文档库 最新最全的文档下载
当前位置:文档库 › CH4、N2和CO2在碳纤维分子筛上的吸附分离特征

CH4、N2和CO2在碳纤维分子筛上的吸附分离特征

CH4、N2和CO2在碳纤维分子筛上的吸附分离特征
CH4、N2和CO2在碳纤维分子筛上的吸附分离特征

CH4、N2和CO2在碳纤维分子筛上的吸附分离特征*

王水利?,葛岭梅

(西安科技大学化学与化工学院,陕西西安,710054,中国)

摘要:矿井瓦斯中CH4与N2和CO2的有效分离是解决低浓度瓦斯回收利用的技术关键。为此,本文利用自制的吸附装置,研究了CH4、N2、CO2及其两相混合物在沥青基碳纤维分子筛(ACF-MS)上的吸附、分离特征。结果表明,单组分吸附时,ACF-MS对CO2具有较高的吸附量,CH4次之,N2最低。1:1mol两相混合气体吸附时,ACF-MS对CO2 /N2有较好的吸附分离作用,对CH4 /N2和CH4 /CO2的分离效果较差。

关键词:沥青基ACF-MS;CH4,N2和CO2;吸附分离

Characteristics of Separating CH4, N2 and CO2 on Carbon

Fibre Molecular Sieve

Wang Shuili, Ge Lingmei (Institute of chemistry and chemical engineering,Xi’an university of science and

technology, Xi’an, Shaanxi, 710054 )

Abstract: The effective separations between CH4 and N2, and CO2 in the mine gas is a key technology for low-concentration gas recovery and utilization. For this purpose, the adsorption and separation characteristics of the CH4, N2, CO2, and their two-phase mixtures, are sdutied on the pitch-based activated carbon fiber molecular sieve (ACF-MS), using the absorption-made device. The results showed that for single-component adsorption, ACF-MS have a higher CO2 adsorption, CH4 times, N2 minimum. For two-phase mixed gas with the 1:1 mol mixture ratio, ACF-MS has a better effect on the adsorption separation of CO2 and N2, and the separation of CH4 and CO2, and CH4 and N2 are less effective.

Key words: pitch-based ACF-MS; CH4, N2 and CO2; adsorption separation.

1.引言

活性炭纤维分子筛(ACF-MS)是在活性炭纤维制备方法的基础上,通过适当的孔径控制或调节制备出的孔径分布很窄的分子筛型碳纤维。作为一种微孔碳基吸附材料,ACF-MS不仅比表面积大(最高达2500m2/g)、表面活性高、吸附容量大(是活性炭的1~40倍)、吸/脱附速率快,而且使用寿命长(是颗粒活性炭的3~5)、强度高、不易粉化[1-4],是目前最优秀的非极性吸附材料之一,在水质净化、废水处理、溶剂回收、气体分离与净化以及辐射防护、催化剂载体、血液净化、水果蔬菜保鲜、除臭、除湿等方面得到广泛应用。在矿井低浓度瓦斯(甲烷含量小于30%)的浓缩方面,ACF-MS有望成为最有希望的变压吸附材料之一,比如陆安慧等[5]以聚丙烯睛基预氧纤维毡(PAN-OF)为原料,经过空气氧化和CO2活化制备出对CO2/CH4具有较好筛分性能的分子筛型聚丙烯睛基活性碳纤维毡(PAN-ACF),当吸附压力为0.15 MPa时,所产CH4的浓度达到99.9%。

*基金项目:陕西省自然基金项目(2004E218)

?王水利(1956-11),男,陕西西安人,教授,主要从事矿物加工及安全技术研究。

本文以瓦斯气体中常见的三种气体组分——甲烷、氮气和二氧化碳为吸附质,通过其在沥青基ACF-MS上的吸附试验,探讨三种瓦斯主要成分在沥青基ACF-MS上的吸附、分离特征,为以ACF-MS 为吸附剂的变压吸附分离过程提供依据。

2.实验部分

2.1ACF-MS的制备

ACF-MS的制备采用空气氧化-CO2活化法[6]。取一定量沥青基碳纤维,用丙酮、蒸馏水洗净烘干后置于马弗炉中,于500℃下空气预氧化40min,冷却至室温后取出放于炭化活化炉的石英反应管中进行活化。活化在氮气保护下进行,活化温度900℃,活化时间90min,活化剂CO2流量0.3L/min。ACF-MS孔结构表征采用低温氮吸附法,结果见表1。

表1 ACF-MS微孔结构参数

Tab.1 Micropore structure parameters of ACF-MS

样品

比表面积

m2/g 外表面积

m2/g

微孔体积

cm3/g

微孔尺寸

nm

ACF-MS 1545 35 0.359 0.90-0.98

2.2 吸附试验

吸附试验在自制的吸附装置上进行(图1)。吸附柱有效容积7.85cm3,吸附剂(短切纤维)装填量2g,装填密度0.25g/cm3,折合0.16cm3ACF-M S/cm3吸附柱容积(PACF密度1.55~1.6g/cm3)。采用静态变压吸附法,压力变化范围50kPa~1500kPa。200kPa以前,每50kPa为一个吸附压力平衡点;200kPa~1500kPa,每100kPa为一个吸附压力平衡点。吸附温度保持在25℃(298K)。

图1吸附装置示意图

Fig. 1 Schematic apparatus used for adsorption of gas

1,2.吸附质储气瓶;3.混合气罐;4,5.流量计;6.真空泵;

7,8.吸附柱;9.水冷系统;M1~M4.压力表;V1~V13, 阀门.

吸附量测量采用重量法。当吸附压力达到平衡后,采用称重方式,经扣除吸附柱质量和自由空间吸附质气体质量后获得吸附气体质量数,并将其转换为摩尔质量数。自由空间体积的测定采用氦气吸附法。由于吸附压力相对较低,在计算自由空间吸附质气体质量数时未考虑压缩因子,由此产生的误

差最大不超过3% CH 4和11% CO 2。

吸附试验分单组分吸附和双组分吸附。单组吸附分别以高纯度(99.99%)的CH 4、N 2和CO 2为吸附质;双组分吸附的吸附质分别由高纯度CH 4、N 2和CO 2两两按1:1摩尔比构成,吸附试验结果得到的是混合气体的总吸附质量,各单组分气体的吸附量需经对解吸气体进行色谱分离并测取各组分在混合气体中的比例后由计算获得。

双组分吸附时,组分间的分离系数计算按下式[7]

