文档库 最新最全的文档下载
当前位置:文档库 › 高数习题选解(第4章)

高数习题选解(第4章)

高数习题选解(第4章)
高数习题选解(第4章)

第四章 不定积分

习题4.1

1. 求下列不定积分

(3)22212(1)

x dx x x ++?; (5) 2cos 2x dx ? 解:(3) 222221211()(1)1x dx dx x x x x

+=+++??1arctan x c x =-++. (5)21cos 11cos cos 2222x x dx dx dx xdx +==+????11sin 22

x x c =++. 习题4.2

用换元积分法求不定积分

(2)111211()x x x e dx e d e c x x

=-=-+??. (8

)22arctan c ==?. (17)222(1)111(1)21(1)1(1)x x dx dx d x dx x x x x x +-==+-+++++????

1ln 11

x c x =++

++. (23

)35436t t dt t t =?-? 16()t x =令 561

t dt t =-?543211166(1)611t dt t t t t dt dt t t -+==+++++--??? 521111633662632366ln |1|52

x x x x x x C =+++++-+ (25

)22,((1)

t dt t t t ==-?令 11()ln 1ln 111

dt t t c t t =-=--++-+?

ln

c =+

习题4.3

(10)因为

1cos(ln )cos(ln )sin(ln )x dx x x x x dx x

=+?? cos(ln )sin(ln )cos(ln )sin(ln )cos(ln )x x x dx x x x x x dx =+=--?? 所以 1

c o s (l n )[c o s (l n )s i n (l n )]

2x d x x x x x c =++?

(11)2

=-=-?

2d c =-=-?

2.求下列不定积分

(3)

sin x ==

2

2(1sin )x c =+=

习题4.4

2.求下列不定积分

(5)4544422sin cos sin cos sin sin (1sin )sin x xdx x xd x x x d x ==-??? 468579121(sin 2sin sin )sin sin sin sin 579

x x x d x x x x c =-+=-++? 3. 求下列无理函数不定积分

(3)12,[1t tdt t t -==+?令 222(2)22ln 11

t dt t t t c t =-+=-++++?

11)x c =+-+

总习题

2、求下列不定积分

2

22sec )3sec tan 2xdx x c x x =++?

(2)32112(32)(32)223x x e e e c =+=++?

=1

(323x e c +

(4

=+

2(1)arcsin (arcsin )x d x =--+?

=21(arcsin )2x c + (8)

[]()'()f x xf x dx +?(其中'()f x 连续)

解:[]()'()()'()f x xf x dx f x dx x f x dx +=+???

[]()()f x dx xd f x =+??

()()()()f x dx xf x f x dx xf x c =+-=+?? (13)2222cos 3

3sin tan cos dx dx x x x

x =++??=2222sec (tan )3sec tan 32tan )xdx d x x x x =++??

=21(tan )31tan )d x x +

?2

(tan )tan )1)d x d x x =+?

)x c +

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

期望与方差例题选讲含详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种.

第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ. 解:这3张卡片上的数字和ξ这一随机变量的可能取值为6,9,12,且“ξ=6”表示取 出的3张卡上都标有2,则P (ξ=6)=.“ξ=9”表示取出的3张卡片上两张为2, 一张为5,则P (ξ=9)= .?? “ξ=12”表示取出的3张卡片上两张为5,一张为 2,则P (ξ=12)=.??? 则期望Eξ=6×+9×+12×=,???? 方差Dξ= 2 + 2 + 2 =. 2.(2010江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、

曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (), (βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ αd r r r r f ds y x f L )()()sin ,cos (),(22'+=?? 例5(E03)计算 ,||? L ds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的 弧. 解 双纽线的极坐标方程为 .2cos 2 2θa r = 用隐函数求导得 ,2sin ,2sin 22 r a r a r r θ θ- ='-='

