文档库 最新最全的文档下载
当前位置:文档库 › 上转换发光材料

上转换发光材料

上转换发光材料
上转换发光材料

上转换发光材料

上转换发光的概念:

上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。

上转换发光技术的发展:

早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。

80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。

上转换发光的机理:

上转换发光过程与传统典型的发光过程(只涉及一个基态和一个激发态)不同,上转换过程需要许多中间态来累积低频的激发光子的能量。其中主要有三种发光机制:激发态吸收(ESA)、能量传递上转换(ETU)和光子雪崩(PA)。这些过程均是通过掺杂在晶体颗粒中的激活离子能级连续吸收一个或多个光子来实现的,而那些具有f电子和d电子的激活离子因具有大量的亚稳能级而被用来上转换发光。

1、激发态吸收(ESA,Excited State Absorption)

激发态吸收过程 (ESA) 是Bloembergen等人在1959提出的,其原理是同一个离子从基态能级通过连续的多光子吸收到达能量较高的激发态能级的一个过程,这是上转换发光的最基本过程。图1(a)是激发态吸收 (ESA) 过程示意图。首先,离子吸收一个能量为hv1的光子,从基态1被激发到激发态2.然后,离子再吸收一个能量为hv2的光子,从激发态2被激发到激发态3,随后从激发态3发射出比激发光波长更短的光子。激发态 3上的该离子还有可能向更高的激发态能级跃迁而形成三光子、四光子吸收,依此类推。只要该高能级上粒子数足够多,形成粒子数反转,就可实现较高频率的激光发射,出现上转换发光。在连续光激发下,上转换发光(来自能级3)的强度通常正比于I1,I2。I为激发光强.一些情况下,hv1=hv2,其发光强度通常正比于I2.更一般地,如果需要发生n次吸收,上转换发光强度将正比于I n,另外,ESA过程为单个离子的吸收,具有不依赖于发光离子浓度的特点。

图 1 上转换发光激发态吸收机制示意图

2、能量传递上转换(ETU,Energy Transfer Upconversion)

能量传递上转换又包括连续能量转移(SET ,Successive Energy Transfer),交叉驰豫(CR,Cross Relaxation) 以及合作上转换(CU,Cooperative-Upconversion)三种不同的能量转移方式。

1)连续能量转移(SET ,Successive Energy Transfer)

SET一般发生在不同类型的离子之间,其原理如图2:处于激发态的一种离子(施主离子) 与处于基态的另外一种离子(受主离子)满足能量匹配的要求而发生相互作用,施主离子将能量传递给受主离子而使其跃迁至激发态能级,本身则通过无辐射驰豫的方式返回基态。位于激发态能级上的受主离子还可能第二次能量转移而跃迁至更高的激发态能级。这种能量转移方式称为连续能量转移SET。

图 2 SET过程图 3 CR过程

2)交叉驰豫(CR,Cross Relaxation)

发生在相同或不同类型的离子之间。其原理如图3所示。同时位于激发态上的两种离子,其中一个离子将能量传递给另外一个离子使其跃迁至更高能级,而本身则无辐射驰豫至能量更低的能级。

3)合作上转换(CU,Cooperative-Upconversion)

发生在同时位于激发态的同一类型的离子之间,可以理解为三个离子之间的相互作用,其原理如图4所示。首先同时处于激发态的两个离子将能量同时传递给一个位于基态能级的离子使其跃迁至更高的激发态能级,而另外两个离子则无辐射驰豫返回基态。

图 4 CU过程图 5 PA过程

3、“光子雪崩”过程 (PA ,Photon Avalanche)

PA过程是ESA和ETU相结合的过程,其主要特征为:泵浦波长对应于离子的某一激发态能级与其上能级的能量差而不是基态能级与其激发态能级的能量差,其原理如图 5 : 泵浦光能量对应离子的E2和E3能级, E2能级上的一个离子吸收该能量后被激发到E3能级, E3能级与E1能级发生CR过程, 离子都被积累到E2能级上, 使得E2能级上的粒子数像雪崩一样增加, 因此称为“光子雪崩”过程。

其次,PA引起的上转换发光对泵浦功率有明显的依赖性,低于泵浦功率阀值时,只存在很弱的上转换发光,而高于泵浦功率阀值时,上转换发光强度明显增加,泵浦光被强烈吸收。PA过程取决于激发态上的粒子数积累,因此,在稀土离子掺杂浓度足够高时,才会发生明显的PA过程,另外,PA过程也只需要单波长泵浦的方式,需要满足的条件是泵浦光的能量与某一激发态与其向上能级的能量差匹配。

上转换发光材料的组成:

上转换纳米颗粒通常由无机基质及镶嵌在其中的稀土掺杂离子组成。尽管理论上大多数稀土离子都可以上转换发光,而事实上低泵浦功率(10W/cm2)激发下,只有在作为激活离子时才有可见

