文档库 最新最全的文档下载
当前位置:文档库 › 高考数学等比数列习题及答案百度文库

高考数学等比数列习题及答案百度文库

高考数学等比数列习题及答案百度文库
高考数学等比数列习题及答案百度文库

一、等比数列选择题

1.在数列{}n a 中,32a =,12n n a a +=,则5a =( )

A .32

B .16

C .8

D .4

2.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12 B .18

C .24

D .32

3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=

( ) A .4

B .5

C .8

D .15

4.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n

a n N n

∈的最小值为( ) A .

16

25

B .

49

C .

12

D .1

5.已知数列{}n a 满足:11a =,*1()2

n

n n a a n N a +=∈+.则 10a =( ) A .

11021

B .

11022 C .1

1023

D .1

1024

6.设n S 为等比数列{}n a 的前n 项和,若11

0,,22

n n a a S >=<,则等比数列{}n a 的公比的取值范围是( )

A .30,4?? ???

B .20,3?? ???

C .30,4?? ???

D .20,3?? ???

7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24- B .3-

C .3

D .8

8

12

与1

2的等比中项是( )

A .-1

B .1

C

2

D

.2

±

9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020

2021

ln ln a a =

( ) A .1:3

B .3:1

C .3:5

D .5:3

10.各项为正数的等比数列{}n a ,478a a ?=,则2122210log log log a a a +++=( )

A .15

B .10

C .5

D .311.题目文件丢失!

12.公差不为0的等差数列{}n a 中,2

3711220a a a -+=,数列{}n b 是等比数列,且

77b a =,则68b b =( )

A .2

B .4

C .8

D .16

13.已知q 为等比数列{}n a 的公比,且1212a a =-,31

4a =,则q =( ) A .1- B .4

C .12-

D .12

±

14.已知单调递增数列{}n a 的前n 项和n S 满足()(

)*

21n n n S a a n =+∈N

,且0n

S

>,记

数列{}

2n

n a ?的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )

A .7

B .8

C .10

D .11

15.在各项均为正数的等比数列{}n a 中,22

6598225a a a a ++=,则113a a 的最大值是

( ) A .25

B .

254

C .5

D .

25

16.正项等比数列{}n a 的公比是1

3

,且241a a =,则其前3项的和3S =( ) A .14

B .13

C .12

D .11

17.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16

B .16-

C .20

D .16或16-

18.已知等比数列{}n a 的前n 项和为n S ,若123

111

2a a a ++=,22a =,则3S =( ) A .8 B .7

C .6

D .419.题目文件丢失!

20.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,

1021031

01

a a -<-,则使得1n T >成立的最大自然数n 的值为( )

A .102

B .203

C .204

D .205

二、多选题21.题目文件丢失!

22.设数列{}n a 的前n 项和为*

()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是

( )

A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列

B .若2

n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列

C .若()11n

n S =--,则{}n a 是等比数列

D .若{}n a 是等差数列,则n S ,2n n S S -,*

32()n n S S n N -∈也成等差数列

23.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A

B

C

D

24.已知数列{}n a 的前n 项和为n S ,1+1

4,()n n a S a n N *

==∈,数列12(1)n n n n a +??+??+?

?的前n 项和为n T ,n *∈N ,则下列选项正确的是( )

A .24a =

B .2n

n S =

C .38

n T ≥

D .12

n T <

25.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确

的有( )

A .若{}n a 是等差数列,则{}n A 是等差数列

B .若{}n A 是等差数列,则{}n a 是等差数列

C .若{}n a 是等比数列,则{}n A 是等比数列

D .若{}n A 是等差数列,则{}2n a 都是等差数列 26.已知集合{

}*

21,A x x n n N

==-∈,{}*

2,n

B x x n N ==∈将A

B 的所有元素从

小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25 B .26

C .27

D .28

27.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( )

A .8

B .12

C .-8

D .-12

28.数列{}n a 的前n 项和为n S ,若11a =,()

*

12n n a S n N +=∈,则有( ) A .1

3n n S -= B .{}n S 为等比数列

C .1

23n n a -=?

D .2

1,

1,23,2n n n a n -=?=??≥?

29.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ??

?

???

的前n 项

和,则下列结论中正确的是( ) A .()21121n n

S n a -=-? B .212

n n S S =

C .2311222

n n n S S ≥

-+ D .212

n n S S ≥+

30.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{

}21

n

a n +的前n 项和为,n S 则( ) A .12a =

B .2

21

n a n =

- C .21

n n

S n =

+ D .1n n S na +=

31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,781a a >,

871

01

a a -<-.则下列结论正确的是( ) A .01q <<

B .791a a <

C .n T 的最大值为7T

D .n S 的最大值为7S

32.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为

n S ,则( )

A .2q

B .2n

n a = C .102047S = D .12n n n a a a +++<

33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +??

?????