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

理财计算题目选讲

某公务员今年35岁,计划通过年金为自己的退休生活提供保障。经过测算,他认为到60岁退休时年金账户余额至少应达到60万元.如果预计未来的年平均收益率为8%,那么他每月末需投入( D ) (A )711元(B )679元(C )665元(D )631元 60000012%8112%8112%8112992=??? ???????? ??+++??? ??++??? ??++ A 300600000 6318%1211128%=????+-??? ??????? 某三年期证券未来每年支付的利息分别为200元、400元、200元,到期无本金支付,如果投资者要求的收益率为8%,那么该证券的发行价格应为( B ) (A )800元(B )686.89元(C )635.07元(D )685.87元 23200400200686.8872686.8918%(18%)(18%) P =++=≈+++ 软件设计师张先生最近购买了一套总价为50万元人民币的住房。由于他工作刚3年,积蓄不足,所以他按最高限向银行申请了贷款,20年期,贷款利率5.5%。如果采用等额本息还款方式,张先生每月需还款( A ) (A )3439.44元(B )2751.55元(C )2539.44元(D )2851.55元 50000012%5.5112%5.5112%5.51123921=??? ???????? ??+++??? ??++??? ??++--- A

2405.5%500000123439.445.5%1112-?=????-+?? ??????? 某后付年金每年付款2000元,连续15年,年收益率4%,则年金现值为( A ) (A )22236.78元(B )23126.25元(C )28381.51元(D )30000元 04.11104.11 104.11200004.1104.1104.1104.112000151532--??=??? ??++++ 15112000122236.774922236.780.04 1.04???-=≈ ??? 如果某股票的β值为0.8,当市场组合的期望收益率为11%,无风险利率为5%时,该股票的期望收益率为( B ) (A )13.8%(B )9.8%(C )15.8%(D )8.8% 5%0.8(11%5%)5% 4.8%9.8%+?-=+= 一高级证券分析师预测某股票今天上涨的概率是20%,同昨日持平的概率是10%,则这只股票今天不会下跌的概率是( B ) (A )10% (B )30% (C )20% (D )70% 假定上证综指以0.55的概率上升,以0.45的概率下跌。还假定在同一时间间隔内深证综指以0.35的概率上升,以0.65的概率下跌。再假定两个指数可能以0.3的概率同时上升。那么同一时间上证综指或深证综指上升的概率是( B ) (A )0.3 (B )0.6 (C )0.9 (D )0.1925

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

曲线曲面积分(习题及解答)

第十章 曲线曲面积分 §10.1对弧长的曲线积分 一、选择题 1. 设曲线弧段?AB 为,则曲线积分有关系( ). (A) ??(,)d (,)d AB BA f x y s f x y s =-??; (B) ??(,)d (,)d AB BA f x y s f x y s =? ?; (C)??(,)d (,)d 0AB BA f x y s f x y s +=??; (D)??(,)d (,)d AB BA f x y s f x y s =--? ?. 答(B). 2. 设有物质曲线23 :,,(01),23 t t C x t y z t ===≤≤其线密度为ρ=,它 的质量M =( ). (A)10t ?; (B)10 t t ? ; (C) t ? ; (D) t ? . 答(A). 3.设OM 是从(0,0)O 到(1,1)M 的直线段,则与曲线积分OM I s =?不相等的积分是( ). (A)10 x ?; (B) 10y ?; (C) d r r ? ; (D) 1 e r ? 答(D). 4 .设L 是从(0,0)A 到(4,3)B 的直线段,则曲线积分()d L x y s -=?( ). (A) 4 03d 4x x x ??- ????; (B)303d 4y y y ?? - ????; (C)3034y y y ?- ??; (D)4034x x x ?- ? ?. 答 (D). 5. 设L 为抛物线2y x =上从点(0,0)到点(1,1)的一段弧,则曲线积分 s =? ( ). (A)x ?; (B)y ?; (C) 10 x ? ; (D) y ? . 答(C). 6. 设L 是从(1,0)A 到(1,2)B -的直线段,则曲线积分()d L x y s +=?( ).

