文档库 最新最全的文档下载
当前位置:文档库 › 腐蚀电流密度icorr换算为腐蚀速度V公式

腐蚀电流密度icorr换算为腐蚀速度V公式

腐蚀电流密度icorr换算为腐蚀速度V公式
腐蚀电流密度icorr换算为腐蚀速度V公式

ΔE 很小时(通常ΔE 在±10mV 左右)极化曲线呈线性关系,其斜率为极化阻抗

R p = i

E ?? 腐蚀电流i corr =

p c a c a R b b b b )(303.2+ b a 、b c 在强极化区用Tafel 外推法确定:

b a =a

a i d dE lg

b

c =c

a i d dE lg 令B=

)(303.2c a c a b b b b +,则 i corr =B/R p

将腐蚀电流密度i corr 换算为腐蚀速度V 公式:

V (μm/a )=nD

A 3.27i corr 其中,A 为原子量

n 为得失电子数

D 为金属材料密度,g/cm 3

失重法测金属腐蚀速度

失重法测金属腐蚀速度 1. 实验目的 (1)掌握失重法测量金属腐蚀速度的原理和操作过程 (2)加强对金属腐蚀与环境条件密切相关的认识 (3)初步了解缓蚀剂对金属腐蚀的抑制作用 2. 基本原理 重量法是其中一种较为经典的方法,它适用于实验室和现场试验,是测定金属腐蚀速率最可靠的方法之一,是其它金属腐蚀速率测定方法的基础。 重量法是根据腐蚀前、后金属试件重量的变化来测定金属腐蚀速率的。重量法又可分为失重法和增重法两种。当金属表面上的腐蚀产物较容易除净,且不会因为清除腐蚀产物而损坏金属本体时常用失重法;当腐蚀产物牢固地附着在试件表面时则采用增重法。 把金属做成一定形状和大小的试件,放在腐蚀环境中(如大气、海水、土壤、各种实验介质等),经过一定的时间后,取出并测量其重量和尺寸的变化,即可计算其腐蚀速率。 对于失重法,可通过下式计算金属的腐蚀速率: 式中,v-为金属的腐蚀速率,g/(m2?h);m 0为腐蚀前试件的质量,g;m 1 为经过一 定时间的腐蚀、并除去表面腐蚀产物后试件的质量,g;S 为试件暴露在腐蚀环境中的表面积,m2;t为试件腐蚀的时间,h 。 对于增重法,即当金属表面的腐蚀产物全部附着在上面,或者腐蚀产物脱落下来可以全部被收集起来时,可由下式计算腐蚀速率: 式中,v+ 为金属的腐蚀速率,g/(m2?h);m 2 为腐蚀后带有腐蚀产物的试件的重量,g;其余符号同 (1-1) 式。 对于密度相同或相近的金属,可以用上述方法比较其耐蚀性能。但是,对于密度不同的金属,尽管单位表面的重量变化相同,其腐蚀深度却不一样。此时,用单位时间内的腐蚀深度表示金属的腐蚀速率更为合适。其换算公式如下: 式中,v t 为年腐蚀深度,mm/a;ρ为实验金属材料的密度,g/cm3;v-为失重腐