进行:

j

i j i ij y y x x =

α

式中,ij α——组分i 和组分j 的分离系数;i x 、j x ——组分i 和组分j 在吸附相中的摩尔分数;i y 、

j y ——组分i 和组分j 在气相中的摩尔分数。

3. 结果与讨论

3.1 单组分吸附

图2为ACF-MS 在25℃下分别对CH 4、N 2和CO 2的吸附等温线。由图2可见,在所设定的吸附压力范围内,CH 4、N 2和CO 2在ACF-MS 上的吸附等温线形态基本相同,均呈简单上凸的Ⅰ型吸附等温线,但吸附量差异明显。在相同的压力下,三种气体中,以CO 2在ACF-MS 上的吸附量最高,CH 4次之,N 2吸附量最低;而且随着吸附压力的增加,吸附量差异逐渐加大。当压力为1.5MPa 时,CO 2在ACF-MS 上的吸附量(14.21mmol/g )是CH 4(7.66mmol/g )的1.86倍,是N 2(4.34mmol/g )的3.27倍。表明条件相同下,沥青基ACF-MS 将优先吸附CO 2。

200

400

600

800

1000

1200

1400

1600

2468101214

16A m o u n t a d s o r b e d (m m o l /g )

Pressure (kPa)

CH4

N2 CO2

图2 CH 4、N 2和CO 2在沥青基活性碳纤维上的吸附等温线 Fig. 2 CH 4, N 2 and CO 2 adsorption isotherms on PACF at 298K

3.2 双组分混合气体吸附

图3是ACF-MS 对双组分混合气体CO 2/CH 4、CH 4/N 2和CO 2/N 2的吸附等温线。纵观图3中的三张等温线图可以发见,图3a 和图3b 的曲线形状及变化规律十分类似(吸

附量不同),而与图3c 差异较明显。

200

400

600

800

1000

1200

1400

1600

02

4

6

8

10

A m o u n t a d s o r b e t (m m o l /g )

Pressure (kPa) CH4

CO2

200

400

600

800

1000

1200

1400

1600

1

2

3

4

5

6

A m o u n t a d s o r b e d (m m o l /g )

Pressure (kPa)

CH4 N2

a b

200

400

600

800

1000

1200

1400

1600

2

4

6

8

10

12

A m o u n t a d s o r b e d (m m o l /g )

Pressure (kPa)

N2CO2

c

图3 CH 4/CO 2混合气体在ACF-MS 上的吸附等温线 Fig.3 Adsorption isotherms of CH 4/CO 2 on ACF-MS

在图3a 中,随着压力的增大,CO 2和CH 4在ACF-MS 上的吸附量均呈线性增加,且CO 2吸附量及其随压力的增幅明显高于CH 4,两者的摩尔吸附量比值由50kPa 时的1.93:1增加到1500kPa 时的3.78:1,表明压力越高,越有利于CO 2和CH 4的吸附分离。在图3b 中,随着压力的增大,CH 4和N 2在ACF-MS 上的吸附量也呈线性增加,且CH 4吸附量及其增幅明显高于N 2;但与CO 2/CH 4不同的是,CH 4和N 2在ACF-MS 上的摩尔吸附量比值在50kPa 时为4.09:1,150kPa 时达最大的5.25:1,此后基本呈减小趋势,到1500kPa 时为 3.57:1,表明吸附材料对甲烷在较低压力下即可迅速吸附,而对氮气的吸附则主要依赖于压力(被动吸附)。在图3c 中,ACF-MS 对CO 2和N 2的选择吸附性差异非常明显。对CO 2的摩尔吸附量10倍(50kPa 时)~14倍(1500kPa )于N 2,而且压力越高,分离性能越好。

上述现象说明,ACF-MS 对CO 2具有很高的选择吸附性,对CH 4的吸附性相对较差,对N 2几乎无选择性(吸附量只与压力有关)。 3.3吸附分离特征

图4是CO 2/CH 4、CH 4/N 2和CO 2/N 2在ACF-MS 上的分离系数随压力的变化关系。由图4可以看出,CO 2/CH 4和CO 2/N 2的分离系数随压力增大呈增加趋势,尤其在压力较低时,增加趋势明显;而CH 4/N 2在很低压力下呈现先快速增加,然后缓慢减小的趋势。三种混合组分中,以CO 2/N 2的分离系数最大,其数值由50kPa 的9.24增加到1500kPa 时的12.92,而且大多在12以上;CH 4/N 2的分离系数最小3.41(1400kPa 处),最大5.05(150kPa 处),大多仅在近3.5~4之间;CO 2/CH 4的分离系数最小仅1.82,最大也仅3.58。根据文献[8],只有当两种气体间的分离系数大于3时,PSA 过程才具有经济意义。据此,碳纤维分子筛在较低压力下即可用于CO 2与N 2以及CH 4与N 2的分离,尤其适合于CO 2与N 2的分离;而当用于CO 2与CH 4的分离时,需要较高的压力。

200

400

600

800

1000

1200

1400

1600

2

4

6

8

10

12

14

C o e f f i c i e n t o f s e l e c t i v i t y

Pressure (kPa)

CH4/CO2

CH4/N2 CO2/N2

图4 不同压力下CH 4、CO 2和N 2在ACF-MS 上的吸附分离系数

Fig.4 Selectivity of CH 4, CO 2 and N 2 on ACF-MS

4. 结论

⑴. 在自制的吸附装置上,以最佳条件下制备的碳纤维分子筛为吸附剂,纯CH 4、N 2和CO 2为吸附气体,分别进行了常温条件下的单组分和双组分吸附等温线测试,计算了组分间的分离系数。

⑵. 单组吸附试验结果表明,碳纤维分子筛对CO 2的吸附选择性最好,吸附量最高;其次为CH 4,而对N 2几乎无选择。

⑶. 1:1mol 两相混合气体吸附试验结果表明,碳纤维分子筛对CO 2 和N 2有较好的吸附分离作用,分离系数最大;而对CH 4 和N 2以及CH 4 和CO 2的分离效果较差,尤其是对CH 4 和CO 2的分离几乎无实用价值。

参考文献

[1]. 郑经堂. 活性炭纤维[J]. 新型碳材料,2000,15(2):34.

Zheng Jingtang. Activated Carbon Fibers[J]. New Carbon Materials, 2000, 15(2): 34, (in Chinese).

[2].黄伯芬.活性炭纤维(ACF)及其应用[J]. 化工时刊,2003,17(11):16-18.

Huang Bofen.Activated Carbon Fibres(ACF) and its Application[J].C hemical Industry Times, 2003,17(11):16-18, (in Chinese).

[3].张学军,沈曾民. 沥青基活性碳纤维的制备[J]. 合成纤维,2000,29(3):29-31.

Zhang Xuejun, Shen Zengmin. Preparation of Pitch-based Activated Carbon Fiber(PACF) [J]. Synthetic Fiber in China, 2000, 29(3): 29-31, (in Chinese).

[4].张健,张永春,宋伟杰.活性炭纤维及其在气体分离中的应用展望[J].低温与特气,2001,19(2):6-9.

Zhang Jian, Zhang Y ongchun, Song Weijie. Activated Carbon Fiber and its Application Progression in Gas Separation [J].

Low Temperature and Specialty Gases, 2001, 19(2): 6-9,(in Chinese).

