氧化二磷。 3、出渣设备 铁水出渣主要采用铁水扒渣机。以下为集中常见的扒渣机: A.气动扒渣机全部由气缸驱动,小车行走带动扒渣臂进行扒渣

B.伸缩臂式扒渣机由液压马达通过链条直接拖动扒渣臂前后行走 C.小车走行式液压扒渣机由行走液压马达通过链条拖动安装扒渣臂的小车前后行走 D.捞渣机

以上介绍了常见四种扒渣机设备,其主要技术指标为铁水消耗量、扒渣时间、扒渣板消耗、操作维护性能。其中,扒渣板的消耗一方面涉及成本大小,另一方面更换扒渣板影响设备作业效率。扒渣板一般采用普通钢板,扒渣板的消耗主要由扒渣设备技术水平和扒渣时间决定,一块扒渣板可以扒渣50-150罐。在扒渣使用过程中,也有些用户对扒渣板的材质(采用铸造耐热钢等)和形状根据实际情况进行改进,适当提高了扒渣板的使用寿命并降低了扒渣的铁水消耗。 4、钢渣处理技术 由于钢铁生产的发展,导致大量钢渣弃置,堆积成渣山。钢渣的有效利用不仅能为工厂带来经济效益,更能达到环境保护的作用。 我国应用的钢渣处理方法有以下几种:

以上各种处理工艺中,应用较多的钢渣处理工艺为热泼法和热闷法;钢渣冷却以水冷为主,产生大量蒸汽、粉尘、污水。 现阶段,国内已对钢渣进行多层次的利用。众多钢厂将钢渣返回烧结做冶炼溶剂;经过破碎磁选回收废钢;制作钢渣水泥,钢渣筑路;制作渣砖等。 二、炼铝出渣 1、出渣工艺 铝渣是在扒渣工序中,以及每炉“清炉”和按规定“大清炉”时被扒出炉外。 2、铝渣成分 根据资料显示,铝渣量为炉料量的2%~5%,而渣中含有大量的铝(40%~60%)、氧化铝、铁硅镁的氧化物及K/Na/Ca/Mg的氯化物。 3、出渣设备

转炉渣的综合利用分析

转炉钢渣的综合利用分析 摘要:转炉钢渣是转炉炼钢过程中产生的废渣,主要来源于铁水与废钢中所含元素氧化后形成的氧化物,金属炉料带入的杂质,加入的造渣剂(如石灰石、萤石、硅石)、氧化剂、脱硫产物和被侵蚀的炉衬材料等。据统计资料,我国粗钢产量占全球粗钢产量的比例提高至45.5%,排放的转炉渣量约8000多万吨。当前国内积存的转炉钢渣已有2亿多吨以上。转炉渣是转炉炼钢过程中产生的副产品,是一种可再利用的资源,充分利用转炉渣是钢铁行业创造经济效益、环境效益和社会效益的重要手段。 关键词:钢渣;综合利用;减排;技术进展 1转炉渣稳定化预处理技术 转炉渣的利用过程是体现转炉渣应用价值的具体体现,也是生产新产品、创造效益的过程。转炉渣的利用一般可分为4个步骤:首先分析成分,了解转炉渣的成分组成和形态结构等矿物特性;其次,根据成分分析结果制定相应的利用方案,该阶段以经济效益和环境效益为主要出发点,以期达到最高的利用率;第三,根据原料、转炉生产的特点,并结合当地实际情况,制定和实施处理转炉渣的方案,以期得到最优的利用组合;第四,将处理后的转炉渣进行再利用。 转炉渣组成与物性的不合理,使其无法直接利用,只有将转炉渣出炉后先进行预处理,预处理好的渣一方面利于其中含铁组分的回收,另一方面要保证其组成与结构的基本稳定。具体包括:首先将出炉渣进行预处理,或“稳定化”处理,其主旨是预先消除或消解以自由及游离氧化钙为主的亚稳相,使转炉渣在被利用前组成与结构基本稳定,并利于渣、铁分离。其次,将预处理好的转炉渣依据需要,进行资源化利用。转炉渣的多种预处理技术,如热泼法、热闷法、盘泼法、滚筒法、风碎法等可称之为两步法的转炉渣利用技术,一直延续到今天,并仍起着主导作用。目前四钢轧主要有热闷法、风碎法。 (1)预热自解热闷法 此法是较早开发的转炉渣预处理技术,也是国内钢企最早采用及引进的处理工艺。原理是将出炉渣置于可封闭罐内,利用出炉渣自身的显热与潜热,喷水对其作用,产生带压蒸汽,从而对钢渣强行“消解”。其优点是:对欲处理钢渣没有特殊要求,钢渣消解较彻底,渣铁易于分离,回收铁组分后的尾渣矿物组织比较稳定、均匀,利于后续粗放式利用。缺点是:间歇性处理,处理效率很低,占