腐蚀速率如何计算

腐蚀速率如何计算 金属材料的腐蚀速度常用金属腐蚀速度的重要指标、深度指标和电流指标表示。金属腐蚀速度表示法是在要评价的土壤中埋设金属材料试样,经过一定时间后,测试出试样的重量变化或深度变化或电流变化,以此来评价土壤腐蚀性。 重量指标就是把金属因腐蚀而发生的重量变化,换算成相当于单位金属面积与单位时间内的重量变化的数值。它又分为失重法和增重法两种。用公式表示为: 式中v-—失重时的腐蚀速度,克/米2.小时; v+—增重时的腐蚀速度,克/米2.小时; Wo-—金属的初始重量,克; W1—消除了腐蚀产物后金属的重量,克; W2—带有腐蚀产物的金属的重量,克; S—金属的面积,米2; T—腐蚀进行的时间,小时。 金属腐蚀速度的深度指标是把金属的厚度因腐蚀而减少的量,以线量单位表示,并换算成相当于单位时间的数值。用公式表示为: 式中vL—腐蚀的深度指标,毫米/年; p—金属的密度,克/厘米3。 金属腐蚀速度的电流指标是以金属电化学腐蚀过程的阳极电流密度的大小来衡量金属的电化学腐蚀速度的程度。可由法拉第(Faraday)定律把电流指标和重量指标联系起来。可用公式表示为: 式中ia—腐蚀的电流指标,即阳极电流密度,安培/厘米2; A——原子量; N——化合价; 列举几个常用的腐蚀速率计算方法: 1、失重法 失重法直接表示由于腐蚀而损失的材料重量,其过程为:对预先制备的试样测量尺寸,净准确称重后置于腐蚀介质中,实验结束后取出,清除产物后清洗、干燥、再称重。试样的失重直接表征材料的腐蚀程度。 其腐蚀速率的计算方法:通常采用单位时间内单位面积上的重量变化表征平均腐蚀速率g*(m^-2)*(h^-1)。v=(w0-w1)/(At); 其中,W0:试样原始重量(g);w1:试样清除产物后的重量(g); A:试样面积(m^2);t:试验周期(h) 但是这种表征方式仍然不能表示出浮士德损耗深度,为此可将腐蚀速度换算成单位时间内的平均腐蚀深度(如:mm/a),其换算关系为: B=(1/ρ)*v*[(365*24*10)/(100*100)]=8.76*v/ρ=8.76*(w0-w1)/(ρ*A*t) B:腐蚀速率(mm/a)

失重挂片腐蚀速率计算

失重挂片腐蚀速率计算 为了计算失重挂片的腐蚀速率,请使用下述公式: 22,300 X 失重(克) 腐蚀速率(mpy) = ------------------------------------------------------------------------------------ 金属密度(克/立方厘米) X 挂片面积(平方英寸) X 时间(天) 这里,“失重”是指挂片因腐蚀而损失的重量,且由挂片的初始重量减去清洗后的重量而获得;“金属密度”是指挂片金属或合金的密度,可从“合金特征表”中获得(见附录);“挂片面积”指挂片暴露在腐蚀介质中的表面积;而“时间”是指挂片从安装到拆卸之间以天数计算的时间区段。 当挂片面积以英寸为单位且腐蚀时间以天数来计算时,上述公式可以按mpy(密尔/年)来计算腐蚀速率。如果公式中使用其它测量单位,则要用其它常量来替换上述公式中的22,300。下面列出了不同测量单位用的一些替换常量。 测量单位替换22,300的常量 腐蚀速率(毫米/年) 566 腐蚀速率(密尔/年),挂片面积(平方厘米) 143,700 腐蚀速率(毫米/年),挂片面积(平方厘米) 3,650 例如: 一种重为10.9265克,且暴露面积为2.96平方英寸的低碳钢挂片在8月27日被装入工艺过程。78天后的11月13日,该挂片从工艺过程中卸下,清洗后再次称重为10.5560克。从“合金特征表”中查得低碳钢的密度为7.86克/立方厘米。所以,腐蚀速率可由以下公式算出: 22,300 X ( 10.9265 -- 10.5560 ) ----------------------------------------------------- = 4.56 mpy 7.86 X 2.96 X 78天 标准的挂片面积 3英寸条状COSASCO?高压挂片 5.2平方英寸 COSASCO?多盘状挂片 2.3平方英寸 6英寸条状COSASCO?高压挂片 11.4平方英寸3英寸条状COSASCO?多孔挂片 5.25平方英寸 2英寸COSASCO?梯式挂片 3.4平方英寸3英寸条状6210型挂片(可伸缩式) 3.4平方英寸COSASCO?平面盘状挂片 2.5平方英寸

管道腐蚀速率计算模型综述

国内外研究现状 油气管道系统的腐蚀速率计算与可靠性分析的研究,多是基于概率论和数理统计等数学工具对管道腐蚀的速率与可靠性进行定量分析[1]。现今,国内外主要采用的方法有:马尔科夫、神经网络、。。。、等方法。许多专业研究人员、学者做了大量研究工作,为这一领域打下了良好的基础,提供了强大的理论依据。 一、神经网络 BP网络最初是由Werbos 于1975 年前后发明的,它由输入层神经元、输出层神经元及隐层神经元组成,其中隐层可以是一层或多层,相邻层采用全互连结构,如图1所示。 图 1 BP神经网络结构 (1)灰色神经网络模型 将GM(1,1)模型与神经网络相结合,形成灰色神经网络模型[2]。其主要过程是将GM(1,1)模型得到的预测值作为传统的神经网络的输入样本,其真实值作为神经网络的目标样本,采用一定的网络结构进行学习训练,调整其连接权值直到达到网络训练目标要求,就可以得到调整后的连接权值,再用GM(1,1)模型预测得到的值作为网络的输入进行仿真[3]。 (2)径向基过程神经网络模型 1985年,Powell提出了多变量插值的径向基函数(Radial-Basis Function,RBF)方法。1988年,Broomhead和Lowe首先将RBF应用于神经网络设计,