[5].陆安慧,郑经堂.用于分离CH4/CO2的分子筛型PAN-ACF的制备和性能[J].材料研究学报,2002,16(2):188-192.

Lu Anhui, Zheng Jingtang. Preparation and Characterization of Pan-based Fibrous Carbon Molecular Sieves Used to Separate CH4 from CO2 [J].Chinese Journal of Materials Research, 2002, 16(2): 188-192, (in Chinese).

[6].钟家春. 分子筛型PACF活化工艺及筛分性能研究[D].硕士学位论文,西安科技大学,2006

Zhong Jiachun. Studies on the activation process and separation ability of PACF molecular sieve [D]. Xi’an University of Science and Technology, 2006, (in Chinese).

[7].陈欢林主编.新型分离技术[M].北京:化学工业出版社,2005.

Chen Huanlin. New Separation Techniques[M]. Chemical Industry Press, 2005, (in Chinese).

[8].Jasra R V, Choudry N V, Bhat S G T. Separation of gases by pressure swing adsorption[J]. Sep. Sci. Technol, 1991, 26(7):

885-930.

分子筛制氧机原理

分子筛制氧机设计原理 赵鑫

1.概述 分子筛式制氧机是指以变压吸附(PSA) 技术为基础,从空气 中提取氧气的新型设备。其利用分子筛物理吸附和解吸技术 在制氧机内装填分子筛,在加压时可将空气中氮气吸附,剩 余的未被吸收的氧气被收集起来,经过净化处理后即成为高 纯度的氧气。具体工作过程为压缩空气经空气纯化干燥机净 化后,通过切换阀进入吸附塔。在吸附塔内,氮气被分子筛 吸附,氧气在吸附塔顶部被聚积后进入氧气储罐,再经除异 味、除尘过滤器和除菌过滤器过滤即获得合格的医用氧气。 2.制氧原理 2.1.吸附剂氧分子筛 分子筛是一种晶状铝硅酸盐,其原子按 一定的形状排列,基本结构单元是四个 氧阴离子围绕一个较小的硅或铝离子而 形成的四面体。钠离子或其它阳离子的 作用是补充铝氧四面体正电荷的不足。 四个氧阴离子的每一个,又都分被另一 个铝氧或硅氧四面体共用,使晶格作三 维延伸。晶格中暴露的阳离子使分子筛 具有更强的吸附能力,这些阳离子起着局部强正电荷格点的作用,对极性分子的阴端进行静电吸引,分子的偶极矩越大,被吸引和吸附得越牢。在阳离子上的局部强正电荷的影响下,分子会受到电磁感应而产生偶矩。氧和氮都具有四极矩,但氮的四极矩(0.3?)比氧(0.1?)比大得多。因此,氮原子与阳离子之间的作用力较强,而被优先吸附。当有压力时,分子筛会吸附较多的氮原子;当减压时,分子筛会将吸附的氮原子释放出来(称为解吸)。 家庭制氧用分子筛一般用13X(NaX)型和5A(CaA)型。13X的氧气吸收率为47%,5A的氧气吸收率为54%。还有更高吸收率的CaX型(71%)、LiX型(82%),但成本太高。

碳分子筛制备工艺总结

本实验炭分子筛的制备采用炭化法与气体活化、碳沉积法相结合,原料为椰壳,相对 于有机高分子聚合物和煤炭类原料,类属于植物基的椰壳具有原料价格低廉,来源广泛,且高含碳量、低挥发分、低灰分。利用植物壳等废料制备商业化产品如CMS, 不仅可避免植物直接焚焼或填埋带来的环境污染,还可变废为宝,为世界提供能源。 以椰壳一次炭化料(椰壳在一定温度、惰性气氛下热解)为原料、酚醛树脂为粘结剂制 备CMS。具体制备步骤如下:首先使用行星式球磨机将椰壳一次料磨至所需粒度 (<10μm ),以酚醛树脂为粘结剂,聚乙二醇为助剂,在自动控温混涅机里混捏均匀后在双螺杆挤条机上挤条成型,然后将自然晾干的成型料断条整粒至小于4mm。最后将长度较均一的成型料加入转炉行二次炭化、活化、一步苯沉积、二步苯沉积制备CMS。CMS制备工艺流程如图1.1所示。 图1. 1 CMS制备工艺流程图 Fig.1.1 Technology process diagram for CMS prepared 一次炭化:是指原料在惰性气氛下将成型原料在适当的热解条件下炭化的方法。在热 解条件下,原料分子中各基团、桥键、自由基和芳环发生复杂的分解缩聚反应,从而 导致炭化物孔隙的形成、孔径的扩大和收缩。适用于分子结构规整的树脂和果壳类的 高挥发分物质,如杏核壳、山枣核、椰子壳、桃核壳、山碴核等。影响炭化效果的主 要因素是升温速率、炭化温度与恒温时间。本实验经炭化后制得椰壳一次炭化料。 混捏挤条:一次炭化料经球磨机磨制所需粒度后,以聚乙二醇为助剂、酚醛树脂为粘 结剂,与水按照一定比例在自动控温混捏机中混捏均匀,在双螺杆挤条机上挤条成型。混捏的目的是为了使一次炭化料有一定的粘性,有助于在挤条过程中成型,确保断条 及工业应用目的的实现。 断条整粒:挤条成型料经自然晾干后送至断条装置断条至所需粒径,可用筛分装置判 断是否符合要求。断条整粒的目的是使颗粒长短均一,以使颗粒在相同的活化、炭沉 积下得到的产品性能一致。

沸石转轮处理原理

沸石转轮技术工作原理 沸石转轮浓缩系统(ROTOR)在处理大风量低浓度的废气、连续性操作、效率稳定度、废气排放状况均优于固定床系统,转轮同时亦有低压损、无吸附损耗、极少可移动组件的优点。转轮机后为无机性蜂巢疏水性沸石,对于高温度的挥发性有机气体,沸石亦能有效处理。 操作原理

VOCs废气通过疏水性沸石浓缩转轮后,能有效被吸附于沸石中,达到去除的目的。经过沸石吸附的挥发性有机物的洁净气体,直接通过烟囱排放到大气中,转轮持续以每小时1-6转的速度旋转,同时将吸附的挥发性有机物传送至脱附区。于脱附区中利用一小股加热气体将挥发性有机物进行脱附,脱附后的沸石转轮旋转至吸附区,持续吸附挥发性有机气体。脱附后的浓缩有机废气送至焚化炉进行燃烧转化成二氧化碳及水蒸气排放至大气中。

