文档库 最新最全的文档下载
当前位置:文档库 › TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 优化设计小论文
TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解

摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。

关键词:遗传算法、旅行包问题

一、旅行包问题描述:

旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。

用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n)

旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。

在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

二、遗传算法简介

遗传算法(Genetic Algorithm,GA)是借鉴生物界自然选择和自然遗传机制“适者生存”的一种高度并行、随机化和自适应的全局优化算法,其首先由Holland与1975年提出。其将问题的求解表示成“染色体”的适者生存过程,通过“染色体“群的一代代不断进化,包括复制、交叉和变异等操作,最终收敛到”最适应环境“的个体,从而得到问体的最优解。

标准的遗传算法的只要步骤可描述为为:

1、随机产生一组初始个体构成初始种群,并评价每一个体的适配值;

2、判断算法的收敛准则是否满足。若满足则输出搜索结果,否则执行

下面步骤;

3、根据适配值大小以一定的方式执行复制操作;

4、按交叉概率pc执行交叉操作;

5、按变异概率pm执行变异操作。

6、返回2执行新一轮的复制、交叉、变异。

在算法中,适配值是对染色体进行评价的一种指标,是遗传算法进行优化所用的主要信息,与个体的目标值存在一种对应关系;复制操作通常采用比例复制,即复制概率正比于个体适配值,适配值高的个体在下一代中复制自身的概率大,从而提高种群的平均适配值;交叉操作通过交换两父代个体的部分信息构成后代个体,使得后代继承父代的有效模式,从而有助于产生优良个体;变异操作通过随机改变个体的某些基因而产生新个体,有助于增加种群的多样性,避免早熟收敛。

遗传算法利用生物进化和遗传的思想实现优化过程,区别与传统优化算法

1、算法进行全空间并行搜索,并将搜索重点集中于性能高的部分,

从而能够提高效率并且不易陷入局部最小。

2、算法具有固有并行性,通过对种群的遗传处理可以处理大量的模

式,并且容易并行实现;

其主要设计如下:

1、确定问题的编码方案。

2、确定适配值函数。

3、遗传算子的设计。

4、算法参数(种群数目、交叉与变异概率和进化代数等)的选取。

5、确定函数终止条件。

三、对TSP问题的遗传算法实现

设计思路:

1、初始化城市距离

采用一个city_xy函数获取n个城市的TSP问题的坐标,保存在city矩阵中,并且用city_dis矩阵表示任意两个城市之间的距离,矩阵中的元素city_dis(i,j)代表第i个城市与第j个城市间的距离。

2、初始化种群

通过randperm函数,生成一个一维随机向量(是整数1,2,3,4,5的任意排列),然后将其赋给二维数组group的第一列,作为一个个体。如此循环N次,生成了第一代种群,种群的每个个体代表一条路径。

3、计算适应度

采用的适应度函数为个体巡回路径的总长度的函数。具体为

adapt(1,i)=(n*maxdis-dis) (1) 在式(1)中,adapt(1,i)表示第i个个体的适应度函数,maxdis为城市间的最大距离,dis为个体巡回路径的总长度,这样定义的适应度,当路经越短时适应度值越大。在适应度值的基础上,给出的计算个体期望复制数的表达式为

adaptnum(1,i)=(N*adapt(1,i)/ sumadapt) (2) 其中,sumadapt为种群适应度之和。

4、复制

采用优秀个体的大比例保护基础上的随机数复制法。具体做法为在生成下一代个体时,先将最大适应度对应的路径个体以较大的比例复制到下一代,然后再用随机数复制法生成下一代的其他个体。其中,有一个问题必须考虑,即若某一次生成的随机数过大,结果能复制一个或极少个样本。为了避免这一情况,采用了限制措施,即压低了随机数的上限。

5、交叉

采用的方法为按步长的单点交叉,为随机选择一对样本,再随机选择一

个交叉点位置,按一定的步长进行交叉点的选择。选择一个步长而不是将其设为1,是因为若某一位置处的城市代码因为进行了交叉而发生了改变,则其经过该处的两个距离都会改变。这种交叉兼有遗传和变异两方面的作用,因为若交叉点处的城市编号都相同,则对两个个体而言交叉后样本无变化,否则样本有变化。