光被观察到,原因是这些离子具有较均匀分立的能级可以促进光子吸收和能量转移等上转换所涉及的过程。为了增强上转换效率,通常作为敏化剂与激活剂一同掺杂,因其近红外光谱显示其有较宽的吸收域。作为一条经验法则,为了尽量避免激发能量因交叉弛豫而造成的损失,在敏化剂-激活剂体系中,激活剂的掺杂浓度应不超过2%。

上转换过程的发生主要依赖于掺杂的稀土离子的阶梯状能级。然而基质的晶体结构和光学性质在提高上转换效率方面也起到重要作用,因而基质的选择至关重要。

基质材料一般不构成激(发)光能级,但能为激活离子提供合适的晶体场,使其产生合适的发射。此外,基质材料对阈值功率和输出水平也有很大的影响。用以激发激活离子的能量可能会被基质振动吸收。基质晶体结构的不同也会导致激活离子周围的晶体场的变化,从而引起纳米颗粒光学性质的变化。优质的基质应具备以下几种性质:在于特定波长范围内有较好的透光性,有较低的声子能和较高的光致损伤阈值。此外,为实现高浓度掺杂基质与掺杂离子应有较好的晶格匹配性。综上考虑,稀土金属、碱土金属和部分过渡金属离子的无机化合物可以作为较理想的稀土离子掺杂基质。

对于上转换激(发)光效率来讲,一般认为氯化物 > 氟化物 > 氧化物,这是单从材料的声子能量方面来考虑的,前面已有谈到。但是,这恰与材料结构的稳定性成反比,即氯化物 < 氟化物 < 氧化物。因此人们开展了一系列的研究,希望找到既有氯化物,氟化物那样高的上转换效率,又兼有类似氧化物结构稳定性的新基质材料,从而达到实际应用的目的。

近年来采用氟氧化物微晶玻璃(玻璃陶瓷) 来当基体是一种既方便又有效的方法。利用成核剂诱发氟化物形成微小的晶相,并使稀土离子优先富集到氟化物微晶中,稀土离子就被氟化物微晶所屏蔽,而不与包在外面的氧化物玻璃发生作用。这样,掺杂的氟氧化物微晶玻璃既具有了氟化物的高转换效率,又具有了氧化物的较好的稳定性。另一种值得重视的基质材料 -- 化学计量比晶体。如稀土五磷酸盐非晶玻璃和Ba2ErC l7以及早期研究过的Nd2(WO4)3。这类材料的共同特点是,激活离子是基质的组成部分,因而可以有很高的浓度。高的浓度对上转换发光却是有利的。有资料表明:在没有下转换激光时,上转换发光最强。

上转换发光材料的光学性质:

稀土离子的吸收和发射光谱主要来自内层4f电子的跃迁。在外围5s和5p的电子的屏蔽下,其4f电子几乎不与基质发生相互作用,因此掺杂的稀土离子的吸收和发射光谱与其自由离子相似,显示出极尖锐的峰(半峰宽约为10-20nm)。而这同时就对激发光源的波长有了很大的限制。

镧系金属离子通常有一系列尖锐的发射峰,因此为光谱的解析提供了特征性较强的图谱,避免了发射峰重叠带来的影响。发射峰波长在根本上不受基质的化学组成和物理尺寸的影响。通过调节掺杂离子的成分和浓度,可以控制不同发射峰的相对强度,从而达到控制发光颜色的目的。

与传统的反斯托克斯过程(如双光子吸收和多光子吸收过程)不同,上转换发光过程是建立在许多中间能级态的基础上的,因此有较高的频率转换效率。通常,上转换过程可以由低功率的连续波激光激发,而与之鲜明对比的是“双光子过程”需要昂贵的大功率激光来激发。

由于内层4f电子跃迁的上转换发光过程不涉及到化学键的断裂,UC纳米颗粒因而具有较高的稳定性而无光致褪色和光化学衰褪现象。许多独立的研究表明,稀土掺杂的纳米颗粒在经过数小时的紫外光和红外激光照射后并未有根本的变化。由于f-f电子跃迁禁阻,三价稀土金属离子通常具有长发光寿命。时控发光检测技术即利用了这个光学特性,能够尽量避免因生物组织、某些有机物种或其它掺杂物的多光子激发过程而产生的短寿命背景荧光的干扰。与传统的稳定态发光检测技术相比,由于信号/噪声比显著增大,其检测灵敏度大大提高。

上转换功能材料的合成方法:

尽管目前UC颗粒已有许多合成方法,为了得到高效的UC发光产品,许多研究仍致力于探寻合成高晶化度的UC颗粒。具有较好晶体结构的纳米颗粒,其掺杂离子周围有较强的晶体场,且因晶体缺陷而导致的能量损失较少。考虑到生物领域的应用,为与生物(大)分子结合,纳米颗粒应同时具备小尺寸和良好分散性的特点。传统的合成上转换纳米颗粒的方法中,为了得到高晶化度、高分散度、特定的晶相和尺寸的产物,总体上对反应条件有较高的要求,如高温和长反应时间,而这可能导致颗粒的聚集或颗粒尺寸变大。对此,我们最近研究找到了较温和的反应条件,在此条件下合成的纳米颗