吸附浓缩 处理大风量含浓度低于800 ppm、40℃温度以下的VOCs气体,通过转轮内的沸石被吸附,以系统抽气变频风机将干净尾气排入大气。吸附器为立式转轮(CTR)可提供大量的气体接触沸石表面积,转轮持续以每小1~6转的速度旋转。提供95%以上的VOCs(volatile organic compounds)去除率。 脱附 转轮内VOCs(volatile organic compounds)被浓缩成饱和沸石区、再利用热交换器提供的热流(约200℃)来进行脱附,脱附完成后旋转至冷却区,以常温空气吹嘘冷却至常温、再旋转至吸附浓缩区。 氧化 脱附出高浓度VOCs(volatile organic compounds)气流,以氧化风机抽送至蓄热式焚化炉(RTO)内燃烧焚化处理,排放出干净CO2(g)及H2O(g)至大气。燃烧室高温气流被引出至气对气热交换器,与常温空气进行热交换、升 温至脱附温度的热流,供脱附使用达到省能目的。

变压吸附原理及应用

变压吸附气体分离技术 目录 第一节气体吸附分离的基础知识 (2) 一、吸附的定义 (2) 二、吸附剂 (3) 三、吸附平衡和等温吸附线—吸附的热力学基础 (6) 四、吸附过程中的物质传递 (10) 五、固定床吸附流出曲线 (12) 第二节变压吸附的工作原理 (14) 一、吸附剂的再生方法 (14) 二、变压吸附工作基本步骤 (16) 三、吸附剂的选择 (17) 第三节变压吸附技术的应用及实施方法 (20) 一、回收和精制氢 (20) 二、从空气中制取富氧 (24) 三、回收和制取纯二氧化碳 (25) 四、从空气中制氮 (26) 五、回收和提纯一氧化碳 (28) 六、从变换气中脱出二氧化碳 (31) 附Ⅰ变压吸附工艺步骤中常用字符代号说明 (32) 附Ⅱ回收率的计算方法 (32)

第一节气体吸附分离的基础知识 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面的原子的剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的压力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais) 吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本文以下叙述的除了注明之外均为气体的物理吸附。

沸石分子筛用于气体吸附分离的原因

沸石分子筛用于气体吸附分离的原因 氧气、氮气、一氧化碳及甲烷都是重要的工业原料气体。随着工业的发展,这些原料气体的需求量不断地增加,使N2/O2分离、N2/CH4分离、CO/N2分离及CO/CH4分离具有非常重要的工业意义。工业上气体分离过程有深冷法、吸附分离法等。过去二十多年来,吸附分离法取得了很大的发展,尤其是变压吸附(PSA)循环的逐渐完善,使得气体吸附分离更为经济有效。吸附剂是PSA气体分离技术的基础,吸附剂的性能直接影响最终分离效果,甚至影响工艺步骤的选择和PSA的生命力。适用于PSA的吸附剂必须对目的气体有高的吸附容量和分离选择性;吸附剂的分离选择性系数Α只有在大于3时,PSA过程才具有经济性;当Α低于2时,就很难设计出一个满意的PSA分离过程。在工业上,孔隙率高且通常用于气体或蒸气混合物分离的吸附剂主要有沸石分子筛、活性炭、活性粘土、硅胶及活性氧化铝。沸石分子筛以其规整的晶体结构、均匀一致的孔分布和可调变的表面性质在吸附分离领域得到广泛应用。 沸石分子筛是结晶硅铝酸盐,普通化学式为Mx/n[(AlO2)x(SiO2)y]·mH2O.它在气体分离过程中备受欢迎的一些独特性能是: a.晶体三维微孔结构赋予其很高的热稳定性和水热稳定性; b.与活性炭等吸附剂不同,其孔结构均匀一致,孔大小分布单一; c.通过不同骨架外阳离子交换,可以调变其孔的尺寸; d.通过改变骨架硅铝比,可调变其表面极性; e.与其它类型吸附剂相比,即使在较高的温度 和较低的吸附质分压下,仍有较高的吸附容量。 PSA过程主要是基于以下因素:

沸石分子筛是一种离子型极性吸附剂,孔道表面高度极化,即沸石晶穴内部有强大的库仑场和极性使其易于吸附极性较强、极化率较大的分子。当沸石分子筛晶体粉末与粘合剂经挤压成型时,晶体微粒间形成大孔,这些大孔与晶粒自身的微孔构成了双分散二级孔结构,使其更加符合工业气体分离方面的应用。影响沸石分子筛气体吸附分离的因素主要是,沸石分子筛的孔道(尤其是孔口)的几何因素和沸石分子筛的骨架外阳离子产生的电子因素。由表1可知,这几种气体分子的大小和极性都较为接近。但是,沸石分子筛能将气体有效分离的奥妙在于,沸石分子筛通过离子交换等改善其表面电性和调变其孔口尺寸,从而使具有微小极性差异的气体分子分离开。 总之,沸石分子筛具有适应工业气体分离要求的独特结构,同时可通过离子交换、改变硅铝比、调变骨架元素等方面对其改性,从而实现N2/O2,CH4/N2,CO/N2及CO/CH4的有效分离。

碳分子筛

碳分子筛 碳分子筛概述 : 碳分子筛的主要成分为元素碳,外观为黑色柱状固体。因含有大量直径为4埃德微孔,该微孔对氧分子的瞬间亲和力较强,可用来分离空气中的氧气和氮气,工业上利用变压吸附装置(PSA )制取氮气。鑫陶碳分子筛制氮量大、氮气回收率高,使用寿命长,适用于各种型号的变压吸附制氮机,是变压吸附制氮机的首选产品。 碳分子筛空分制氮已广泛地应用于石油化工、金属热处理、电子制造、食品保鲜等行业。 碳分子筛物化指标: 颗粒直径: 1.6mm 堆积密度: 640-660g/l 抗压强度: 100N/颗 Min. 粉尘含量: 100PPM Max. 碳分子筛性能指标 : 型 号 (Type) 吸附压力 (MPa) 氮浓度 (N2%) 产氮量 (NM3/h.t) N2/Air (%) CMS-160 0.8 99.99 99.9 99.5 99.0 98.0 40 100 160 200 290 15 23 34 38 43 CMS-185 0.8 99.99 99.9 60 120 20 26

99.5 99.0 98.0 185 230 310 36 41 46 CMS-200 0.8 99.99 99.9 99.5 99.0 98.0 70 140 200 260 330 21 27 36 41 48 CMS-220 0.8 99.99 99.9 99.5 99.0 98.0 90 160 220 290 360 25 34 43 48 54 CMS-240 0.8 99.99 99.9 99.5 99.0 98.0 100 175 240 300 370 26 35 44 49 55 CMS-260 0.8 99.99 99.9 99.5 110 190 260 27 36 45

改性沸石吸附低浓度氨氮废水及其脱附的研究_百度文库.