6、变异

方法为随机两点I,J的交互位置法。对于A= [1 2 3 4 5 6 7 8 9 10],若I= 3, J=8,则变异后B= [1 2 8 4 5 6 7 3 9 10]虽然是简单的随机两点交互,但实际上已经有40%的距离发生了改变。若用d ij表示城市i与j之间的距离,则变异后与变异前样本路径的距离差为B23十B34 + B78十B89一A23十A34 + A78 + A89可见,随机两点交互足以产生新的模式样本。较大地提高变异率就会产生大量的新样本,全局最优样本出现的概率随之提高。为了收敛到最优解,借鉴模拟退火算法的思想,采取了变异率由很大逐渐衰减到较小的数量,这样做也利于找到全局最优解。

7、将复制,交叉,变异后得到的种群group1重新赋给group,然后重复3,4,5,6步操作。直至满足循环停止条件,即找到最优路径。

仿真实验:

TSP实验数据点取为:

10城市TSP(自己随机选取10个点):

0,0;12,32;5,25;8,45;33,17;25,7;15,15;15,25;25,15;41,12 30城市TSP问题(d=423.741 by D.B.Fogel):

41,94;37,84;54,67;25,62;7,64;2,99;68,58;71,44;54,62;83,6 9;64,60;18,54;22,60;83,46;91,38;25,38;24,42;58,69;71,71; 74,78;87,76;18,40;13,40;82,7;62,32;58,35;45,21;41,26;44, 35;4,50

50城市TSP问题(d=427.855 by D.B.Fogel):

31,32;32,39;40,30;37,69;27,68;37,52;38,46;31,62;30,48;21,47;25,55;16,57;17,63;42,41;17,33;25,32;5,64;

8,52;12,42;7,38;5,25;10,17;45,35;42,57;32,22;27,23;56,37;52,41;49,49;58,48;57,58;39,10;46,10;59,15;51,21;48,28;52,33;58,27;61,33;62,63;20,26;5,6;13,13;21,10;30,15;36,16;62,42;63,69;52,64;43,67

对与10点TSP 问题,城市数比较少,每一代个体数目为200,进化代数取为1000代,算法执行结果为: 最优路径为:

9 5 10 6 7 1 3 4 2 8 每一代的最小距离收敛图为:

0100200300400

5006007008009001000

每一代种群最短距离的收敛过程

遗传代数

每一代种群最短距离

最后得到的最优路径为:

闭合曲线即为最优路径

x

对于30城市TSP问题,每一代个体数目为200,将其遗传代数取为10000,算法执行结果为:

最优路径为:

6 2 1 20 21 10 15 18 3 9

11 7 8 14 19 24 25 26 27 28

29 16 17 22 23 30 12 13 4 5

其每一代的最小距离的收敛图为:

01000200030004000

5000600070008000900010000

400

500

600

700

800

9001000

1100

每一代种群最短距离的收敛过程

遗传代数

每一代种群最短距离

得到的最优路径为:

010203040

5060708090100

0102030405060708090

100闭合曲线即为最优路径

x

y

对于50城市TSP 问题,每一代的个体数目选取为200,遗传代数为20000,则算法执行结果为:

最优路径为:

35 16 1 3 14 7 9 11 8 5 13 17 18 12 10 19 20 21 22 42 43 44 2 6 24 4 50 49 48 40 31 30 29 28 23 36 38 39 47 27 37 15 34 33 32 46 45 25 26 41 每一代最小距离收敛图如下:

00.20.40.60.8

1 1.

2 1.4 1.6 1.8

2

x 10

4

每一代种群最短距离的收敛过程

遗传代数

每一代种群最短距离

最后得到的优化路径为:

102030

40506070

010203040

50

60

70

闭合曲线即为最优路径

x

y

在30城市TSP 问题中,得到的最终的优化距离为425.3,与实际的最小值423.471相差很少,在50城市TSP 问题中,得到的最终优化解为474.1,与实际的最优路线的最小距离427.855相差较大。这是由于标准遗传算法的缺点所确定的,标准遗传算法在前期搜索的效果比较良好,算法后期搜索比较缓慢,从收敛图中可以验证这一点。在50城市TSP 问题中,遗传代数范围内一个优化解的最小距离开始出现之后经过5000代才继续下降寻找更好的解。此外,遗传算法实现的效果很大程度上取决与问题的多种参数,如交叉率,变异率,每一代的个体数目,如果这些参数设置不好,遗传算法将类似随机搜索方法,出现“早熟收敛”。在50城市TSP 中,如果增加每一代个体数目、遗传总代数、优化变异率和交叉率,会更靠近最优化解。