构成了径向基函数神经网络,即RBF 神经网络。 图 2 典型的RBF 神经网络 过程神经元网络与传统神经网络不同之处在于它的输入、激励阈值以及网络的连接权均可以是时变函数或时变过程[4]。过程神经元在传统神经元空间加权聚合运算[5,6,7]的基础上,增加了一个对于时间(过程)的累积算子,其聚合运算和激励可同时反映多输入时变信号的空间加权聚合和对时间过程效应的累积,并具有连续性、对连续泛函数逼近能力等理论性质。 径向基过程神经元网络的输入层有n 个节点单元,完成将时变函数向神经元网络的输入;中间径向基过程神经元隐层有m 个节点单元,单元的变换函数是径向基核函数;输出为隐层节点输出信号的线性加权和[8]。网络拓扑结构如图 3 图 3 径向基过程神经元网络 ),...,2,1(m j W j =为网络输入函数,)(j l t X 为第 j 个径向基过程神经元核中心函数,则径向基过程神经元网络输入输出之间的关系为: ∑∑==?-=m j T l l j l j l t t X t X W X F 11))()(())t (( 公式1

材料耐腐蚀性能的评价方法

1.1材料耐腐蚀性能的评价方法 工程材料在使用时,一定要考虑材料在相应工况环境下的耐蚀能力。也就是说,材料在此环境下是否会发生严重的腐蚀,从而导致工程结构的失效。因此,如何评价在工况环境下,材料表面腐蚀的形态、腐蚀的速度就显得非常具有现实的工程意义。 概括起来,工程材料的耐腐蚀性能的评价方法可以分为三大类:重量法、表面观察法和电化学测试法。 1.1.1重量法 重量法是材料耐蚀能力的研究中最为基本,同时也是最为有效可信的定量评价方法。尽管重量法具有无法研究材料腐蚀机理的缺点,但是通过测量材料在腐蚀前后重量的变化,可以较为准确、可信的表征材料的耐蚀性能。也正因为如此,它一直在腐蚀研究中广泛使用,是许多电化学的、物理的、化学的现代分析评价方法鉴定比较的基础。 重量法分为增重法和失重法两种,他们都是以试样腐蚀前后的重量差来表征腐蚀速度的。前者是在腐蚀试验后连同全部腐蚀产物一起称重试样,后者则是清除全部腐蚀产物后称重试样。当采用重量法评价工程材料的耐蚀能力时,应当考虑腐蚀产物在腐蚀过程中是否容易脱落、腐蚀产物的厚度及致密性等因素后,在决定选取哪种方法对材料的耐蚀性能进行表征。对于材料的腐蚀产物疏松、容易脱落且易于清除的情况,通常可以考虑采用失重法。例如,通过盐雾试验评价不同镁合金的耐蚀性能时,就通常采用失重法, 图1。

而对于材料的腐蚀产物致密、附着力好且难于清除的情况,例如材料的高温腐蚀,通常可以考虑采用增重法图2。 为了使各次不同实验及不同种类材料的数据能够互相比较,必须采用电位面积上的重量变化为表示单位,及平均腐蚀速度,如g.m -2 h -1 。根据金属材料的密度又可以把它换算成单位时间内的平均腐蚀深度,如m/a 。这两类的速度之间的 图1 失重法测试镁合金腐蚀速度 Ni –30Cr –8A l –0.5Y 铸态合金、溅射涂层、渗铝涂层在(a )1000℃高温氧化增重动力学曲线 (b) Na 2SO 4+25%wtNaCl 热腐蚀增重动力学曲线