第 5卷第 2期环境工程学报 V o l . 5, N o. 2 2011年 2月 Feb. 2011 改性沸石吸附低浓度氨氮废水及其脱附的研究 唐登勇 1, 2, 3 郑正 4 郭照冰 1, 2, 3 林志荣 1, 2, 3 董超 3 王晓兰 3 (1 江苏省大气环境监测与污染控制高技术研究重点实验室 , 南京 210044; 2. 南京信息工程大学循环经济与清洁生产研究中心 , 南京 210044; 3. 南京信息工程大学环境科学与工程学院 , 南京 210044; 4. 复旦大学环境科学与工程系 , 上海 200433

摘要采用氯化钠溶液对浙江某地天然沸石改性 , 以低浓度氨氮废水为处理对象 , 比较了天然沸石和改性沸石的吸 附等温线、吸附动力学和动态吸附 , 并进行了改性沸石的动态脱附研究。结果表明 , 沸石的平衡吸附量随着平衡浓度的增大而增大 ; F reund lich 方程比 L angm uir 方程更好地描述沸石吸附低浓度氨氮废水的行为 , 改性沸石比天然沸石具有更大的吸附氨氮能力。假二级方程很好地拟合沸石吸附动力学实验数据。装填 105g 的改性沸石吸附柱有效处理 20mg /L氨氮的废水量为 40L , 是装填相同质量天然沸石吸附柱的 2 67倍 , 出水氨氮浓度小于 5mg /L。用含氯化钠和氢氧化钠的溶液脱附改性沸石吸附柱吸附的氨氮 , 脱附率为 95 2%。 关键词改性沸石氨氮吸附脱附 中图分类号 X703 文献标识码 A 文章编号 1673 9108(2011 02 0293 04 Study on a mmoni a nitrogen adsorpti on fro m l ow concentration waste w ater by modified zeolite and its desorption Tang Dengyong 1, 2, 3 Zheng Zheng 4 Guo Zhaobing 1, 2, 3 L i n Zh ir ong 1, 2, 3 Dong Chao 3 W ang X i a olan 3

实验十五分子筛变压吸附提纯氮气

实验十五碳分子筛变压吸附提纯氮气利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离。吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附。一个完整的吸附分离过程通常是由吸附与解吸(脱附)循环操作构成,由于实现吸附和解吸操作的工程手段不同,过程分变压吸附和变温吸附,变压吸附是通过调节操作压力(加压吸附、减压解吸)完成吸附与解吸的操作循环,变温吸附则是通过调节温度(降温吸附,升温解吸)完成循环操作。变压吸附主要用于物理吸附过程,变温吸附主要用于化学吸附过程。本实验以空气为原料,以碳分子筛为吸附剂,通过变压吸附的方法分离空气中的氮气和氧气,达到提纯氮气的目的。 A 实验目的 (1)了解和掌握连续变压吸附过程的基本原理和流程; (2)了解和掌握影响变压吸附效果的主要因素; (3)了解和掌握碳分子筛变压吸附提纯氮气的基本原理; (4)了解和掌握吸附床穿透曲线的测定方法和目的。 B 实验原理 物质在吸附剂(固体)表面的吸附必须经过两个过程:一是通过分子扩散到达固体表面,二是通过范德华力或化学键合力的作用吸附于固体表面。因此,要利用吸附实现混合物的分离,被分离组分必须在分子扩散速率或表面吸附能力上存在明显差异。 碳分子筛吸附分离空气中N2和O2就是基于两者在扩散速率上的差异。N2和O2都是非极性分子,分子直径十分接近(O2为,N2为),由于两者的物性相近,与碳分子筛表面的 结合力差异不大,因此,从热力学(吸收平衡)角度看,碳分子筛对N2和O2的吸附并无选择性,难于使两者分离。然而,从动力学角度看,由于碳分子筛是一种速率分离型吸附剂,N2和O2在碳分子筛微孔内的扩散速度存在明显差异,如:35℃时,O2的扩散速度为×106,O2的速度比N2快30倍,因此当空气与碳分子筛接触时,O2将优先吸附于碳分 流 出 液 浓 度 C C0 C E

实验十五 碳分子筛变压吸附提纯氮气

实验十五碳分子筛变压吸附提纯氮气 利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离。吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附。一个完整的吸附分离过程通常是由吸附与解吸(脱附)循环操作构成,由于实现吸附和解吸操作的工程手段不同,过程分变压吸附和变温吸附,变压吸附是通过调节操作压力(加压吸附、减压解吸)完成吸附与解吸的操作循环,变温吸附则是通过调节温度(降温吸附,升温解吸)完成循环操作。变压吸附主要用于物理吸附过程,变温吸附主要用于化学吸附过程。本实验以空气为原料,以碳分子筛为吸附剂,通过变压吸附的方法分离空气中的氮气和氧气,达到提纯氮气的目的。 A 实验目的 (1)了解和掌握连续变压吸附过程的基本原理和流程; (2)了解和掌握影响变压吸附效果的主要因素; (3)了解和掌握碳分子筛变压吸附提纯氮气的基本原理; (4)了解和掌握吸附床穿透曲线的测定方法和目的。 B 实验原理 物质在吸附剂(固体)表面的吸附必须经过两个过程:一是通过分子扩散到达固体表面,二是通过范德华力或化学键合力的作用吸附于固体表面。因此,要利用吸附实现混合物的分离,被分离组分必须在分子扩散速率或表面吸附能力上存在明显差异。 碳分子筛吸附分离空气中N2和O2就是基于两者在扩散速率上的差异。N2和O2都是非极性分子,分子直径十分接近(O2为0.28nm,N2为0.3nm),由于两者的物性相近,与碳分子筛表面的结合力差异不大,因此,从热力学(吸收平衡)角度看,碳分子筛对N2和O2的吸附并无选择性,难于使 两者分离。然而,从动力学角度看,由于碳分子筛是一种速率分离型吸附剂,N2和O2在碳分子筛微孔内的扩散速度存在明显差异,如:35℃时,O2的扩散速度为2.0×106,O2的速度比N2快30倍,因此当空气与碳分子筛接触时,O2将优先吸附于碳分子筛而从空气中分离出来,使得空气中的N2得以提纯。由于该吸附分离过程是一个速率控制的过程,因此,吸附时间的控制(即吸附-解吸循环速率的控制)非常重要。当吸附剂用量、吸附压力、气体流速一定时,适宜吸附时间可通过测定吸附柱的穿透 流 出 液 浓 度 C 恒温固定床吸附器的穿透曲线 C B C0 C E t

分子筛原理

多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料,在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。那么,分子筛原理是什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 吸附功能:分子筛对物质的吸附来源于物理吸附(范德华力),其晶体孔穴内部有很强的极性和库仑场,对极性分子(如水)和不饱和分子表现出强烈的吸附能力。 筛分功能:分子筛的孔径分布非常均一,只有分子直径小于孔穴直径的物质才可能进入分子筛的晶穴内部。 通过吸附的优先顺序和尺寸大小来区分不同物质的分子,所以被形象的称为“分子筛”。

安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒

精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 近期开发研制的CM6-5A脱腊分子筛各项,性能指标均达到和超过规定标准,并获得河南省高新技术产品证书,由于我厂产品质量上乘,价格适中,已批量销往缅甸、日本等国,是我国型号导弹和神州系列载人飞船定点供货厂家。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