鉴于标准遗传算法的缺点,现阶段出现了许多遗传算法的改进。在交叉操作方面,有部分匹配交叉算子、增强边缘重组算子、序号交叉算子、均匀排序交叉算子、循环交叉算子以及单点交叉算子等。在变异方面还有自适应变异、多级变异等。此外,一些高级的基因操作如双倍体、显性遗传、倒位操作、静态繁殖等被应用于遗传算法之中,以改进和优化遗传算法。

参考文献:

1、王凌,智能优化算法及其应用[D],清华大学出版社

2、曾宪钊,军事最优化新方法[D],军事科学出版社

3、蒋腾旭,智能优化算法概述[J],人工智能及识别技术

4、郑伟、孙文生,遗传算法及其在求解TSP问题中的应用,中国科技论文

在线

5、符一平、陈光喜,一种求解TSP问题的改进遗传算法,桂林电子科技大

学学报

6、https://www.wendangku.net/doc/564643809.html,/downloads76/sourcecode/math/288006/travelsale.doc

7、https://www.wendangku.net/doc/564643809.html,/math/shumo/news.asp?id=212

8、https://www.wendangku.net/doc/564643809.html,/view/46e9db2e453610661ed9f4c9.html

附:MATLAB程序

function yichaung_TSP2

clc,close all

clear all

n=50;

city=city_xy(n); %获取城市坐标信息

city_dis=zeros(n,n);

for i=1:n

for j=1:n

city_dis(i,j)=sqrt((city(i,1)-city(j,1)).^2+(city(i,2)-city(j,2)).^2);

end

end%初始化城市距离

maxdis=max(max(city_dis)); %城市间最大距离

N=200; %每一代种群中的个体数

maxlun=20000; %迭代次数

for i=1:N

ttemp=randperm(n); %初始化种群,即随机产生N种路径,放在n行,N列的矩阵group中for j=1:n

group(j,i)=ttemp(j);

end

end

for lun=1:maxlun %迭代循环maxlun次

sumadapt=0; %适度值之和

maxadapt(1,lun)=0; %最大适度值初值

minadapt(1,lun)=100; %最小适度值初值

viprate=0.1; %最优个体复制率

copyrate=0.02; %复制率参数

maxadaptloc=0; %最大适应值对应的个体号码初值

mindisiii(1,lun)=100000; %每一代的最忧路径对应的旅行距离总和初值for i=1:N

dis(1,i)=0;

for j=1:n-1

dis(1,i)=dis(1,i)+city_dis(group(j,i),group(j+1,i));

end

dis(1,i)=dis(1,i)+city_dis(group(1,i),group(n,i)); %求一次旅行个体的总长度

adapt(1,i)=n*maxdis-dis(1,i); %第i个个体的适应度函数

sumadapt=sumadapt+adapt(1,i); %适应度函数总和

if dis(1,i)

mindisiii(1,lun)=dis(1,i);

end

end

for i=1:N

adaptnum(1,i)=(N*adapt(1,i)/sumadapt); %第i个个体的期望复制数if adaptnum(1,i)>maxadapt(1,lun)

maxadapt(1,lun)=adaptnum(1,i); %求本代最大适应值

maxadaptloc=i; %求最大适应值对应的个体号码end

if adaptnum(1,i)

minadapt(1,lun)=adaptnum(1,i); %求本代最小适应值

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.

%复制操作

tcopyN=0; %复制个数初值

num=(maxadapt(1,lun)-copyrate-minadapt(1,lun))*rand(1)+minadapt(1,lun);

%生成随机数

vipnum=viprate*N ; %确定最优个体复制个数for tcopyN=1:vipnum %先复制vipnum个最优个体至中间矩阵group1 for i=1:n

group1(i,tcopyN)=group(i,maxadaptloc);

end

end

while tcopyN

if adaptnum(1,i)>num&&tcopyN

tcopyN=tcopyN+1;

for k=1:n %由于针对n个城市,故每个个体有n个元素

group1(k,tcopyN)=group(k,i);