粒有小尺寸和较好的光学性质。严格控制掺杂浓度,还可以得到不同晶相和尺寸的纳米颗粒。。

下面粗略列举一些制备上转换功能材料文献中的方法。

1)热分解法:1采用合成LaF3的实验方法,镧系元素的三氟醋酸盐前驱体由对应的镧系氧化物和三氟乙酸合成。对应用量的三氟醋酸钠和十八烯、油酸随后加入到反应皿中。混合溶液在真空中加热100℃搅拌30 min 去掉残留的水和氧气。然后以 10 ℃/min的升温速率在Ar气氛围中升温至300 ℃,保温1 小时。

2)溶剂热合成:2硬脂酸稀土前驱体加入到含有[Bmim][BF4],NaNO3,水,乙醇和PEI(聚醚酰亚胺,平均分子质量20000,50%)的混合溶液中,搅拌5分钟,转移到聚四氟乙烯内衬的反应釜中,180℃保持24小时。反应类似于LSS(liquid-solid-solution)反应机制。形成的β-NaYF4 : Yb,Er UCNPs 为粒径35 nm的均匀纳米球,表面修饰有氨基。

3)水热法合成:3生长溶剂配制,溶解RECl3(RE为一种RE元素或者多元RE元素)和NaCl 在水中,使RE和 Na+总离子浓度为0.5 mmol。然后加入15 ml 乙醇,5 ml PEI溶液(5.0Wt%)和适量的NH4F (F-/Na+比例为5)。转移至反应釜200℃保持一段时间。晶粒尺寸可控。

4)共沉淀法:共沉淀法是将沉淀剂加入到混合金属盐溶液中,促使各组分均匀混合沉淀,再在一定的温度和气氛下烧结而得到纳米粉体。下图为文献中合成的部分上功能转换材料的SEM图。

图 6 上功能转换材料的SEM图

上转化功能材料的应用:

目前的主要应用为红外光激发发出可见光的红外探测,生物标识,和长余辉发光的警示标识,防火通道指示牌或者室内墙壁涂装充当夜灯的作用等。

节能环保是当今世界的主流, 扩大上转换材料的应用范围自然也要以此为出发点, 因此以上转换材料作为白光LED的荧光物质是个不错的选择。另外,太阳光中超过50%的部分为近红外光,所以人们也渐渐的将上功能转换材料的应用转向到近红外光催化方向上来,为了更高效率的利用太阳光,降解有机物,解决环境污染问题等。4

生物成像的最终目的是通过荧光标记探针实现对生物样本中个生物分子进行超灵敏检测,欲提高生物成像的效果以及检测灵敏性,就需要寻找信号稳定、标记简便、安全无毒、检测灵敏的标记物。上转换发光纳米材料具有光稳定性、化学稳定性高、吸收和发射带很窄、发光寿命长、潜在生物毒性小等优点;另外,采用近红外连续激光作为激发光源,具有较深的光穿透深度、对生物组织几乎无损伤、无生物背景荧光干扰等显著优势。上转换发光纳米材料的这些特征正是生物成像的理想标记物应具备的。随着上转换发光技术的进步,可以预见,上转换发光纳米材料具有巨大的临床应用潜力,将会为肿瘤检测、基因表达、蛋白质分子检测、药物受体定位、药物筛选和药物疗效评价等方面提供有效的技术支持。5-6

上功能转换材料的潜力应用仍值得开发,具有广阔的应用前景,在环保节能,信息储存等方面正处于起步阶段。但也存在价格昂贵,合成易团聚等问题,需要大家不断探索,不断创新,获得新突破。

1. John Christopher Boyer, F. V., Louis A. Cuccia, John A. Capobianco, Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+,Yb3+and Tm3+, Yb3+via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. J. AM. CHEM. SOC. 2006, (128), 7444-7445.

2. Chen, J.; Guo, C.; Wang, M.; Huang, L.; Wang, L.; Mi,

C.; Li, J.; Fang, X.; Mao, C.; Xu, S., Controllable

synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. J. Mater. Chem. 2011,21 (8), 2632.

3. Yu, X.; Li, M.; Xie, M.; Chen, L.; Li, Y.; Wang, Q., Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Research 2010,3 (1), 51-60.

4. Guo, X.; Di, W.; Chen, C.; Liu, C.; Wang, X.; Qin, W., Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2composites. Dalton transactions 2014,43(3), 1048-54.

5. Chen, X.; Zhao, Z.; Jiang, M.; Que, D.; Shi, S.; Zheng, N., Preparation and photodynamic therapy application of NaYF4:Yb, Tm–NaYF4:Yb, Er multifunctional upconverting nanoparticles. New Journal of Chemistry 2013,37 (6), 1782.

6. Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.; Zhao, Y., Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Advanced materials 2012,24 (9), 1226-31.

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

上转换发光材料

>>更多... 相似文献(10 条) 相似文献
1. 期刊论文 上转换激光和上转换发光材料的研究进展 - 人工晶体学报 2001, 30(2) 2. 学位论文 上转换发光材料的合成、表征及发光性质的研究 2008 3. 期刊论文 戊二醛修饰上转换发光材料 Na[Y0.57Yb0.39Er0.04]F4 的制备与表征 - 北京科技大学 学报 2009, 31(8) 4. 期刊论文 Na2SiF6 对 Er3+, Yb3+共掺杂上转换发光材料颗粒度的影响 - 中国稀土学报 2003, 21(z1) 5. 学位论文 稀土掺杂氟化物上转换发光材料的制备及光谱特性研究 2006 6. 期刊论文 上转换发光材料表面修饰羧基的制备与表征 - 功能材料 2007, 38(1) 7. 学位论文 Bi<,2>O<,3>与 NaYF<,4>体系的上转换研究 2006 8. 学位论文 氟氧玻璃上转换发光材料的制备与表征 2005 9. 期刊论文 SiO2 包覆上转换发光材料 Na(Y0.57Yb0.39Er0.04)F4 的研究 - 发光学报 2006, 27(3)
10. 学位论文 高效蓝绿光上转换发光材料的荧光特性与机理研究 2003
相关博文(19 条) 相关博文
1. 上转换提高硅太阳能电池效率 2. 上转换稀土发光材料 经典文献 3. 加州笔记之四十七 增强型电致发光材料 4. 中科院院士--曹镛教授 5. 中国电子书面临“套牢”风险? 6. 中国电子书面临“套牢”风险? 7. 太阳电池技术和产业化趋势分析 8. 详解全新戴尔家用产品 9. [转载]中国香港任咏华教授获世界杰出女科学家奖 10. 最先维持至有效期届满的两件 OLED 中国实用新型专利

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

发光材料技术应用及发展前景

发光材料技术应用及发展前景 CRT显像管:我们家庭所用的电视以及绝大多数的电脑终端显示器所用的显像管确实是CRT技术,阴极射线管(CRT)的特点是色彩鲜艳丰富,制备工艺成熟,成本低廉,然而由于CRT技术设备的电视机及其他显示器的体积庞大,而且也专门繁重,专门是大尺寸的显示器,如29in电视机的厚度超过70cm,质量超过50kg。差不多不能满足人们的要求,基于CRT 的缺点,人们又采纳了一些新技术来使CRT平板化,其中比较成熟的技术是低压荧光管(VFD)技术,以VFD技术为基础的显示器的体积明显降低,厚为1cm,质量也大为减轻,另一种相对成熟的技术而且具有庞大进展潜力的的技术是场发射(FED)技术。以场发射技术为基础制备的显示器厚度只有几毫米。 VFD低压荧光管:在29世纪60年代,电子运算机市场获得急速的扩大,为习惯运算器的数码显示需求,产生了真空荧光平板显示器VFD,随着各种技术的进展,是VFD进入高密度显示领域,目前具有数字显示,图像显示画面显示功能的VFD差不多广泛运用在各种仪器显示包括汽车家电通信设备以及大显示屏幕显示器等领域。然而由于VFD技术受到彩色化功耗大辨论率低腔体中真空的保持等咨询题的限制,近几年的市场份额有下降得趋势 FED场发射显示技术 FED技术是继VFD后,针对CRT平板化的又一次新的努力 图2各类电视机功耗的比较 OLED前景展望: 从目前显示技术的进展趋势来看,OLED无疑是会带来显示产品集体换代的一项新技术。现在要紧的技术突破还在于大尺寸工艺,色彩,

以及使用寿命。只是目前萎靡的液晶市场或许会激发厂商们尽早提速OLE D大面积进入市场的决心,提速OLED的研发及生产工艺的改进或许差不多在厂商们的打算之内。所以我们不能希望OLED不久会以一种低价格的姿势进入市场,任何一种革命性的新技术均随着市场及技术的成熟才慢慢地平易近人,这段时刻往往需要几年,OLED的前景是十分让人看好的。 CES 2009展索尼首发21英寸OLED电视,辨论率为1366×768 OLED超薄柔软可卷曲的特性使其的应用方向更广,超低的功耗更符合目前时代进展的需求,在今后我们将会看到更多的地点显现OLED 的身影。相信5年内,壁画般的显示产品也将会在市场内显现,拭目以待吧。 液晶显示器件(LCD)是个人应用显示器中最有进展潜力的显示器件。反射型液晶显示 器件的功耗每平方厘米在一微瓦以下,是目前世界上最省电的显示器。 由于液晶产业的进展,应用显示器的地点也就越来越多,如个人计时用的各种电子表 、电子钟、万年历;个人通信用的"BP"机、"老大大";个人学习用的运算器、电子字典、 电子翻译器、电子课本;个人工作用的电子记事簿、PDA、掌上微机;个人娱乐用的电子游 戏机、电子照相机、电子摄像机、液晶小电视等。液晶显示产业的进展,将给个人大量、 广泛地使用显示器带来一次革命。而个人大量应用显示器,可随时、随处获得信息,这又 将大大推动世界信息产业的进展。我国的液晶产业应着重进展个人应用的液晶显示器,在 个人应用显示器上与世界各国展开竞争。另外,由于液晶显示器的工作电压低、无辐射、