长兴金龙碳分子筛有限公司年产450t碳分子筛生产线建设项目环(精)

长兴金龙碳分子筛有限公司年产450t碳分子筛生产线建设项目环境影响报告书 湖州市环境科学研究所 ENVIRONMENTAL SCIENCE RESEARCH INSTITUTE OF HUZHOU 二零零七年四月

第一章总论 1.1项目由来 1.1.1项目背景及其实施的必要性 碳分子筛(CMS)作为一种新型吸附剂自60年代末实现工业化生产以来得到了迅速发展。CMS是一种特殊的活性炭,主要由1nm以下的微孔和少量大孔组成。由于其特殊的微孔结构,故可按照分子的大小和形状进行吸附,从而具有筛分分子的能力。CMS与传统的吸附剂相比,主要区别在于其孔隙结构:CMS主要由微孔及少量大孔组成,孔径分布较窄,约在0.5~1.0nm,而普通活性炭除微孔外,还有大量的中孔和大孔,平均孔径达2nm。自1948年EmmettL发现Saran 树脂(氮乙烯和偏二氯乙烯的聚合物)的炭化物具有分于筛效应以来,各国开展了大量工作,近年来在西欧、日本及中国亦相继进行了这方面的研究。目前,国际上生产商品CMS的公司主要有德国BF公司、日本Takeda公司以及美国Calogn 炭化公司。CMS主要用于吸附分离领域,它已成熟地应用于变压吸附分离空气中的N2和O2。以CMS为吸附剂的变压吸附空气分离技术作为一种中小规模经济地制取富氮的可靠方法,已在国内外得到广泛应用。 国内生产分子筛(CMS)是从上个世纪80年代开始的,经过多年发展,在分子筛生产上已积累了丰富经验,产品已和德国、日本等国家产品质量达到同等水平。目前国内分子筛产量最大的地方就是浙江省湖州市长兴县。目前长兴有分子筛生产企业4家,分别为长兴县海华化工有限公司、长兴中泰分子筛有限公司、长兴县科博化工有限公司、长兴县三立新材料有限公司。 面对这一市场背景,由自然人黄金龙投资600万元组建了长兴金龙碳分子筛

沸石转轮---高效废气浓缩吸附脱附装置

沸石:是一种含水的碱或碱土金属铝硅酸盐矿物。可以在分子水平上筛分物质的多孔材料。是分子筛的一种。可以作为吸附剂和干燥剂,在加热液体时能够保持液体平稳。 鉴于沸石本身的特性,在此基础上研发的沸石转轮设备有以下特点及优势: 1、高吸、脱附效率,使原本大风量、低浓度的VOCs废气,转换成小风量、高浓度的废气,降低后端终处理设备(RCO/RTO)的成本。 2、沸石转轮吸附VOCs所产生的压损极低,可大大减少吸附风机电力能耗。 3、浓缩倍数达到5-20倍,大大缩小后处理设备的规格尺寸,降低了运行成本。 4、整体系统采预组及模块化设计,具有占地面积小且拥有无人化操控模式的优点。 5、经过转轮浓缩后的废气,可达到国家排放标准。 工艺如下: 沸石转轮吸附浓缩装置是转轮在处理区一再生区一冷却区三区连续变温运转,把低浓度、大风量的有机废气浓缩为高浓度、小风量的有机废气。其装置特性适合处理大流量、低浓度、含多种有机成分的废气。 通过转轮的旋转,可在转轮上同时完成气体的浓缩和沸石的再生。进入浓缩转轮的有机废气在常温下被转轮吸附区吸附净化后直接排放至大气,接着因转轮的转动而进入脱附区,吸附了有机物质的沸石在此区内脱附,吸附在沸石上的有机物被分离、脱附、进入后续处理系统,如此循环工作。

适应行业: 特别适合于大风量,低浓度场合,包括:印刷、大型喷涂车间、家具、芯片、液晶LED工业等生产企业。 治理解决方案: 有机废气经过滤器后,进沸石转轮吸附,大部分废气吸附净化后直接排放至

烟囱。引小部分空气,对沸石过热区进行冷却后。然后与RTO或RCO排出的高温净化废气换热升温度并经燃烧器补燃后升至200℃,进转轮对已经吸附饱和部分进行解析,解析后气体进RTO或RCO高温氧化成二氧化碳和水,氧化后气体进换热器换热降温后直接排放。 更多详情请拨打联系电话或登录杭州博尔环保科技有限公司官网https://www.wendangku.net/doc/547423090.html,/咨询。

分子筛的设计吸附原理与应用

2016级环境工程硕士课程论文 论文题目:分子筛吸附剂的设计、吸附原理和应用课程:吸附科学原理和应用 专业:环境工程 学号:104754160909 姓名:徐俊

分子筛吸附剂的设计、吸附原理和应用 徐俊 (河南大学化学化工学院, 河南开封475004) 摘要:近年来,随着人们对分子筛吸附剂吸附原理和设计的进一步的研究,分子筛吸附剂越来越受到人们的重视。分子筛吸附剂因其独特的晶体结构、高的表面积、吸附性和催化性等优异性能,被广泛应用于石油化工、环境保护、新材料、生物医药等诸多领域,也因此分子筛吸附剂的应用有着巨大的经济效益和重要的应用价值。 关键字:分子筛吸附剂;吸附;应用 Molecular sieve adsorbent design, adsorption principle and application XU Jun (College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004) Abstract: In recent years, with the further research of molecular sieve adsorbent's adsorption principle and design, molecular sieve adsorbent has attracted more and more attention. Molecular sieves are widely used in the region of etrochemical industry, environmental protection, new materials and biomedicine due to their unique crystal structure, high surface area, adsorption, catalytic and other excellent performances. The use of adsorption separation has enormous economic and great value. Keywords: zeolite adsorbent; adsorption; application 引言 分子筛是一类具有特殊结构的多孔介质,由系列不同规则的孔道或笼构成,是硅铝酸盐的晶体[1]。常见的不同型号分子筛有:A型、X型等[2,3]。经高温活化沸石失结晶水后,晶体内形成许多孔穴,其孔径大小与气体分子直径相近,且非常均匀,依据晶体内部孔穴大小吸附或排斥不同的物质分子,同时根据不同物质分子极性或可极化度而决定吸附的次序,达到分离的效果[4]。分子筛的孔径分布是非常均一的,结构和组成变化明显,具有良好的热稳定性、水热稳定性、较好的化学稳定性等性能[5]。沸石分子筛较大的表面积、孔体积以及较强的静电场决定了它对吸附质尤其是对极性分子,在低分压或低浓度及较高温度的吸附情况下