塔菲尔曲线金属腐蚀速率的测定

塔菲尔曲线金属腐蚀速率的测定 1.溶液和电极: 倒入电解池待测溶液,放入1cm圆盘碳钢工作电极,饱和甘汞参比电极和铂金对电极,甘汞参比电极距离工作电极1-3mm。 2.选塔菲尔方法: 塔菲尔图参数设置如下图 碳钢采用默认电解池参数,如果使用其他工作电极,应改变电解池参数后点击确定。选定60s电位变化量时点击稳定后开始,自动电位示波,60s内电位变化量不大于2mV,自动开始扫描。亦可选择开路状态等待。 不锈钢丝扫描出的塔菲尔图如下:

扫描完成后,点击测量按钮,自动测量出腐蚀电流和腐蚀速率,亦可套入公式,计算出腐蚀速率。RST5000系列电化学工作站自动测量可以得到腐蚀速率。 如果设置参数不好做出来的图从直观上明显不对,可以手动校正,方法:点击拟合阴、阳极段,就可以对阴极曲线或阴极曲线进行手动拟合,其值也自动在设置栏下面显示。双击y 轴数值,作图的电流密度对数和电流密度可以互相转换, 腐蚀速度换算公式: 金属腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。它们之间可通过法拉第定律进行换算,即 corr corr i n M i nF M 41073.3-?== υ (g/m 2h ) corr i n M d ρρυ31028.3-?== (mm/年) 式中:υ为腐蚀速度(g/m 2h );d 为腐蚀深度(mm/年);corr i 是腐蚀电流密度(μA/cm 2); M 为金属的克原子量(g);n 为金属的原子价;F 为法拉第常数; ρ为金属的密度(g/cm 3 )。 注:1.以上内容摘自《电化学测试技术》刘永辉 编著 P360~361; 以钢铁为例:M=56g ,n=2,ρ=7.83cm g , 则腐蚀速度为: corr coor i i n M 24 1004.11073.3--?=?=υ (g/m 2h ) 腐蚀深度为:

腐蚀测试方法

一、 填空题 1. 腐蚀的定义:物质(通常是金属)或其性能由于与环境发生反应所引起的变质。 2. 金属腐蚀测试方法按测试方法的性质可分为物理的、化学的和电化学的的试验方法。 3. 在重量法中清除腐蚀产物的方法有:机械法、化学清洗法、电解去膜法。 4. 在确定采用何种腐蚀研究方法时应从腐蚀介质、金属材质、腐蚀类型等三方面综合考虑。 5. 腐蚀试验结果的误差包括系统误差和偶然偏差。 6. 参比电极必需具备的性能有1)参比电极应是可逆电极,它的电极电位时可逆电位,符合能斯特电极电位公式、2)电极过程的交换电流密度高,不易极化、3)具有良好的电位稳定性和重现性、4)如果参比电极突然流过电流,断电后其电极电位应很快回复到原先的电位值、5)电极电位随温度的变化小、6)制备、使用、维护简单方便。 7. 当两种不同金属在介质中相互接触,其中自腐蚀电位较负的金属在接触处的局部腐蚀速度将加剧,而自腐蚀电位较正的金属在接触处的局部腐蚀速度将减慢。 二、 不定项选择题 1. 下列电极中,在任何温度时电极电位均为零的是:(C ) A 饱和甘汞电极 B 银—氯化银电极 C 标准氢电极 D 铜—硫酸铜电极 2. 下述方法中不属于电化学测试方法的有:(A 、C ) A 重量法 B 极化曲线法 C 电阻法 D 电偶法 E 交流阻抗法 3. 某金属工件由异种金属铆钉铆接而成,其工作时处于腐蚀介质中,从安全角度考虑,应选用:(B ) A 小阳极大阴极结构 B 大阳极小阴极结构 C A 、B 都可以 4. 在经典电化学测试中,应通过盐桥与体系相连的是:(B ) A 辅助电极 B 参比电极 C 工作电极 D 全部需要 5. 在测定金属M 的电极电位M ?时,如测得M 与参比电极组成的电池的开路电压V 且连接电极M 导线的极性为负,则M ?可表示为:(A ) A M V ??=-参比 B M V ??=+参比 C M V ?= D M V ??=-参比 6. A 、B 两种金属,令,c A ?<B ?c ,,在介质中偶合后,如体系属于电化学极化控制体系,则偶合电流I g 可表示为:(A ) A ,,,exp()0.434c A g g a A c A k I I I b ??-=- B ,,,exp()0.434c A g g a A c A k I I I b ??-=+ C ,,,exp()0.434c A g g a A c A k I I I b ??+=- D ,,,exp()0.434c A g g a A c A k I I I b ??+=+ 7. 金属腐蚀速率最常用的三种指标是:(A 、B 、C ) A 重量指标 B 深度指标 C 电流指标 D 机械强度指标 8. 一个金属浸在被氢气饱和的溶液中,则金属的有效溶解速度可表示为:(B ) A 1,1,a a k i i i =+ B 1,1,a a k i i i =- C 1,2,a a a i i i =- D 1,2,a a k i i i =- 9. 以下四种测试方法,需要去除腐蚀产物的有:(D )