光至发光材料的研究进展(精)

光至发光材料的研究进展 关键字光至发光材料荧光反光 Keyword photoluminescence material fluorescence listen 摘要;综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。 Abstract It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。所以反光材料和发光材料有很大的不同,发光机理不一样:光致发光材料是向外发光,而不是反射光。

稀土高分子光致发光材料的研究进展

稀土高分子光致发光材料的研究进展 张秀菊1,2,陈鸣才23,冯嘉春2,李抢满3,贾德民1 (1.华南理工大学,广东广州510640;2.中科院广州化学研究所,广东广州510650;3.中国科学技术大学,安徽合肥230026) 摘 要:综述了稀土高分子光致发光材料的研究基础,比较了不同方法合成的稀土高分子发光材料的结构与性能,介绍了当前该领域的研究进展。 关 键 词:稀土;高分子;配合物;荧光材料 中图分类号:TQ314.266 文献标识码:A 文章编号:1001Ο9278(2002) 05Ο0016Ο05 稀土金属离子作为一种有效的发光中心,在无机 和有机发光材料中已有广泛应用。然而稀土无机材料存在着难加工成型、价格高等问题;稀土有机小分子配合物则存在稳定性差等问题,这些因素限制了稀土发光材料更为广泛的应用。高分子材料本身具有稳定性好及来源广、成型加工容易等特点,如果将稀土元素引入到高分子基质中制成稀土高分子光致发光材料,其应用前景将十分广阔。 稀土高分子配合物发光材料的研究始于20世纪60年代初,Wolff和Pressley[1]以聚甲基丙烯酸甲酯为基质制得稀土荧光材料,发现铕与α噻吩甲酰三氟丙酮的配合物Eu(TTA)3(TTA2α噻吩甲酰三氟丙酮)在高分子基质中发生从配体TTA到Eu3+的能量转移,从而使Eu3+发强荧光。近年来,由于含发光稀土离子的高分子材料兼有稀土离子优异的发光性能和高分子化合物易加工的特点,引起了广泛关注。研究方法基本分为两种:(1)稀土小分子络合物直接与高分子混合得到掺杂的高分子荧光材料;(2)通过化学键合的方式先合成可发生聚合反应的稀土络合物单体,然后与其他有机单体聚合得到发光高分子共聚物,或者稀土离子与高分子链上配体基团如羧基、磺酸基反应得到稀土高分子络合物。以下就这两类稀土络合物作一简单介绍。 1 稀土有机配合物 1.1 稀土β2二酮配合物 三价稀土β2二酮配合物发光研究早在20世纪60年代,曾作为激光材料引起人们的关注。β2二酮与稀土离子配合物的通式表示为: 收稿日期:2002Ο03Ο07 3通讯联系人 R1C O Eu3+ C H H C R2 O 由于在这类配合物中存在着从具有高吸收系数的β2二酮配体到Eu3+、Tb3+等的高效能量传递,从而使得它们在所有稀土有机配合物中发光效率最高,它们与镧系离子形成稳定的六元环,直接吸收激发光并可有效地传递能量。 配合物中中心稀土离子发光过程大致为:配体先发生π3←π吸收,也就是先经过单重态—单重态(S0→S)电子跃迁,再经系间窜越到三重态T1,接着由最低三重态T1向稀土离子振动能级进行能量转移。关于稀土β2二酮配合物的研究综述很多,一般认为[2~5]: ①发光效率与配合物结构的关系相当密切,即配合物体系共轭平面、刚性结构程度越大,配合物中稀土发光效率就越高。 ②配体取代基对中心稀土离子发光效率有明显的影响。R1基团为强电子给体时发光效率明显提高,并有噻吩>萘>苯的影响次序,R2基团为—CF3是敏化效果最强,因为F的电负性高,使得金属2氧键成为离子键。 ③稀土发光效率取决于配体最低激发三重态能级位置与稀土离子振动能级的匹配情况。 ④协同试剂是影响稀土离子发光效率的另一重要因素。 1.2 稀土羧酸配合物 稀土羧酸配合物涉及很多有趣的发光现象,加之羧酸类配体成本远远低于β2二酮类,可望发展成为极具应用前景的发光材料[6,7]。目前羧酸类的配体一般为芳香羧酸,大量的研究发现稀土离子能与生物体内的羧酸及氨基酸分子形成稳定的配合物,这类配合物具有发光时间长、强度高且稳定的特性,对于模拟生命 第16卷 第5期中 国 塑 料Vol.16,No.5 2002年5月CHINA PLASTICS May.,2002