分子筛

分子筛 33130215 高红雪 分子筛是指具有均匀的微孔,其孔径与一般分子大小相当的一类物质。分子筛的应用非常广泛,可以作高效干燥剂、选择性吸附剂、催化剂、离子交换剂等,但是使用化学原料合成分子筛的成本很高。常用分子筛为结晶态的硅酸盐或硅铝酸盐,是由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2 nm)的孔道和空腔体系,因吸附分子大小和形状不同而具有筛分大小不同的流体分子的能力。 分子筛是一种具有立方晶格的硅铝酸盐化合物。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。 美国科学家发现,通过调整温度,能够精确地控制一种钛硅酸盐材料中的孔洞大小,制造出精密的新型分子筛。一些晶体材料内部有着大量均匀的微孔,尺寸比孔洞小的分子能够穿过,而大分子不能穿过,因此可以起到分离不同分子的作用,这类材料被称为分子筛。分子筛可以通过诸多方法合成:水热合成法、水热转换法、离子交换法等方法。 分子筛为粉末状晶体,有金属光泽,硬度为3~5,相对密度为2~2.8,天然沸石有颜色,合成沸石为白色,不溶于水,热稳定性和耐酸性随着SiO2/Al2O3组成比的增加而提高。分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。当组成中的金属离子与溶液中其他离子进行交换时,可调整孔径,改变其吸附性质与催化性质,从而制得不同性能的分子筛催化剂。

沸石分子筛的特性与应用

沸石分子筛的特性与应用 近年来关于活性炭以及沸石分子筛的研究报道相对较多,两种吸附材料各有不同的应用特点,主要需根据废气浓度、废气成分等特点选择合适的吸附材料。在环保领域,沸石分子筛作为新型的吸附剂,与活性炭一样拥有颗粒状、蜂窝状等不同形态; 采用吸附法处理VOCs是目前较为有效的处理方法,针对吸附剂的研究也引起许多学者、专家的兴趣。 广州怡森环保简要介绍沸石分子筛的吸附特性与其应用技术。 沸石是具有晶体结构和规则孔径的材料,表面为固体骨架,内部的孔穴可吸附分子,均匀的孔径阻止大于一定尺寸的分子进入晶格,具有分子筛的功能。其中,疏水沸石因具有良好的循环使用性、疏水性和热稳定性等特点而引起广泛关注。 沸石分子筛产生吸附的原因主要是分子引力作用在其表面产生的一种“表面力”,当气体流过时,气体中的一些分子由于做不规则运动而碰撞到吸附剂表面,分子在沸石分子筛表面聚集,气体中的这种分子数目减少,达到分离、清除的目的。由于沸石分子筛晶穴内还有着较强的极性,能与含极性基团的分子在沸石分子筛表面发生强的作用,或是通过诱导使可极化的分子极化从而产生强吸附。这种极性或易极化的分子易被极性沸石分子筛吸附的特性体现出沸石分子筛的又一种吸附选择性。 沸石分子筛在治理VOCs工业应用技术上,主要为两种:沸石转轮吸附浓缩技术、分子筛固定床吸附技术。沸石转轮是将吸附材料制作成为蜂窝状结构,转轮为分子筛的载体,通过一定的技术将分子筛均匀附着在瓦楞状的陶瓷纤维纸

上。沸石转轮分为不同功能区(吸附区、脱附区、冷却区),使用过程中,转轮一直处于转动状态,周而复始,因此适合于24小时连续不间断生产的企业。 分子筛固定床吸附技术,利用传统活性炭吸附床体结构,将吸附材料更换为沸石分子筛(颗粒状或蜂窝状),利用沸石分子筛吸附特性,净化废气。可适用于间断生产或连续生产型企业,适用范围更广泛。 目前采用沸石分子筛作为吸附剂治理VOCs方面,已取得一定的成效。具体采用治理技术类型还需根据项目有机废气浓度、废气成分等工况确定,广州怡森环保公司拥有20年VOCs治理经验,可提供专业技术咨询服务,在设备制造以及工程建设方面经验丰富,欢迎广大客户咨询。

分子筛变压吸附研究报告

院级本科生科技创新项目 研究报告 项目名称变压制富氧分子筛延长寿命的研究 立项时间2014年10月 计划完成时间2015年12月 项目负责人储万熠 学院与班级冶金与生态工程学院冶金1302班 北京科技大学教务

摘要 变压吸附制氧关键的因素是制氧吸附剂和制氧工艺。制氧吸附剂的性能优劣和使用寿命直接影响产品气的氧浓度和收率,氮吸附容量是评价制氧吸附剂性能优劣的一项重要指标。本课题首先对分子筛进行XRF分析、XRD表征和TEM表征探究分子筛的物理及化学性质,确定对分子筛造成影响的条件。 ANSYS FLUENT中的多孔介质模型可以模拟多孔介质内的流体流动、“三传一反”。PSA空分吸附床由固体吸附剂颗粒填充而成,气-固两相区可作为多孔介质,因此可基于多孔介质模型对变压吸附空分吸附床进行模拟,从而得到床层内气体的流动状态和组分浓度分布情况。为研究提高分子筛寿命的研究提供可靠有效的实验数据。

Research of Prolong the Life of Pressure-Swinging-Oxygen-Making Molecular Sieve Abstract The keyfactorof thepressure swinging oxygen making is oxygen adsorbentandoxygenprocess. The quality and service life of oxygen adsorbentdirect impact on the oxygenconcentrationandyield of productgas, nitrogen adsorptioncapacity ofthe oxygensorbentperformanceevaluation ofthe meritsofan important indicator.This paperfirstdo XRFanalysis, XRDand TEMcharacterization ofphysicalandchemicalproperties ofmolecular sieveinquiryto determine theimpact onmolecular sievesconditions. The porous medium model in ANSYS FLUENT can simulate fluid flow in porous media. PSA air separation adsorbent bed is filled by a solid sorbent particles, gas - solid two phase region as a porous medium, thus can simulate the pressure swing adsorption air separation adsorbent bed based on the porous medium model, resulting in the flow state within the bed of gas and component concentration distribution for providing valid and reliable experimental data of improving molecular sieve’s life.