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%交叉操作

pc=0.5-(0.5-0.4)*(lun-1)/(maxlun-1); %交叉率

pair=pc*N/2; %最多交叉对数

step=2; %交叉步长取为2

pairno=0; %当前交叉过的个体数

while pairno

a=floor(N*rand(1)+1); %随机产生两个交叉个体,floor为向负无穷取整函数

b=floor(N*rand(1)+1);

marri(1,a)=2; %参与交叉的个体标记初值

marri(1,b)=3;

if marri(1,a)~=1&&marri(1,b)~=1&&a~=b

marri(1,a)~=1;

marri(1,b)~=1; %参与交叉的个体标记为1

pairno=pairno+1;

location=floor(n*rand(1)+1); %用随机数确定个体中单交叉点位置

l1=0;

l2=0;

for i=location:step:n %以下按步长step进行交叉

for j=1:n %用for确定交叉位置

if group1(i,a)==group1(j,b)

l1=j;

end

end

for j=1:n

if group1(i,b)==group1(j,a)

l2=j;

end

end

temp=group1(i,a);

group1(i,a)=group1(l2,a);

group1(l2,a)=temp;

temp=group1(i,b);

group1(i,b)=group1(l1,b);

group1(l1,b)=temp;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%变异操作

pb=0.1; %个体变异率

bnum=pb*N; %变异个体数

for i=1:bnum %逐个取个体,随机选择位置进行变异

a1=floor(n*rand(1)+1);

a2=floor(n*rand(1)+1);

b=floor(N*rand(1)+1);

temp=group1(a1,b);

group1(a1,b)=group1(a2,b);

group1(a2,b)=temp;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:N

for j=1:n

group(j,i)=group1(j,i); %构造经过复制,交叉,变异后的矩阵,group,准备下次循环end

end

end

disp('最优路径为:');

for i=1:n

fprintf('%.d ',group(i,1));

if rem(i,10)==0

fprintf('\n');

end

end

figure(1);

lun=1:1:maxlun;

mindis=mindisiii(1,lun);

plot(lun,mindis);

title('每一代种群最短距离的收敛过程');

xlabel('遗传代数');

ylabel('每一代种群最短距离');

x=zeros(1,n+1);

y=zeros(1,n+1);

for i=1:n

k=group(i,1);

x(1,i)=city(k,1);

y(1,i)=city(k,2);

end

x(1,n+1)=x(1,1);

y(1,n+1)=y(1,1);

figure,plot(x,y,'-*g');

title('闭合曲线即为最优路径');

xlabel('x')

ylabel('y');

function C=city_xy(n)

if n==10

C=[0,0;12,32;5,25;8,45;33,17;25,7;15,15;15,25;25,15;41,12];

elseif n==30

C=[41,94;37,84;54,67;25,62;7,64;2,99;68,58;71,44;54,62;83,69;64,60;18,54;...

22,60;83,46;91,38;25,38;24,42;58,69;71,71;74,78;87,76;18,40;13,40;...

82,7;62,32;58,35;45,21;41,26;44,35;4,50];

elseif n==50

C=[31,32;32,39;40,30;37,69;27,68;37,52;38,46;31,62;30,48;21,47;25,55;...

16,57;17,63;42,41;17,33;25,32;5,64;8,52;12,42;7,38;5,25;10,17;...

45,35;42,57;32,22;27,23;56,37;52,41;49,49;58,48;57,58;39,10;...

46,10;59,15;51,21;48,28;52,33;58,27;61,33;62,63;20,26;5,6;13,13;...

21,10;30,15;36,16;62,42;63,69;52,64;43,67];

end

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

遗传算法应用论文

论文 题目:遗传应用算法 院系:计算机工程系 专业:网络工程 班级学号: 学生姓名: 2014年10月23日

摘要: 遗传算法是基于自然界生物进化基本法则而发展起来的一类新算法。本文在简要介绍遗传算法的起源与发展、算法原理的基础上,对算法在优化、拟合与校正、结构分析与图谱解析、变量选择、与其他算法的联用等方面的应用进行了综述。该算法由于无需体系的先验知识,是一种全局最优化方法,能有效地处理复杂的非线性问题,因此有着广阔的应用前景。 关键词: 遗传算法; 化学计量学; 优化 THEORY AND APPL ICATION OF GENETIC AL GORITHM ABSTRACT: Genetic Algo rithm( GA) is a kind of recursive computational procedure based on the simulation of principle principles of evaluati on of living organisms in nature1Based on brief int roduction of the principle ,the beginning and development of the algorithms ,the pape r reviewed its applications in the fields of optimization ,fitting an d calibration,structure analysis and spectra interpretation variable selection ,and it s usage in combination with othersThe application o f GA needs no initiating knowledge of the system ,and therefore is a comprehensive optimization method with extensive application in terms of processing complex nonlinear problems。 KEY WORDS : Genetic Algorithm( GA) Chemometrics Optimization 遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法,它于1962年被提出,直到1989年才最终形成基本框架。遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法, 由美国J. H. Ho llad教授提出, 其主要特点是群体搜索策略和群体中个体之间的信息交换。该算法尤其适用于处理传统搜索方法难以解决的复杂和非线性问题, 可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域。 顾名思义,遗传算法(Genetic Algorithm ,GA)是模拟自然界生物进化机制的一种算法 ,即遵循适者生存、优胜劣汰的法则 ,也就是寻优过程中有用的保留 ,无用的则去除。在科学和生产实践中表现为 ,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法 ,即找出一个最优解。这种算法是 1960 年由