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

发光材料技术应用及发展前景精编版

发光材料技术应用及发 展前景 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

发光材料技术应用及发展前景 CRT显像管:我们家庭所用的电视以及绝大多数的电脑终端显示器所用的显像管就是CRT技术,阴极射线管(CRT)的特点是色彩鲜艳丰富,制备工艺成熟,成本低廉,但是由于CRT技术设备的电视机及其他显示器的体积庞大,而且也很沉重,尤其是大尺寸的显示器,如29in电视机的厚度超过70cm,质量超过50kg。已经不能满足人们的要求,基于CRT的缺点,人们又采用了一些新技术来使CRT平板化,其中比较成熟的技术是低压荧光管(VFD)技术,以VFD技术为基础的显示器的体积明显降低,厚为1cm,质量也大为减轻,另一种相对成熟的技术而且具有巨大发展潜力的的技术是场发射(FED)技术。以场发射技术为基 础制备的显示器厚度只有几毫米。 VFD低压荧光管:在29世纪60年代,电子计算机市场获得急速的扩大,为适应计算器的数码显示需求,产生了真空荧光平板显示器VFD,随着各种技术的发展,是VFD进入高密度显示领域,目前具有数字显示,图像显示画面显示功能的VFD已经广泛运用在各种仪器显示包括汽车家电通信设备以及大显示屏幕显

示器等领域。但是由于VFD技术受到彩色化功耗大分辨率低腔体中真空的保持等问题的限制,近几年的市场份额有下降得趋势 FED场发射显示技术 FED技术是继VFD后,针对CRT平板化的又一次新的努力 SID2007概况 每年5月,由显示协会(SID)组织的世界规模的讨论会与展览会在美国西海岸的一个城市举行,今年的第45届SID年会在美国加州长滩(Long Beach)会议中心举行。会议共收到论文摘要702篇,其中有489篇入选本届讨论会。489篇论文中有279篇在67场专题报告会中口述,其余210篇于5月23号下午集中在一个大厅中,以张贴形式发表,作者与读者进行面对面讨论。令人鼓舞的是全部论文中有24%的作者是学生。提交论文的国家和地区数为21,论文数分布如下:韩国23%,美国22%,日本19%,台湾地区16%,德国4%,我国大陆地区在会上发表的论文数为4篇。 这次论文报告会共举行了67场,按专题区分分布如下:LCD 22场;OLED 12场;显示器件制造工艺 5场;PDP 4场;显示电子学 4场;背光源 4场;投影显示 3场; 2场,三维显示 2场;标准与计量 2场,医用显示 2场;电子纸 2场;其它专题各1场(共13场)。

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

有机高分子荧光材料

有机高分子荧光材料 09级化学化工系化学工程与工艺(2)班徐世贵指导老师:靳文娟 摘要: 有机高分子材料广泛应用于通讯、卫星、雷达、显示、记录、光学计算机、生物分子探针等高科技领域。发光材料可分为无机发光材料和有机发光材料两大类。具体的,无极荧光材料,有机小分子发光材料,有机高分子发光材料金属配合物发光材料,共轭聚合物发光材料等。本文对比分析了各类型荧光材料的特点及应用范围,并对有机荧光高分子材料做了具体讨论,以及展望. 关键字:荧光材料高分子材料方向共聚物

organic polymer materials Abstract: organic polymer materials are widely used in communications,satellite,radar,display,records, optical computers,biological molecules probe and other high-tech areas.Luminescence materials can be divided into inorganic luminescence materials and organic light-emitting materials two kinds big. Specific,electrodeless fluorescent material,small organic molecules luminescence materials,organic polymer light-emitting materials metal complexes luminescence materials,polymer light-emitting materials conjugate etc.This paper analyzes the characteristics of various types of fluorescent material, and application scope of the organic fluorescence polymer materials made specific discussion,and prospected. Key word:fluorescent material copolymer macromolecule material direction