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

(推荐)分子筛吸附原理

分子筛吸附原理 吸附是一种把气态和液态物质(吸附质)固定在固体表面(吸附剂)上的物理现象,这种固体(吸附剂)具有大量微孔的活性表面,吸附质的分子受到吸附剂表面引力的作用,从而固定在上面。引力的大小取决于: -吸附剂表面的构造(微孔率); -吸附质的分压; -温度。 吸附伴随着放热,是一种可逆的现象。类似于凝结: -如果增加压力。吸附能力增加; -降低温度,吸附能力增加。 因此,在吸附时,要使压力升到最高,温度降到最低。解吸时,则要使压力降到最低,温度升到最高。

带有吸附床的净化工艺 也叫空气净化的“干燥-脱除CO 2 ”工艺。 为使空气获得较低的净化前温度,常用制冷机组或空气水冷塔 对其进行降温。(图中的“X10”表示预冷设备。) 净化装置位于空气压缩机、空气预冷系统之后,为了保持净化 器工作的连续性,需要使用两台吸附器。当一台工作时(即正在脱除H 2 O 与CO 2 ),另一台处于再生状态。 吸附阶段 由于氧化铝吸附CO 2的效果很差,故它主要用于吸附H 2 O,而位于 其后的分子筛则处理干燥后含有 CO 2 的空气。 注:分子筛具有很强的吸水性,因此,在吸附和再生期间绝不 能让分子筛与水份接触而降低其吸附CO 2 的能力。如果有意外情况发生使

水份带入了分子筛,惟有高温特殊再生(见10 章)才能够使其恢复原有的吸附性能。

下图显示了吸附质在临近穿透的时刻(在吸附阶段结束),CO 2 O在两种吸附床层中及给定时间内的含量分布图。 与H 2 吸附器必须在吸附质的前锋抵达吸附出口之前进行再生(即在穿透之前)。 再生阶段: 再生就是利用压力和温度两方面的因素,将吸附器里的吸附质排出去。 首先,将吸附器降压至较低的压力(大气压力)。用加热的干燥气体,解吸并带走所吸附的吸附质。然后,用未加热的干燥气体,将热端面推向铝胶床层,直至其出口,这样。吸附剂又恢复到随之而来的吸附阶段时的正常温度。 过程见图示:

沸石分子筛

制氧机准备臭氧采用沸石分子筛法,经过查询其原理如下:沸石分子筛对氧和氮吸附量有很大的差异。沸石子筛是一种内部有很多微孔的物质,变压吸附的原理就是在一定的压力下,利用空气中氧、氮在沸石分子筛微孔中的吸附量的差异(如下图),达到氧氮分离的目的。在压力升高时,沸石分子筛吸氮产氧,压力降至常压时,沸石分子筛脱附氮气再生。变压吸附制氧设备通常有两只吸附塔,一只吸氮产氧,另一只脱氮再生,如此交替循环不断产出氧气。 由此可知:在进气的成分、沸石分子筛吸附能力及吸附压力不变时制氧机发生的臭氧的浓度是不会发生变化的。 沸石分子筛具有晶体的结构和特征,表面为固体骨架,内部的孔穴可起到吸附分子的作用。孔穴之间有孔道相互连接,分子由孔道经过。由于孔穴的结晶性质,分子筛的孔径分布非常均一。分子筛依据其晶体内部孔穴的大小对分子进行选择性吸附,也就是吸附一定大小的分子而排斥较大物质的分子,因而被形象地称为"分子筛"。 分子筛吸附或排斥的功能受分子的电性影响。合成沸石具有根据分子的大小和极性而进行选择性吸附的特殊功能,因而可以对气体或液体进行干燥或纯化,这也是分子筛可以进行分离的基础。合成沸石可以满足工业界对吸附和选择特性产品的广泛需求,在工业分离中也大量应用到合成沸石分子筛。 分子筛对催化科学和技术有巨大的影响。60年代初分子筛裂化催化剂的发明,引发了炼油工业的一场技术革命。70年代发现ZS M-5分子筛的择形性,使得重要的石油炼制和石油化工新工业过程(乙苯生产、甲苯歧化、重油脱蜡等)开发成功。80年代TS-1变价元素杂原子分子筛的出现使分子筛“氧化催化”的领域异常活跃。近年来分子筛在“环保催化”中应用亦发展很快。分子筛在工业催化过程的成功应用激励了分子

变压吸附_PSA_空气分离工艺技术进展

变压吸附(PSA )空气分离工艺技术进展 韩跃斌,王一平,边守军,郭翠梨,张金利 (天津大学化工学院 300072) 摘要:论述了PSA 法空分的工艺技术,为提供产品气纯度和回收率而对工艺流程作出的改进,并提出了PSA 法空分工艺流程下一步的研究方向。 关键词:PSA ;空分;工艺流程 中图分类号:TQ02811 文献标识码:A 文章编号:100129219(1999)06236207 收稿日期:1999201213 0 前言 O 2和N 2是化学工业中重要的原料,在冶 金、电子、环保以及医疗等领域都有广泛的用途。O 2和N 2都由空气分离得到,以前主要采用低温精馏法(即深冷法)制取,变压吸附(PSA )分离法出现后,开始应用于空分领域,并且技术日益成熟,首先在中小规模空气分离领域,尤其是供应富氧或富氮时,PSA 法空分工艺建立了自己的优势。与深冷法相比,PSA 法的优点在于,常温操作,启动时间短,投资少,自动化程度高,占地面积少,产品纯度调节方便,工艺设备简单等。目前,新发展的膜分离法为世人所瞩目,有设备紧凑、简单、处理量大和投资费用较低等优点,但也存在薄膜易于损坏、对原料气净化要求高、操作压力大、维修费用高、可靠性差等弱点,制膜技术有待不断改进,与之相比,PSA 法空分已经比较成熟。 一段时间以来,在保持PSA 法经济性的前提下,人们把提高产品气的纯度和回收率作为目标,深入研究了PSA 法空分流程的各个步骤和影响纯度及回收率的因素,改进了操作时序和管路流向,开发了一些新工艺,使PSA 法生产的O 2纯度可达到9915%,N 2的纯度更高达9919%甚至99199%以上,回收率也可达到60%。本文主要概括了人们为了提高产品纯度 和回收率而对传统PSA 工艺所作的改进,以及 另外一些有创新的工艺,并总结了影响产品气纯度和回收率的一些因素。 1 真空变压吸附(VSA ) PSA 法空分操作压力是根据装置规模、产 品纯度和用途,分别使用由大气压至014×105Pa 的吸附压力,和由真空至大气压的解吸压力。一般来讲,若提高吸附压力,则吸附剂的吸附容量会增加,因此可以减少吸附剂用量,但是由于解吸排出的废气量增加,致使收率降低。可采用真空再生法将吸附压力降低至接近大气压,抽真空解吸,这种方法简称为VSA ,已经成为变压吸附的主流,早在1993年前后,日本已经有大约200台大、中型VSA 流程装置(解吸压力变动范围为(01013~0105)×105Pa 表压)在运行[1]。VSA 提高产品气纯度和收率的效果很明显。日本专利报道[2],同样以CMS 作吸附剂制氮,常压再生法N 2纯度为9910%,而真空再生时N 2纯度可达到9919%。这是因为,真空再生使得吸附相解吸更彻底。如图1[3]所示是PSA 制氮分别用真空解吸和大气压解吸时氮收率的比较。与高压吸附的PSA 流程相比,VSA 另一个优点是能耗降低。高压吸附流程能耗主要在原料气的压缩能耗,而采用真空解吸时,抽真空的负载仅是吸附相组分,只是原料气的一部分,而且抽真空过程中床的真

相关文档
相关文档 最新文档