遗传算法——耐心看完-你就掌握了遗传算法【精品毕业设计】(完整版)

遗传算法入门到掌握 读完这个讲义,你将基本掌握遗传算法,要有耐心看完。 想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。),TSP问题(在以后的章节里面将做详细介绍。),生产调度问题,人工生命模拟等。直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。 问题的提出与解决方案 让我们先来考虑考虑下面这个问题的解决办法。 已知一元函数: 图2-1 现在要求在既定的区间内找出函数的最大值。函数图像如图2-1所示。 极大值、最大值、局部最优解、全局最优解

在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。所以极大值具有局部性,而最大值则具有全局性。 因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那么你先往下看。本章的示例程序将会非常形象的表现出这个情景。 “袋鼠跳”问题 既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。所以求最大值的过程就转化成一个“袋鼠跳”的过程。下面介绍介绍“袋鼠跳”的几种方式。 爬山法、模拟退火和遗传算法 解决寻找最大值问题的几种常见的算法: 1. 爬山法(最速上升爬山法): 从搜索空间中随机产生邻近的点,从中选择对应解最优的个体,替换原来的个体,不断重复上述过程。因为只对“邻近”的点作比较,所以目光比较“短浅”,常常只能收敛到离开初始位置比较近的局部最优解上面。对于存在很多局部最优点的问题,通过一个简单的迭代找出全局最优解的机会非常渺茫。(在爬山法中,袋鼠最有希望到达最靠近它出发点的山顶,但不能保证该山顶是珠穆朗玛峰,或者是一个非常高的山峰。因为一路上它只顾上坡,没有下坡。) 2. 模拟退火: 这个方法来自金属热加工过程的启发。在金属热加工过程中,当金属的温度超过它的熔点(Melting Point)时,原子就会激烈地随机运动。与所有的其它的物理系统相类似,原子的这种运动趋向于寻找其能量的极小状态。在这个能量的变

基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题 说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。 因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。若有什么问题,可以私信,我们共同探讨这一问题。 希望能对需要这方面的知识的人有所帮助!

1.问题介绍 旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。从图论的角度看,该问题实质是在一个带权完全无向图中。找一个权值最小的Hemilton回路。其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ?使 ()()() 1111min ,,n i n i i d c c d c c ?ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ??是,的一个置换。 2.遗传算法 2.1遗传算法基本原理 遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。 遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动控制、混沌理论与人工智能一样,都是对今后十年的计算技术有重大影响的关键技术”。 2.2遗传算法的流程 标准的遗传算法包括群体的初始化,选择,交叉,变异操作。流程图如图1所示,其主要步骤可描述如下: (1)随机产生一组初始个体构成的初始种群,并评价每一个个体的适配值。 (2)判断算法的收敛准则是否满足。若满足输出搜索结果;否则执行以下步骤。

论文-遗传算法的基本步骤

遗传算法 遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。 比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解: 下续(表格) 下续……

即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。 遗传算法的具体的步骤如下:

1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。 2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。 3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率( P)挑选的每两个父代 c 通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。 4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。

遗传算法解决TSP问题

遗传算法解决TSP问题 姓名: 学号: 专业:

问题描叙 TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。 通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。 算法设计 遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异。 数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。一定数量的个体组成一个群体。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下: 第一步准备工作 (1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。 (2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。 (3)确定适应值函数f(x)。f(x)应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。 第四步选择