塔菲尔曲线金属腐蚀速率的测定方法

塔菲尔曲线金属腐蚀速率的测定方法 1.溶液和电极: 倒入电解池待测溶液,放入1cm圆盘碳钢工作电极,饱和甘汞参比电极和铂金对电极,甘汞参比电极距离工作电极1-3mm。 2.选塔菲尔方法: 塔菲尔图参数设置如下图 碳钢采用默认电解池参数,如果使用其他工作电极,应改变电解池参数后点击确定。选定60s电位变化量时点击稳定后开始,自动电位示波,60s内电位变化量不大于2mV,自动开始扫描。亦可选择开路状态等待。 不锈钢丝扫描出的塔菲尔图如下:

扫描完成后,点击测量按钮,自动测量出腐蚀电流和腐蚀速率,亦可套入公式,计算出腐蚀速率。RST5000系列电化学工作站自动测量可以得到腐蚀速率。 如果设置参数不好做出来的图从直观上明显不对,可以手动校正,方法:点击拟合阴、阳极段,就可以对阴极曲线或阴极曲线进行手动拟合,其值也自动在设置栏下面显示。双击y 轴数值,作图的电流密度对数和电流密度可以互相转换, 腐蚀速度换算公式: 金属腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。它们之间可通过法拉第定律进行换算,即 corr corr i n M i nF M 41073.3-?== υ (g/m 2h ) corr i n M d ρρυ31028.3-?== (mm/年) 式中:υ为腐蚀速度(g/m 2h );d 为腐蚀深度(mm/年);corr i 是腐蚀电流密度(μA/cm 2); M 为金属的克原子量(g);n 为金属的原子价;F 为法拉第常数; ρ为金属的密度(g/cm 3 )。 注:1.以上内容摘自《电化学测试技术》刘永辉 编著 P360~361; 以钢铁为例:M=56g ,n=2,ρ=7.83cm g , 则腐蚀速度为: corr coor i i n M 24 1004.11073.3--?=?=υ (g/m 2h ) 腐蚀深度为:

电化学腐蚀测量的方法

电化学腐蚀测量的方法 1.溶液和电极: 倒入电解池待测溶液,放入1cm圆盘碳钢工作电极,饱和甘汞参比电极和铂金对电极,甘汞参比电极距离工作电极1-3mm。 2.选塔菲尔方法: 塔菲尔图参数设置如下图 碳钢采用默认电解池参数,如果使用其他工作电极,应改变电解池参数后点击确定。选定60s电位变化量时点击稳定后开始,自动电位示波,60s内电位变化量不大于2mV,自动开始扫描。亦可选择开路状态等待。 不锈钢丝扫描出的塔菲尔图如下:

扫描完成后,点击测量按钮,自动测量出腐蚀电流和腐蚀速率,亦可套入公式,计算出腐蚀速率。RST5000系列电化学工作站自动测量可以得到腐蚀速率。 如果设置参数不好做出来的图从直观上明显不对,可以手动校正,方法:点击拟合阴、阳极段,就可以对阴极曲线或阴极曲线进行手动拟合,其值也自动在设置栏下面显示。双击y 轴数值,作图的电流密度对数和电流密度可以互相转换, 腐蚀速度换算公式: 金属腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。它们之间可通过法拉第定律进行换算,即 corr corr i n M i nF M 41073.3-?== υ (g/m 2h ) corr i n M d ρρυ31028.3-?== (mm/年) 式中:υ为腐蚀速度(g/m 2h );d 为腐蚀深度(mm/年);corr i 是腐蚀电流密度(μA/cm 2); M 为金属的克原子量(g);n 为金属的原子价;F 为法拉第常数; ρ为金属的密度(g/cm 3 )。 注:1.以上内容摘自《电化学测试技术》刘永辉 编著 P360~361; 以钢铁为例:M=56g ,n=2,ρ=7.83cm g , 则腐蚀速度为: corr coor i i n M 24 1004.11073.3--?=?=υ (g/m 2h ) 腐蚀深度为:

重量法测定溶液的腐蚀速度

重量法测定金属的腐蚀速度 主讲教师:

一、实验目的 ?1.掌握用重量法测定金属腐蚀速度的原理和方法。 ?2.通过实验进一步了解金属腐蚀现象和原理,了解某些因素(如不同介质、介质 浓度等)对金属腐蚀速度的影响。

二、实验原理 ?金属受到均匀腐蚀时的腐蚀速度表示方法一般有两种:一种是用在单位时间内,单位面积上金属损失(或增加)的质量来表示,通常采用的单位是g/(m 2.h);另一种是用单位时间内金属腐蚀的深度来表示,通常采用单位的是mm/a。 ?目前测定腐蚀速度的方法有很多,如重量法、容量法、极化曲线法、线性极化法(极化电阻法)等。重量法是一种经典的方法,适用于实验室和现场挂片,是测定金属腐蚀速度最可靠的方法之一,可用于检测材料的耐腐蚀性能、评选腐蚀剂、改变工艺条件时检查防腐效果等。

?重量法是根据腐蚀前后试件质量的变化来测定金属腐蚀速度的,分为失重法和增重法两种。当金属表面上的腐蚀产物容易除净且不至于损坏金属本体时常用失重法;当腐蚀产物完全牢靠地附着在试件表面时,则采用增重法。 ?工业生产中测定金属腐蚀速度的方法,是把金属材料做成试验小件,放在腐蚀环境中(如化工设备、大气、海水、土壤或实验介质中),经过一定时间之后,取出并测量其质量及尺度的变化,计算其腐蚀速度。本实验中,是把金属做成一定形状和大小的试件,经过表面预处理之后,放在腐蚀介质中,经过一段时间后取出,并测量其质量及尺度的变化,再计算其腐蚀速度。

?对于失重法可由下式计算腐蚀速度 ?式中V 失——金属的腐蚀速度,g·m -2·h -1; m 0——试件腐蚀前的质量,g ; m 1——试件腐蚀后的质量,g ; S ——试件的面积,m 2; t ——试件腐蚀时间,h 。 St m m V 10 =失(1)

循环水腐蚀速率的监测

循环水腐蚀速率的监测 一、挂片 材质:20#碳钢 规格:长50mm 宽50mm 厚2mm 数量:20片 注:挂片上有ф4mm的小孔,便于悬挂;有编号(01-20),便于记录。 二、挂片监测前处理 1.在蒸馏水中用脱脂棉擦洗一遍,在用蒸馏水冲洗15秒钟。 2.在化学醇无水乙醇(50ml/10片)中用脱脂棉擦洗两遍。 3.置干净滤纸上,冷风吹干。 4.用滤纸包好,置干燥器中24小时后称重。(腐蚀前重g)待用。 三、挂片监测位置(每个位置分别挂两片) 1.南合成循环水热水池 2.南脱碳冷排池 3. ф800合成冷排池 4.北甲醇冷排池 5. 5#压缩机冷排池 6.北合成循环水热水池 7.6#压缩机冷排池 8尿素循环水冷水池 注:挂片应安置于需要监测的设备管线上,使其尽可能地与需要监测的设备有同等腐蚀条件。监测过程试片不可暴露于空气中。 四、挂片监测 1.时间:悬挂系统内,记下时间1;取出监测试片,记下时间2。 2.监测时间:应三个月、半年、或一年否则监测时间过短,易产生误 差。 五、试片监测后处理: 1.取出试片,用已配制好的10%HCI+0.5%六次甲基四胺清洗液,清

除试片上油脂物质或腐蚀产物。 2.用蒸馏水冲洗15秒。 3.用配制好的碱性溶液(2%NaOH)进行冲洗。 4.用蒸馏水冲洗15秒。 5.放入无水乙醇中浸泡并擦洗一下。 6.置小烧杯中,放入烘箱内(105℃),烘30分钟。 7.取出置于干燥器中,经冷却后称重(腐蚀后重g)。 六、计算公式; 腐蚀速度的计算公式: (W 1-W 2 )×87600 X=───────── mm/a A·T·D X──试片腐蚀速率 mm/a W 1 ──试片试前称重 g W 2 ──试验后试片称重 g 87600──计算常数 A ──试片表面积 cm2 T ──试验时间 h D ──试片材质密度 g/cm3