炉渣的的回收与再利用分析

炉渣的回收与综合利用分析 姓名:杜国震学号: 08L0101203 学院:理工学院专业:化学工程与工艺 班级:化工L082 指导教师:刘老师 2011--11--13

炉渣的的回收与再利用分析 摘要:许多炉渣都是完全燃烧的灰烬与不完全燃烧的煤块组成的混合物。它既不能用作燃料,也不能用作水泥的填料。造成环境的污染和浪费。选矿工艺将这部分分成可燃的炉渣与不可燃的炉渣,不论可燃与不可燃的都将能回收与再利用是我的文章要论述的内容。 关键字:炉渣回收再利用 1.炉渣的产生及现状。 工业生产中的炉渣一般不经过煤洗的原煤直接作燃料产生,也有经过洗过的灰分较高的中煤。这样除了造成严重的空气和粉尘污染外,大量的煤渣也造成了,环境的污染和煤矿资源的浪费,产生了固体废弃物。有来自中国矿业大学学报,报道每一百万吨燃烧,有超过二十万吨的炉渣,由于燃烧不完全煤渣中含有一定的可燃物质。如果不经过回收再利用而是当做废渣堆弃或是填充低地,就造成里环境的严重污染和资源的巨大浪费,因此回收与利用部分炉渣也就成了挖掘潜能措施,同时也成为了保护环境的有效手段。同时,也带来了一样的经济效益。可见回收与再次利用燃烧不完全的煤渣的意义与重要性。不单单是环境的要求也是保护资源的迫切要求。 就我国煤炭工业来说,由于国内的洗选能力与技术不足,不得不烧原煤的现状真是个遗憾。 2.炉渣的成分及用途 炉渣又称为熔渣。根据冶金过程的不同,炉渣可分为熔炼渣,精炼渣,混合渣。根据炉渣性质又分为碱性渣,酸性渣和中性渣。许多炉渣有重要的作用,如高炉渣可做水泥的原料,高磷渣可做肥料,含有钒,钛的炉渣可作为提取钒,钛的原料。还有些炉渣可以制炉渣水泥,炉渣砖,炉渣玻璃等。煤在锅炉燃烧室里的熔融物,由煤灰组成,可以作为砖,瓦的原料。 3.高炉渣的产生及回收与利用 高炉渣是冶炼生铁时从高炉中排除的废物,当炉温达到1400—1600时,炉料熔融,矿石中的脉石,焦炭中的煤灰和助溶剂和其他不能进入生铁中的杂质形成以硅酸盐,铝酸盐为主的浮

铜冶炼铜电解铜废渣废物废泥铜合金硫化铜矿铜精矿回收处理工艺技术与设备专利技术资料汇编样本

4铜冶炼、铜电解、铜废渣泥、铜合金、硫化铜矿、铜精矿、回收处理工艺与方法、专利技术资料汇编( 全套80元) 1.铜锌物料鼓风炉熔炼铜锌分离方法 2.铜回收法 3.铜沉淀方法 4.印制线路板碱性蚀刻铜废液处理方法 5.分离回收镀白铜针铜锡的方法及其阳极滚筒装置 6.废铜箔回收的方法1 7.废铜箔的回收方法2 8.在印刷电路板制造中利用对铜箔的金属化处理来产生细线条并替代氧化过程 9.铜锌钴分离的熔炼法 10.用不污染环境的方法回收覆铜板的铜 11.一种铜电解液净化除杂质的方法 12.紫杂铜一步电解生产阴极铜方法 13.湿法提铜工艺 14.电解铜废液处理工艺 15.一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 16.铜回收的方法 17.由电解含铜萃取有机相制备高纯铜的方法 18.含砷硫化铜精矿湿法冶炼新工艺 19.冶炼炉渣中的有价金属细菌回收方法 20.一种废锌铜镍合金的湿法分离方法 21.黑铜提锡工艺 22.双金属银铜复合边角料分离回收法 23.氯化铜废液的处理方法 24.用碳铵溶液电解退除铁基体铜,镍镀层的方法 25.一种新的硫酸铜制备方法 26.不锈钢阳极框杂铜直接电解精炼法 27.铜系废催化剂的回收方法