基于遗传算法的自动排课系统毕业设计

摘要 随着科学技术和社会信息技术的不断提高,计算机科学的日渐成熟,其强大的功能已为人们深刻认识,它在人类社会的各个领域发挥着越来越重要的作用,给人们的生活带来了极大的便利,成为推动社会发展的首要技术动力。排课是学校教学管理中十分重要、又相当复杂的工作之一。解决好教学工作中的排课问题对整个教学计划的进行,有着十分重要的意义。首先对排课的已有算法作了相关的调查研究,决定采用遗传算法。通过设计实现基于遗传算法的自动排课系统,研究了遗传算法在排课系统中的应用。 关键词:遗传算法、自动排课、Java。

Abstract Along with science technical and community information technical increases continuously, calculator science is gradually mature, its mighty function has behaved deep cognition, and it has entered the human social each realm erupts to flick the more and more important function, bringing our life biggest of convenience. Curriculum arrangement is an important and complicated working in school,so solving the problem is of great importance for teaching programming.Investigated and studied the algorithm existed, determine that adoptgenetic algorithm. ThroughDesign Implementation theAuto CourseArrangementManagement System Base onGenetic Algorithm, researched the application of genetic algorithmin theCourseArrangementManagement System. Keywords: Genetic Algorithm Auto Course Arrangement ManagementJava.

人工智能遗传算法新论文

论文 题目:遗传算法应用 院系:计算机工程系 专业:网络工程 班级学号:112055126 学生姓名:崔小杰 2014年10月23日

内容摘要 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。图像的分割是以灰度值作为分割的依据,通过各个像素的灰度值和事先确定的阈值的比较来分割图像。如何确定最合适的阈值是处理好图像分割的关键,这自然成为一直以来分割算法研究的焦点。 遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。 本文主要介绍基于遗传算法的最小误差阈值法、最大类间方差法(Otsu法)以及最佳直方图熵法(KSW熵法)等三种方法分割图像。 关键词:图像分割,遗传算法,阈值分割

目录 第一章绪论 .................................................. - 1 - 第二章遗传算法概述 ........................................ . - 1 - 2.1遗传算法的研究历史....................................... - 1 - 2.2生物背景................................................. - 2 - 2.3遗传算法的基本思想....................................... - 2 - 2.4遗传算法的几个概念....................................... - 2 - 2.4.1适应度函数......................................... - 2 - 2.4.2遗传算法最常用的算子............................... - 3 - 2.5遗传算法运算的基本流程 (4) 第三章图像分割的现状 ........................................ - 4 - 3.1图像分割简介............................................. - 4 - 3.2图像分割方法............................................. - 5 - 3.2.1基于边缘检测的分割 (6) 3.2.2基于区域的分割..................................... - 5 - 3.2.3边缘与区域相结合的分割............................. - 5 - 3.3阈值选取................................................. - 6 - 第四章基于新的遗传算法的图像分割 ............................ - 6 - 4.1混沌遗传算法............................................. - 6 - 4.2量子遗传算法............................................. - 6 - 4.3免疫遗传算法............................................. - 6 - 结论 ........................................................... - 7 - 参考文献: ...................................................... - 7 -

遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序) 2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市 3.只能访问一次,最后又必须返回出发城市。如何安排他对这些城市的访问次序,可使其 4.旅行路线的总长度最短? 5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij) 6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶 7.点且每个顶点只通过一次的具有最短距离的回路。 8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商 9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。 10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中 11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为: 12.min l=σd(t(i),t(i+1)) (i=1,…,n) 13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目 14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法 15.求其近似解。 16.遗传算法: 17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。定义整数pop-size作为染色体的个数 18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。 19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)). 20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中 21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被 22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al 23.pha*(1-alpha).^(i-1) 。[随机规划与模糊规划] 24.选择过程:选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个 25.染色体。赌轮是按每个染色体的适应度进行选择染色体的。 26.step1 、对每个染色体vi,计算累计概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1, 27.…pop-size. 28.step2、从区间(0,pop-size)中产生一个随机数r; 29.step3、若qi-1 step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。 30.grefenstette编码:由于常规的交叉运算和变异运算会使种群中产生一些无实际意义的 31.染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现 32.。所谓的grefenstette编码就是用所选队员在未选(不含淘汰)队员中的位置,如: 33.8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1 34.对应: 35.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。 36.交叉过程:本文采用常规单点交叉。为确定交叉操作的父代,从到pop-size重复以下过 37.程:从[0,1]中产生一个随机数r,如果r 将所选的父代两两组队,随机产生一个位置进行交叉,如: 38.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1 39. 6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1 40.交叉后为: 41.8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1 42. 6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1 43.变异过程:本文采用均匀多点变异。类似交叉操作中选择父代的过程,在r 选择多个染色体vi作为父代。对每一个 选择的父代,随机选择多个位置,使其在每位置