高分子电致发光材料研究近况--以共轭结构的高聚物材料为例

信息记录材料2019年5月第20卷第5期陋至?诊若 高分子电致发光材料研究近况 — —以共辄结构的高聚物材料为例 高远 (南昌大学材料科学与工程学院江西南昌330000) 【摘要】高分子发光材料的研究有很重要的理论和现实意义,本文则通过对一系列共觇结构的高聚物材料的原理和特点来了解电致发光高分子发光材料的应用和发展现状,并展望其发展前景. 【关键词】高分子;发光材料;应用;发展趋势 【中图分类号】TN6【文献标识码】A【文章编号】1009-5624(2019)05-0001-02 Recent Development of high polymer Electroluminescent Materials Gao Yuan. School of M aterials Science and Engineering,Nanchang University,Nanchang,Jiangxi330000,China [Abstract]The study of polymer luminescent materials is of great theoretical and practical significance.Based on the principle and characteristics of a series of conjugated polymer materials,the application and development of electroluminescent polymer materials are analyzed in this paper,and the development prospect of electroluminescent polymers is prospected. 【Key words]Luminescent material;Application;Development trend 1引言(3)聚嗟吩及其衍生物类电致发光材料。这类材料 随着信息时代的飞速发展,各种发光材料被广泛应用于通讯、卫星等高科技领域。而为了使各种新媒体满足显示的功能,使得各种发光材料被研究并开发应用而来。而有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到人们的关注和重视。尤其是近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚嗟吩、聚苯胺、聚毗咯、聚茹等。 而有机薄膜电致发光的发展较为迅速,但现在它却被新兴的有机电致发光材料所改变。比如聚对苯乙块(PPV),它本身是一种导电高分子材料,另外它的电致发光性能也同样良好。这样有机薄膜电致发光材料就从有机小分子拓展到了聚合物。而这一变化发展,这就意味着电致发光高分子材料不仅扩大了发光材料的选择范围,而且由于聚合物本身良好的易加工性、易成膜性、高稳定性等优势,使得其被更多的开发应用到发光器件的制备及应用当中。也正因如此,现已有各种体系的聚合物相继被人们研究用来制备发光材料C1]o 2共辘结构的高聚物发光材料简介 共轨结构的高聚物发光材料主要有以下几种类型: (1)聚对苯撑乙烯类电致发光材料。这种材料可以在苯环上改变取代基或在乙烯基上取代而设计合成岀结构、性能各异的衍生物,其还可通过共聚的方式来合成出各种不同的分子材料。 (2)聚对苯乙烘(PPE)-曝吩共轨结构的高聚物电致发光材料。这种材料的结构类似于PPV,其主链引入嗟吩基团,聚对苯乙块在溶液中显示很高的荧光效率,有望作为发光材料进行研究应用。这种高分子电致发光材料不仅改善了传统材料的溶解性,而且其分子量得以提升。具有良好的导电性能,并通过佟拉嘎[2]等在用其成功试 制发光元件后,证明其良好的稳定性。 (4)聚噁二哇[3]类电致发光材料,这类材料是具有性能良好的电子传输能力。其耐热性和较高的玻璃化温度被得到广泛认可。 3共辄结构的高聚物发光材料的优缺点及解决方案共轨结构的高聚物发光材料有自己独特的光电、化学性质,共辄的骨架和侧链结构决定了它们的电子结构、光电学性质,因此它们可以通过化学方法进行调控和修饰。 共轨结构的高聚物发光材料的优点是①具有良好的热稳定性和粘附性;②优异的成膜性,可大面积成膜;③具有优良的机械强度;④此类材料分子结构、发光颜色易于改变和修饰且合成路线多,发光效率高; 但是早期合成的共轨结构的高聚物会给器件的制备带来不便,因为材料合成较为复杂,提纯过程较困难,因此难以制成多层发光器件。而针对这些不足,也有很多的方法可以进行弥补和调整。 一种方法是使用单体直接聚合成型; 也可通过可溶性前聚物加工成型,然后加热转化为共轨聚合物[如Wessling⑷用前聚物法制备的PPV]; 更好的方法是引入可溶解的支链或链段。如MEH-PPV[5]{聚[2-甲氧基-5(2'-乙基己氧基)对苯乙烘]}, CN-PPV冏等。 在PPV主链的亚甲基上引入吸电子基团氧基,得到的CN-PPV聚合物不仅成膜性好,而且还可以改善高聚物和电子的亲和能力。 4高分子电致发光材料的应用 当前这些主流的电致发光材料被广泛用于激光染料、荧光集光器、有机太阳能电池、有机场效应晶体管、有机激光和化学与生物传感等领域的研究、开发和生产中,也 1

发光材料与LED综述

功能材料课报告 发光材料与LED 摘要:发光材料是一种功能材料,广泛应用于我们日常生活中,例如电视机、日光灯、发光二极管等。本文就应用于LED的两种发光方式,光致发光和电致发光,作了简单的介绍和说明,并着重介绍了LED的原理、发展历史、优点以及应用。在未来的几十年里,发光材料将继续快速向前发展,给我们的生活带来更大的变化。 关键词:发光材料;光致发光;电致发光;LED