的前

n 项和为n T ,*n ∈N ,则下列选项正确的为( )

A .数列{}1n a +是等差数列

B .数列{}1n a +是等比数列

C .数列{}n a 的通项公式为21n

n a =-

D .1n T <

34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8

B .9

C .10

D .11

35.对于数列{}n a ,若存在数列{}n b 满足1

n n n

b a a =-

(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;

B .若31n a n =-,则其“倒差数列”有最大值;

C .若31n a n =-,则其“倒差数列”有最小值;

D .若112n

n a ??=-- ???

,则其“倒差数列”有最大值.

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.C 【分析】

根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,

所以1

2n n

a a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,

所以23

5328a a q ===. 故选:C 2.C 【分析】

将已知条件整理为()()22

121328a q q q -+=,可得()

2218

3221q q a q +=

-,进而可得

()44

2

7612249633221

q a a a q q q q +=+=-,分子分母同时除以4

q ,利用二次函数的性质即

可求出最值. 【详解】

因为{}n a 是等比数列,543264328a a a a +--=,

所以432

111164328a q a q a q a q +--=,

()()222

1232328a q q q q q ??+-+=??, 即()()2

2

121328a q q q -+=,所以()

2

218

3221q q a q +=

-,

()()46

5

4

2

4

7611112

2124

82424

9696332321

2121q a a a q a q a q q q a q q a q q q +=+=+=?==---, 令210t q =>,则()22

2421211t t t q q

-=-=--+,

所以211t q

==,即1q =时2421

q q -最大为1,此时24

24

21q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】

易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;

(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;

(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 3.C 【分析】

由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2

7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 4.D 【分析】

首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较

()*n

a n N n

∈相邻两项的大小,求得其最小值. 【详解】

在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,

所以21344a a a =+,即2

44q q =+,解得2q

所以1

2

n n

a ,所以1

2n n a n n

-=

, 1

2111n n a n n a n n

++=≥+,当且仅当1n =时取等号,

所以当1n =或2n =时,()*n

a n N n

∈取得最小值1, 故选:D. 【点睛】

该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 5.C 【分析】

根据数列的递推关系,利用取倒数法进行转化得

1121n n

a a +=+ ,构造11n a ??

+????

为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=

+,所以两边取倒数得12121n n n n a a a a ++==+,则11

1121n n a a +??+=+ ???

, 所以数列11n a ??+????为等比数列,则111

11122n n n a a -??+=+?= ???

所以121n n a =-,故10

1011

211023

a ==-. 故选:C 【点睛】

方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中

1

q

x p =

-)来进行求解. 6.A 【分析】

设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1

102n q -?>,

1

(1)

221n q q

-<-,即可求出参数q 的取值范围;

【详解】

解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.

11

0,2

n a a >=

,2n S <, ∴1

102n q -?>,1

(1)221n q q

-<-, 10q ∴>>.

144q ∴-,解得34

q

. 综上可得:{}n a 的公比的取值范围是:30,4

?? ??

?

故选:A . 【点睛】

等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 7.A 【分析】

根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】

设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2

326a a a =,

即2

(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)

661(2)2422

S a d ?-?-=+=?+?-=-. 故选:A 8.D 【分析】

利用等比中项定义得解. 【详解】

23111(

)()(2222-==

±

,12∴

的等比中项是2

± 故选:D 9.A 【分析】

由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得2020

2021

ln ln a a . 【详解】

{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,

所以由2017202120172018201920202021T T T a a a a ==?,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,

22021201820213()1a a a q ==,2

202020192020()1a a a q

==,即322021a q =,122020a q =,

所以

12

20203

2021

2

1ln ln ln 123ln 3ln ln 2

q

a q a q q ===. 故选:A . 【点睛】

本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.A 【分析】

根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ?=, 则()()5

2212221021210110log log log log ...log a a a a a a a a ???=+

?++=

()2475log 15a a =?=.

故选:A.

11.无

12.D 【分析】

根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2

687b b b ==16.

【详解】

等差数列{}n a 中,31172a a a +=,故原式等价于2

7a -740a =解得70a =或74,a =

各项不为0的等差数列{}n a ,故得到774a b ==,

数列{}n b 是等比数列,故2

687b b b ==16.

故选:D. 13.C 【分析】

利用等比通项公式直接代入计算,即可得答案; 【详解】

()21114

221

11111

22211121644a a q a q q q q a q a q ??=-=--??????=?=-????=?=

????

, 故选:C. 14.B 【分析】

由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1

122n n T n +=-?+,即可得解.

【详解】

由题意,()()*

21n n n S a a n N

=+∈,

当2n ≥时,()11121n n n S a a ---=+,

所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,

因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,

所以1231222322n n T n =?+?+?+???+?,

()23412122232122n n n T n n +=?+?+?+???+-?+?,

所以()()234111212222222212212

n n n n n n T n n n +++--=++++???+-?=-?=-?--,

所以()1

12

2n n T n +=-?+,

所以876221538T =?+=,9

87223586T =?+=,

所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】

关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 15.B 【分析】

由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】

由等比数列的性质,可得()2

2222

65986688682225a a a a a a a a a a ++=++=+=,

又因为0n a >,所以685a a +=,所以2

68113682524a a a a a a +??=≤=

???