12练习题解答:第十二章 方差分析分析

第十二章 方差分析 练习题: 1. 现今越来越多的外国人学习汉语,某孔子学院设计了3种汉字的讲授方法, 随机抽取了28名汉语基础相近的学生进行试验,试验后对每一个学生汉字理解记忆水平进行打分,满分为10分,28名学生的分数如下: 表12-3 三种汉字讲授方法下的学生得分 汉字讲授方法 9.1 6.6 6.2 8.6 7.0 7.4 9.0 8.0 7.8 8.1 7.4 7.9 9.4 7.6 8.2 9.2 8.1 8.1 8.8 7.4 6.7 9.4 7.9 6.9 7.5 1y = 2y = 3y = y = (1) 请分别计算3种汉字讲授方法下学生相应分数的平均值1y 、2y 与 3y 以及所有参加试验的学生的平均得分y ,并填入上表。 (2)请根据上表计算总平方和(TSS ),组间平方和(BSS ),组内平方和(WSS ), 组间均方(MSS B ),组内均方(MSS W ),以及各自对应的自由度并填入下表。 B B W 组内 WSS : n-k: MSS W : —————— —— ———— 总和 TSS : n-1: ———— —————— —— ———— (3)根据上表计算出F 值,并查附录中的F 分布表,看P 是否小于0.05。 (4)若显著性水平为0.05,请查附录中的F 分布表找出F 临界值,并填入上表。 (5)若显著性水平为0.05,请根据P 值或F 临界值判断三种汉字的讲授方法对 学生汉字的理解和记忆水平是否有显著性影响。 解: (1)1y =8.9222≈8.92,2y =7.5667≈7.57,3y =7.3800≈7.38,y =7.9357≈7.94.

微分方程例题选解演示教学

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-== 。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+??=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 2 1[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2 y x x =+。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+, 分离变量得 dx x u du 12=-, 积分得 C x u +=ln 1, 原方程的通解为 ln x y x C =+。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223--- 4222244 1)(2141dy dy x dx y dx -+-= )2(4 14224y y x x d --=, 得 0)2(4224=--y y x x d , 原方程的通解为 C y y x x =--42242。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222=--r r ,特征根为 i r ±=1,

重积分、曲线曲面积分例题选解

重积 、曲线曲面积分例题选讲 一、选择题 1.设),(y x f 连续,且??+=D dudv v u f xy y x f ),(),(,其中D 是由0=y ,2x y =, 1=x 所围成区域,则),(y x f 等于( ) (A )xy ; (B )xy 2; (C )8 1 +xy ; (D )1+xy 。 2.二次积分???ρρ?ρ?ρ? πcos 0 )sin cos 2 d ,f(d 可以写成( ) (A )? ?-2 1 0 y y f(x,y)dx dy ; (B )? ?-2 1 0 1 0 y f(x,y)dx dy ; (C )??1 1 0 f(x,y)dy dx ; (D )? ?-2 1 x x f(x,y)dy dx 。 3.设)(u f 为连续函数,} 1 ,1),{(3x y x y x D ≤-≤≤=, dxdy y y x f x x I D ??++=]sin )([22,则I =( ) (A ) 32-; (B )32; (C )0; (D )2 3 。 4.设C 是圆周x y x 222=+,则?=C xds ( )。 (A )0;(B )1;(C )π;(D )π2。 5.圆柱面222a z x =+被圆柱面222a y x =+所截部分的面积为( ). (A ) 8a 2, (B ) 4a 2, (C )2a 2, (D ) a 2. 6.∑设:)0(2222≥=++z a z y x ,在第一卦限的部分为∑∑1,则有( ) (A )????∑∑ =1 4xdS xdS ; (B )????∑∑ =1 4xdS ydS ; (C )????∑∑ =1 4xdS zdS ; (D )????∑∑ =1 4xyzdS xyzdS 。