数学建模遗传算法与优化问题【精品毕业设计】(完整版)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

TSP问题的遗传算法求解

TSP问题的遗传算法求解 一、问题描述 假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。 二、算法描述 (一)算法简介 遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。(摘自百度百科)。 (二)遗传算子 遗传算法中有选择算子、交叉算子和变异算子。 选择算子用于在父代种群中选择进入下一代的个体。 交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。 变异算子用于对种群中的个体进行突变。 (三)算法步骤描述 遗传算法的基本运算过程如下: 1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P 2.个体评价:计算种群P中各个个体的适应度 3.选择运算:将选择算子作用于群体。以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代 4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉 5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整 6.经过选择、交叉、变异运算之后得到下一代群体P1。 重复以上1-6,直到遗传代数为T,以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 三、求解说明 (一)优化目标 给定二维数据int[][]pos用于存储各个城市的坐标,采用欧式距离代表城市之间的距离。利用遗传算法,找到不重复遍历所有城市的路径中,所走距离最短的路径。 (二)选择算子 选择算子采用轮盘赌选择,以每个个体的适应度为基础,为每个个体计算累积概率。

遗传算法的特点及其应用

遗传算法的特点及其应用 上海复旦大学附属中学张宁 目录 【关键词】 【摘要】 【正文】 §1遗传算法的基本概念 §2简单的遗传算法 1.选择 2.交换 3.变异 §3简单的遗传算法运算示例 1.计算机公司的经营策略优化问题 2.函数优化问题 §4遗传算法应用举例 1.子集和问题 2.TSP(旅行商)问题 §5结束语 【附录】 1.子集和问题源程序 2.TSP(旅行商)问题源程序 【参考文献】

【关键词】 遗传算法遗传变异染色体基因群体 【摘要】 遗传算法是基于达尔文进化论,在计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存,优胜劣汰等自然进化规则来进行搜索计算和问题求解。 文章的第一部分介绍了遗传算法的基本概念。第二部分介绍了遗传算法的原理以及三种运算:选择、交换、变异。第三部分着重介绍三种运算的具体实现,以及简单实例,主要体现遗传算法的实现过程。第四部分介绍了两个具体问题,都是属于NP-完全问题,如何用遗传算法来解决,以及实现时的一些基本问题。 文章在介绍遗传算法的原理以及各种运算的同时,还分析了一些应用中出现的基本问题,对于我们的解题实践有一定的指导意义。 【正文】 遗传算法作为一门新兴学科,在信息学竞赛中还未普及,但由于遗传算法对许多用传统数学难以解决或明显失效的复杂问题,特别是优化问题,提供了一个行之有效的新途径,且能够较好地解决信息学竞赛中的NP难题,因此值得我们进行深入的讨论。 要掌握遗传算法的应用技巧,就要了解它的各方面的特点。首先,让我们来了解一下什么是遗传算法。 §1遗传算法的基本概念 遗传算法(Genetic Algorithms,简称GA)是人工智能的重要新分支,是基于达尔文进化论,在计算机上模拟生命进化机制而发展起来的一门新学科。它