功能材料是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。随着时代的发展,人类将进入一个信息时代。为了解决生产告诉发展以及由此所产生的能源、环境等等一系列问题,更需要用高科技的方法和手段来生产新型的、功能性的产品,以获得各种优良的综合性能。近年来新型功能材料层出不穷,得到了突破性的进展,功能材料正在渗透到现代生活和生产的各个领域。 本文所论述的发光材料即为在不同的能量激发方式下可以发出不同波长的可见光的一种功能材料。 一.概述 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态,在返回到基态的过程中以光的形式放出能量。热辐射发光最常见的例子是太阳和白炽灯,而后一种发光方式应用也很广泛,比如阴极射线管、日光灯、发光二极管等,如图1。 图1 两种发光方式的典型例子:白炽灯和日光灯 按照激发能量方式的不同,发光材料的分类如下: 1.紫外光、可见光以及红外光激发而发光的为光致发光材料; 2.电子束流激发而发光的为阴极射线发光材料; 3.电场激发而发光的为电致发光材料; 4.X射线辐射而发光的为X射线发光材料; 5.用天然或人造放射性物质辐射而发光的为放射性发光材料。

y发光材料的应用

第二章稀土发光材料的制备及应用 近几十年来,稀土发光材料在国内外得到惊人的发展,形成了相当大的生产规模和客观的市场,其产值和经济效益都很高[1-3]。到 90 年代,依然以一定的速度增长。国内外在稀土新材料方面几乎每隔 3~5 年就有一次突破,而稀土发光材料则是这宝库中五光十色的瑰宝。据美国商业信息公司最近统计,在美国稀土各应用高技术领域中,光存储器的年增长率达 50%,灯用稀土荧光粉 20%,名列第二位,电视荧光粉为 3.4%,仅电视用荧光粉1998 年在美国的消费量居稀土消费量第五位,为 104.3 吨,价值 2700 万美元,到 1995 年达 131.5 吨。我国彩电荧光粉及紧凑型荧光灯用稀土荧光粉在 80年代增长速率更快,工业生产规模相当可观,且有部分出口。这表明,稀土发光材料的发展及在稀土各应用领域中占有举足轻重地位。随着新型平板显示器、固态照明光源的发展,对新型高效发光粉体的需求日益增多。由于纳米材料具有其他大颗粒材料所不具有的结构及各种性质如电性质、光性质等,研究纳米稀土发光材料已成为目前引人注目的课题。以钒酸盐、磷酸盐为基质的纳米稀土发光材料都是很具有研究意义及应用价值的稀土荧光粉,比如纳米级 YVO4:Eu,作为一种很好的红光粉体,已经广泛应用于荧光灯以及彩色显像管(CRT)中[4-6]。另外,近来的研究表明纳米级 Y(V,P)O4:Eu,YPO4:Tb在真空紫外区(VUV)有较好的吸收,是很有前途的等离子体平板显示器(PDPs)用的发光材料[7-11]。在纳米尺度的YBO3:Eu3+中,由于表面Eu3+对称性低,使得5D0-7F2 的跃迁几率增加,这改善了YBO3:Eu3+体材料中色纯度低的问题[12 ]。总之,随着科技的发展和人们生活的需要,稀土发光材料的研究面临着新的挑战:这主要包括激发波长的变化,如PDP用荧光粉需真空紫外激发,固态照明用荧光粉需近紫外激发;材料尺寸形态的变化等。这就要求人们改善材料的发光性质或开发新的发光体系。§2-1影响发光的主要因素 目前,稀土掺杂发光体系主要包括:稀土氧化物、硼酸盐、钒酸盐、磷酸盐、铝酸盐等体系,不同的体系有着不同的应用背景。比如说,Eu3+、Tb3+掺杂的硼酸盐、磷酸盐体系可用作PDP荧光材料[13,14];Eu2+、Dy3+共掺的铝酸盐体系可用作长余辉材料[15]。 影响稀土掺杂发光材料发光性质的因素有很多,主要包括基质晶格、发光中 心在基质晶格中所处的格位及周围环境、材料的尺寸和形状等[16,17]。因此,基质材料、激活剂的选择,合成方法、合成条件的选择,材料的后处理工艺等是获得新型高效发光材料的关键[18-20]。§2-1-1基质晶格对发光性质的影响 一般说来,对于给定的某发光中心,在不同基质中它的发光行为是不同的,因为发光中心的直接环境发生了改变。如果理解了基质晶格是如何决定发光中心的发光性质的,那么就可以非常容易地预测所有发光材料。 共价键效应:共价键越强,电子间的相互作用越弱,因为这些电子被分散到更宽阔的轨道上。因此,电子跃迁的能级差由共价键的性质决定。共价键越强,多重项之间的能量间距越小,电子跃迁所需能量越低。这就是电子云膨胀(nephelauxetic希腊语,云膨胀的意思)效应。化学键的共价性越强,则成键原子(离子)双方的电负性差异就越小,这使得两原子之间的电荷迁移态跃迁向低能量区域移动[21,22]。举个例子,氟化物YF3中Eu3+的吸收带要比Y2O3中的处在能量更高的位置,这是因为Y2O3的共价性要比YF3的强。 晶体场效应:基质晶格影响离子的发光性质的另一个因素是晶体场,晶体场就是给定离子的

相关文档