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

《财务管理》第二章重难点讲解及例题:组合的方差与风险系数

《财务管理》第二章重难点讲解及例题:组合的方差与风险系数两项证券资产组合的收益率的方差 (1)计算公式 两项证券资产组合的收益率的方差 =第-项资产投资比重的平方×第-项资产收益率的方差+第二项资产投资比重的平方×第二项资产收益率的方差+2×两项资产收益率之间的相关系数X第-项资产收益率的标准差X第二项资产收益率的标准差×第-项资产投资比重×第二项资产投资比重 或: 两项证券资产组合的收益率的方差 =第-项资产投资比重的平方X第-项资产收益率的方差+第二项资产投资比重的平方×第二项资产收益率的方差+2×两项资产收益率的协方差X第-项资产投资比重×第二项资产投资比重 (2)相关结论 ①当两项资产收益率之间的相关系数=1时,两项证券资产组合的收益率的标准差达到最大,等于单项资产收益率标准差的加权平均数,表明组合的风险等于组合中各项资产风险的加权平均,换句话说,当两项资产的收益率完全正相关时,两项资产的风险完全不能互相抵消,所以这样的组合不能降低任何风险。 ②当两项资产收益率之间的相关系数=-1时,两项证券资产组合的收益率的标准差达到最小,甚至可能是零。因此,当两项资产的收益率具有完全负相关关系时,两者之间的非系统风险可以充分地相互抵消,甚至完全消除。因而,由这样的两项资产组成的组合可以最大程度地抵消风险。 【例题21.计算题】沿用例题19资料,假设A、B资产收益率的协方差为-1.48%,计算A、B资产收益率的相关系数、资产组合的方差和标准差。 【答案】 4.证券资产组合的风险

【提示】市场组合收益率(实务中通常用股票价格指数的平均收益率来代替)的方差代表了市场整体的风险,由于包含了所有的资产,因此,市场组合中的非系统风险已经被完全消除,所以市场组合的风险就是市场风险或系统风险。 5.β系数(系统风险系数) (1)单项资产的β系数 单项资产的β系数是指可以反映单项资产收益率与市场平均收益率之问变动关系的-个量化指标,它表示单项资产收益率的变动受市场平均收益率变动的影响程度,换句话说,就是相对于市场组合的平均风险而言,单项资产系统风险的大小。 β系数的定义式如下: 单项资产的β系数 =该资产收益率与市场组合收益率之间的协方差÷市场组合收益率的方差 =该资产收益率与市场组合收益率的相关系数×该资产收益率的标准差÷市场组合收益率的标准差 【提示】从上式可以看出,单项资产β系数的大小取决于三个因素:该资产收益率和市场资产组合收益率的相关系数、该资产收益率的标准差、市场组合收益率的标准差。 (2)证券资产组合的β系数 证券资产组合的β系数是所有单项资产β系数的加权平均数,权数为各种资产在证券资产组合中所占的价值比例。 【提示】 (1)β系数衡量的是系统风险,资产组合不能抵消系统风险,所以,资产组合的β系数是单项资产β 系数的加权平均数。 (2)单项资产的β系数的计算公式也适用于证券资产组合β系数的计算: 证券资产组合的β系数 =证券资产组合收益率与市场组合收益率的相关系数×证券资产组合收益率的标准差÷市场组合收益率 的标准差 (3)市场组合的β系数=市场组合收益率与市场组合收益率的相关系数×市场组合收益率的标准差÷市场组合收益率的标准差=市场组合收益率与市场组合收益率的相关系数=1 【例题22.多选题】在下列各项中,能够影响特定资产组合β系数的有()。

曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

第十章 曲线积分与曲面积分答案 一、选择题 1.曲线积分 ()sin ()cos x L f x e ydx f x ydy ??--? ??与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = B A. 1()2x x e e -- B. 1()2x x e e -- C. 1 ()2 x x e e -+ 2.闭曲线C 为1x y +=的正向,则 C ydx xdy x y -+=+? C .2 C 3.闭曲线C 为2 2 41x y +=的正向,则 22 4C ydx xdy x y -+=+? D A.2π- B. 2π D. π 4.∑为YOZ 平面上2 2 1y z +≤,则 222()x y z ds ∑ ++=?? D B. π C. 14 π D. 12 π 5.设222:C x y a +=,则22 ()C x y ds +=? C A.2 2a π B. 2 a π C. 32a π D. 3 4a π 6. 设∑为球面2 2 2 1x y z ++=,则曲面积分 ∑ [ B ] A.4π B.2π C.π D.12 π 7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分 ? =L yds [ C ] A. 21 B. 2 1 - C. 22 D. 22- 8. 设I=? L ds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧, 则I=[D ] A. 655 B.1255 C.6155- D. 12 1 55-

9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A. ?-l ydy xdx 21; B. ?-l xdx ydy 2 1 ; C. ?-l xdy ydx 21; D. ?-l ydx xdy 21 。 10.设2 2 2 2 :(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 C A.1 4S S xds xds =???? B.1 4S S yds yds =???? C.1 4S S zds zds =???? D.1 4S S xyzds xyzds =???? 二、填空题 1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分 ?=+-L y dy x e ydx )(2 -2 为球面2222a z y x =++的外侧,则??=-+-+-s dxdy y x dzdx x z dydz z y )()()(0 3. ? =++-12 2 22y x y x xdy ydx =π2- 4.曲线积分 22()C x y ds +? ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z = ≥,则曲面积分()222ds y x z ∑ ++??= 32π 6. 设曲线C 为圆周2 2 1x y +=,则曲线积分 ()2 23d C x y x s +-? 2π . 7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分?=+C ds )y x ( 8. 设∑为上半球面z =,则曲面积分 ∑ 的值为 8 3 π。 9. 光滑曲面z=f (x ,y )在xoy 平面上的投影区域为D ,则曲面z=f (x ,y )的面积是 ????+??+=D d y z x z S σ22)()( 1 10.设L 是抛物线3 y x =上从点(2,8)到点(0,0)的一段弧,则曲线积分(24)L x y dx -=? 12

高三数学统计习题精选精讲

一.抽样方法: 1.简单随机抽样: 设一个总体的个数为N ,如果通过逐个抽样的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率都相等,就称这样的抽样为简单随机抽样。 抽签法和随机数表法是实施简单随机抽样的两种常用的方法。 2。分层抽样: 当已知总体由差异明显的几部分组成时,常常总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫分层抽样,其中所分成的各个部分叫做层。 二、利用样本频率估计总体分布: 由于总体分布通常不易知道,我们往往用样本的频率分布估计总体分布。一般地,样本容量越大,这种估计就越精确。 1、频率分布条形图: 当总体中的个体取不同数值很少时,其频率分布表由所取的样本的不同数值及相应的频率表示,其几何表示就是相应的条形图。 2、频率分布直方图: 当总体中的个体取不同数值很多时或者可以在实数区内取值时,用频率分布直方图表示相应样本的频率分布。 注:频率分布条形图和频率分布直方图不同。频率分布直方图的纵轴(矩形的高)表示频率,而频率分布直方图的纵轴(矩形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积。 三.期望与方差: 1.期望:123,,,n a a a a 的期望:12n a a a x n ++ +=; 2.方差: 123,,, n a a a a 的方差为:2222121[()()()]n S a x a x a x n =-+-++- 3.均方差:123,,, n a a a a 的均方差:????? ?-++-+-= )(...)()(122 221x a x a x a n n s 注:对于“已知123,,,n a a a a 的期望为多少,求12,,,n a a b a a b a a b ?+?+?+的期望和方差分别是多少?”问题,关键是利用 上述公式变形、整理得到所求的结果。 平均数、众数和中位数 这里说的“三数”是指平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.学习平均数、众数和中位数应注意以下几个问题: 一、正确理解平均数、众数和中位数的概念 1.平均数 平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数 在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数 中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和我们要关注的问题. 三、能正确选用平均数、众数和中位数来解决实际问题 由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.下面举几例说明.

相关文档
相关文档 最新文档