基于遗传算法的配送路径优化研究开题报告

北京师范大学珠海分校 本科生毕业论文(设计)开题报告

理论和实践的意义及可行性论述 (包括文献综述) 理论和实践的意义:当前,现代物流是企业继续降低物资消耗、提高劳动生产 率后的第三利润源泉。但我国物流企业的运输成本普遍偏高。其中很重要一个 原因就是对配送车辆运输路线规划不科学。要想降低运输成本,离不开对配送 路线的优化和配送车辆的合理安排。对物流配送车辆行驶路径进行优化,可以降低物流成本,节约运输时间,是提高物流经济效益的有效手段。 可行性论述:配送路径优化问题是典型的优化组合问题,具有很高的计算复杂 性。但遗传算法解决作为一种有效的全局搜索方法具有隐并行性和较强的鲁棒性,在解决非线性的大规模复杂问题上具有很好的适应性,适合于对VPR问 题进行优化求解。标准遗传算法虽然未必每次都能找到最优解,但通过对标准 遗传算法进行改进,完全可以在有限时间内对较复杂的VPR问题计算出次优 解或可行解。因此,用遗传算法来解决物流车辆调度问题还是完全可行的。 文献综述: [1]朱剑英?非经典数学方法[M].武昌:华中科技大学出版社,2001 [2]李敏强,寇纪淞,林丹,李书全?遗传算法的基本理论与应用[M].北京:科 学技术出版社,2002 [3]孙丽丽?物流配送中车辆路径算法分析与研究[D].上海:上海海事大学,2007 [4]盖杉.基于遗传算法的物流配送调度系统 [D].长春:长春理工大学,2007 [5]高运良,基于免疫遗传算法的物流配送V RP 求解[D].武汉:武汉科技大学, 2007 论文撰写过程中拟采取的方法和手段 本论文主要采用遗传算法作为解决物流配送路径优化问题的主要算法。但由于标准遗传算法具有“早熟收敛”的缺陷,有可能使算法陷入局部最优解。论文还将尝试通过把其他算法和遗传算法相结合,来有效控制早熟现象的发生。为了快速得到任意两个配送点之间的最优路线。本论文还拟采用佛洛依德 算法构造配送路线的地理数据库的方式来对路线网络进行预处理。从而减少整 个算法的时间复杂度和空间复杂度。

人工智能之遗传算法论文含源代码

30维线性方程求解 摘要:非线性方程组的求解是数值计算领域中最困难的问题,大多数的数值求解算法例如牛顿法的收敛性和性能特征在很大程度上依赖于初始点。但是对于很多高维的非线性方程组,选择好的初始点是一件非常困难的事情。本文采用了遗传算法的思想,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了遗传算法的群体搜索和全局收敛性。选择了几个典型非线性方程组,考察它们的最适宜解。 关键词:非线性方程组;混合遗传算法;优化 1. 引言遗传算法是一种通用搜索算法,它基于自然选择机制和自然遗传规律来模拟自然界的进化过程,从而演化出解决问题的最优方法。它将适者生存、结构化但同时又是 随机的信息交换以及算法设计人的创造才能结合起来,形成一种独特的搜索算法,把一些解决方案用一定的方式来表示,放在一起成为群体。每一个方案的优劣程度即为适应性,根据自然界进化“优胜劣汰”的原则,逐步产生它们的后代,使后代具有更强的适应性,这样不断演化下去,就能得到更优解决方案。 随着现代自然科学和技术的发展,以及新学科、新领域的出现,非线性科学在工农业、经济政治、科学研究方面逐渐占有极其重要的位置。在理论研究和应用实践中,几乎绝大多数的问题都最终能化为方程或方程组,或者说,都离不开方程和方程组的求解。因此,在非线性问题中尤以非线性方程和非线性方程组的求解最为基本和重要。传统的解决方法,如简单迭代法、牛顿法、割线法、延拓法、搜索法、梯度法、共轭方向法、变尺度法,无论从算法的选择还是算法本身的构造都与所要解决的问题的特性有很大的关系。很多情况下,算法中算子的构造及其有效性成为我们解决问题的巨大障碍。而遗传算法无需过多地考虑问题的具体形式,因为它是一种灵活的自适应算法,尤其在一些非线性方程组没有精确解的时候,遗传算法显得更为有效。而且,遗传算法是一种高度并行的算法,且算法结构简单,非常便于在计算机上实现。本文所研究的正是将遗传算法应用于求解非线性方程组的问题。 2. 遗传算法解非线性方程组为了直观地观察用遗传算法求解非线性方程组的效果,我们这里用代数非线性方程组作为求解的对象问题描述:非线性方程组指的是有n 个变量(为了简化讨论,这里只讨论实变量方程组)的方程组 中含有非线性方程。其求解是指在其定义域内找出一组数能满足方程组中的每 个方程。这里,我们将方程组转化为一个函数则求解方程组就转化为求一组值使得成立。即求使函数取得最小值0 的一组数,于是方程组求解问题就转变为函数优化问题 3. 遗传算子 遗传算子设计包括交叉算子、变异算子和选择算子的设计。

遗传算法经典MATLAB代码【精品毕业设计】(完整版)

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

基于遗传算法的PID参数优化毕业设计(论文)

本科生毕业设计(论文) 论文题目:基于遗传算法的PID参数优化

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关文档
相关文档 最新文档