28.氧化铜矿直接制取硫酸铜工艺 29.从稀溶液中电解回收铜或银的装置 30.液-液萃取法净化铜电解液 31.使用卤化物的铜蚀刻方法 32.从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 33.铜及铜合金制品表面上铅锡的回收 34.一种从氧化铜矿中回收铜的湿法冶金方法 35.湿法冶铜新工艺 36.铜矿石生产硫酸铜的方法 37.氨浸沉淀法处理低品位铜渣或氧化铜矿的工艺 38.铜精矿粉末冶炼备料新工艺 39.废复铜板回收工艺 40.从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 41.一种从含铜较高的金精矿中提取铜的方法 42.从炼铜废渣中回收锡、铜、铅、锌等金属的方法 43.含铜废料直接电解精炼的方法 44.一种铜精矿粉制块工艺 45.回收铜的方法 46.生产一水硫酸铜的方法 47.从矿石中水冶提取铜、镍、钴的简易方法及其装置 48.从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 49.从绕组回收铜的方法 50.一种硫化铜镍矿选矿方法 51.铜的回收方法 52.铜、镍硫化矿无污染火冶法 53.由硫化镍精矿中提取镍、铜、钴、镁及制造镍铁的工艺 54.一种湿法分离锌、铜、镉、铅冶金物料的方法及应用 55.回收铜和镍 56.电路板的铜箔回收方法

转炉渣的综合利用

转炉渣的综合利用 摘要:随着冶金行业的快速发展,冶金业对资源的利用越来越多,钢铁冶金渣的排放量也逐年增多。我国对钢渣的处理和利用处于较落后的状态,大量的钢渣至今没有得到有效的处置和利用,有些钢厂已是渣满为患,影响生产,对环境造成污染。为了提高钢渣的合理回收,本文介绍了钢渣的各种处理技术,从而实现了资源化综合利用,并展望了钢渣综合利用的未来前景。本文综合阐述了国内外钢渣综合处理技术,钢渣是炼钢工业的副产品。分析了钢渣的基本物理特性、化学成份、矿物组成等理化性能。介绍钢渣在筑路、烧结矿、水泥、建材、环境工程和农业等领域的综合利用。 关键词:转炉渣;资源;冶金 黑色及有色金属生产伴随着大量炉渣的形成,这些炉渣不能被利用只好堆积在废料场,占据了庞大的土地面积,严重影响着冶金工厂区域的生态环境。目前,炼钢渣、粗铜、镍及其合金的生产废渣的再处理已成为一个越来越严重的问题。 2007 年,全世界生产钢15 亿t,产生的炉渣不少于2.2 亿t,主要是氧化转炉和电炉炼钢渣(30%~45%CaO;15%~20%SiO2;20%~40%FenOm。;3%~10%MgO;3%~5%Al2O3),其中以金属珠和碎金属形式出现的金属铁为5%~8%,未被利用的石灰石达3%~4%。精炼渣中含有55%~60%CaO,15%~18%SiO2,8%Al2O3,不少于1%FeO,10%MgO,一定量的磷。估计全世界每年精炼渣的产生在1500 万t~2500 万t。由于炼钢渣反应形成温度高, 碱度高, 游离氧化钙含量大, 并且夹带金属铁粒, 使得炼钢渣往往具有硬度大、易磨性差, 早期活性低、胶凝性差, 易膨胀、体积稳定性差等特点, 其利用率相对较低, 应用范围也较窄, 如2005 年我国钢渣综合利用率仅为10%[ 2] . 根据国家发展和改革委员会产业政策司发布的2006 年钢铁行业生产运行情况通报显示, 2006 年全国粗钢产量41 878 万t , 炼钢渣排出量按粗钢产量的14%计算, 全年排钢渣量达5 863万t , 堆放占地和处理带来的环境问题非常突出, 因此发展新技术以提高炼钢渣的再循环利用率是我国冶金工业清洁、绿色生产的前提. 一.转炉渣的产生和来源 高炉渣是冶炼生铁时从高炉中排出的废物,当炉温达到1400~1600℃时,炉料熔融,矿石中的脉石、焦炭中的灰分和助溶剂和其他不能进入生铁中的杂质形成以硅酸盐和铝酸盐为主浮在铁水上面的熔渣。高炉渣中主要成分为CaO、SiO2、Al2O3。转炉钢渣是转炉炼钢过程中产生的废渣,主要来源于铁水与废钢中所含元素氧化后形成的氧化物,金属炉料带入的杂质,加入的造渣剂( 如石灰石、萤石、硅石) 、氧化剂、脱硫产物和被侵蚀的炉衬材料等。 二.钢渣的化学特性 表1为部分钢铁公司转炉钢渣的基本化学组成。 转炉钢渣的矿物结构主要取决于化学组成。当炉渣的碱度(CaO /SiO2 ) < 1. 8时,主要矿物为CMS (镁橄榄石) 、C3MS2 (镁蔷薇辉石) ;碱度为1. 8~2. 5时,主要矿物为C2 S(硅酸二钙) 、C2 F (铁酸二钙)及RO 相(以FeO为主的Fe、Mn、Mg二价金属氧化物固熔体) ;碱度为2. 5以上时,主要矿物为C3 S (硅酸三钙) 、C2 S、C2 F及RO相;此外,钢渣中还含有少量的游离氧化钙。

高炉渣的综合利用。

高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

相关文档