腐蚀速度

最大腐蚀速度计算公式为 vmax =h/t。(1)式中, vmax为最大腐蚀速度; h 为最大腐蚀孔深度; t 为埋藏年限。采用深度计测量接地体上h ,精确到0101 mm。为了测量试件上最大深度,至少要测量5 个最深的孔,每一腐蚀坑测量3 次,取其平均值,然后利用式(1) 计算接地体的vmax 。 接地体原始重量则根据接地体的体积和密度进行计算,原始重量与除锈后的称重之差即为接地体的腐蚀失重。对于金属全面腐蚀的程度的判定包括腐蚀前后重量变化和厚度(深度) 变化表示的腐蚀率。金属局部腐蚀表现为孔蚀,孔蚀在小孔部位反映出腐蚀深度的变化,其他 部位基本没有变化,金属损失很小,而引起破坏事故的往往是最深的 孔[14 ] ,所以用最大腐蚀速度判定局部腐蚀。以腐蚀重量变化表示的腐蚀率是单位时间内被腐蚀物的单位面积上因腐蚀引起的重量变化,称为平均腐蚀率。其计算公式为Ra =Δm/A t。式中, Ra 为平均腐蚀率; A 为试件曝露面积;Δm 为质量损失。 以腐蚀深度表示的腐蚀率是在单位时间内被腐蚀金属的厚度变化,称为深度腐蚀率。其计算公式为Rh =Δm/dA t。式中, Rh 为深度腐蚀率; d 为材料密度。采用孔蚀因素α评价接地体的腐蚀不均匀程度, α越大,腐蚀的不均匀性愈高。其中α= vmax / Rh 。

[ 1 ] 谢广润. 电力系统接地技术[M] . 北京:中国电力出版社,1991. [ 2 ] 刘健,王树奇,李志忠,等. 接地网腐蚀故障诊断的可测性研 究[J ] . 高电压技术,2008 ,34 (1) :64269. [ 3 ] DL/ T 62121997 交流电气装置的接地[ S] ,1997. [ 4 ] 胡毅. 关于变电站接地网的腐蚀及解决措施[J ] . 高电压技术,1987 ,13 (2) :62263. [ 5 ] 杨道武,朱志平,李宇春,等. 电化学与电力设备的腐蚀与防护[M] . 北京:中国电力出版社,2004. [ 6 ] 黄小华,邵玉学. 变电站接地网的腐蚀与防护[J ] . 全面腐蚀控制,2007 ,21 (5) :22225. [ 7 ] 胡学文,许崇武,王钦. 接地网防蚀材料性能试验[J ] . 高电压技术,2002 ,28 (5) :21223. [ 8 ] 詹约章. 变电站接地网的腐蚀及防护[J ] . 高电压技术,1990 ,16 (2) :82285. [ 9 ] 肖新华,刘华,陈先禄,等. 接地网腐蚀和断点的诊断理论分 析[J ] . 重庆大学学报(自然科学版) ,2001 ,24 (3) :72275. [ 10 ] 蔡崇积. 我国依国外标准设计电力交流接地网运行状况调研 电力设备[J ] . 电力设备,2005 ,6 (5) :21225. [ 11 ] IEEE Std 8022000 IEEE guide for safety of AC substation grounding[ S] , 2000. [ 12 ] 刘秀晨,安成强. 金属腐蚀学[M] . 北京,国防工业出版社,2002. [ 13 ] GB/ T 1654521996 金属和合金的腐蚀2腐蚀试样上腐蚀产物 的清除[ S] ,1996. [ 14 ] 中国腐蚀与防护学会. 金属的局部腐蚀[M] . 北京:化学工业 出版社,1995. [15 ] 国家科学技术委员会国家自然科学基金委员会全国土壤腐蚀试 验网站. 材料土壤腐蚀试验方法[M] . 北京:科学出版社,1990. [ 16 ] SY 000721999 钢质管道及储罐腐蚀控制工程设计规范[ S] ,

相关文档