, 当且仅当685

2

a a ==时取等号. 故选:B . 16.B

根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】

解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2

31a =. 所以31a =,2

11a q ∴=,因为1

3

q =

,所以19a =. 因此()3131131a q S q

-==-.

故选:B 17.A 【分析】

根据等比数列的通项公式得出618a q =,10

132a q

=且10a >

,再由

819a a q ==.

【详解】

设等比数列{}n a 的公比为q ,则6

18a q =,10

132a q

=且10a >

则81916a q a ====

故选:A 18.A 【分析】

利用已知条件化简,转化求解即可. 【详解】

已知{}n a 为等比数列,132

2a a a ∴=,且22a =,

满足131233

2

1231322111124

a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:

(1)先利用等比数列的性质,得132

2a a a ∴=,

(2)通分化简

3

12311124

S a a a ++==. 19.无

20.C 【分析】

由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解.

由10210310a a ->,即1021031a a >,则有2

1021a q ?>,即0q >。

所以等比数列{}n a 各项为正数, 由

1021031

01

a a -<-,即102103(1)(1)0a a --<, 可得:1021031,1a a ><, 所以10220412203204102103()1T a a a a a a =??

?=?>,

103205122032042051031T a a a a a a =??

??=<,

故使得1n T >成立的最大自然数n 的值为204,

故选:C 【点睛】

关键10220412203204102103()1T a a a a a a =??

?=?>点点睛:在分析出1021031a a >,

1021031,1a a ><的前提下,由等比数列的性质可得102204102103()1T a a ==?>,

1032051031T a =<,即可求解,属于难题. 二、多选题 21.无

22.BCD 【分析】

利用等差等比数列的定义及性质对选项判断得解. 【详解】

选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:

2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;

选项C: ()11n

n S =--,112(1)(2)n n n n S S a n --∴-==?-≥,当1n =时也成立,

12(1)n n a -∴=?-是等比数列,故对;

选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*

32()n n S S n N -∈是等差数

列,故对; 故选:BCD 【点睛】

熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 23.AB 【分析】

因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】

解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2

111q

q q q -=-+,

因为1q ≠,所以21q q =+, 因为0q >

,所以解得12

q +=

, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3

21q q =+,

整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >

,所以解得q =,

综上q =

或q =, 故选:AB 24.ACD 【分析】

在1+14,()n n a S a n N *

==∈中,令1n =,则A 易判断;由3

2122S a a =+=,B 易判断;

令12(1)n n n b n n a ++=

+,13

8

b =,

2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=

==-++?+?,裂项求和3182

n

T ≤<,则CD 可判断. 【详解】

解:由1+14,()n n a S a n N *

==∈,所以2114a S a ===,故A 正确;

32212822S a a =+==≠,故B 错误;

+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,

1

2n n

a a +=, 所以2n ≥时,2422n n

n a -=?=,

令12(1)n n n b n n a ++=

+,12123

(11)8

b a +=

=+, 2n ≥时,()()11

12211

(1)12212n n n n n n n b n n a n n n n +++++=

==-++?+?,

113

8

T b ==,2n ≥时,

()()2334

113111111111

8223232422122122

n n n n T n n n ++=+-+-+

+

-=-

82

n T ≤<,故CD 正确;

故选:ACD. 【点睛】

方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n

n a n a S S n -=?

=?-≥?递推数列的通项,注

意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 25.AD 【分析】

利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】

对于A ,若{}n a 是等差数列,设公差为d ,

则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=????, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,

()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,

奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则

11111n n n n n n n n n n

a q a A a a a q

q a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】

本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 26.CD 【分析】

由题意得到数列{}n a 的前n 项依次为2

3

1,2,3,2,5,7,2,9

,利用列举法,结合等差数列

以及等比数列的求和公式,验证即可求解. 【详解】

由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9 ,

利用列举法,可得当25n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,2,4,8,16,32,

可得52520(139)2(12)

40062462212

S ?+-=+=+=-,2641a =,所以2612492a =,

不满足112n n S a +>; 当26n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,2,4,8,16,32,

可得52621(141)2(12)

44162503212

S ?+-=+=+=-,2743a =,所以2612526a =,

不满足112n n S a +>; 当27n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,2,4,8,16,32,

可得52722(143)2(12)

48462546212

S ?+-=+=+=-,2845a =,所以2712540a =,

满足112n n S a +>; 当28n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,45,2,4,8,16,32,

可得52823(145)2(12)

52962591212

S ?+-=+=+=-,2947a =,所以2812564a =,

满足112n n S a +>,

所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】

本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 27.AC 【分析】

求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】

57216

24

a q q a ==?=±, 当2q

时,65428a a q ==?=,

当2q =-时,654(2)8a a q ==?-=-, 故选:AC. 【点睛】

本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 28.ABD 【分析】

根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】

由题意,数列{}n a 的前n 项和满足(

)*

12n n a S n N +=∈,

当2n ≥时,12n n a S -=,

两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即

1

3,(2)n n

a a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以2

1

2a a =, 所以数列的通项公式为2

1,123

2

n n n a n -=?=??≥?;

当2n ≥时,1

1123322

n n n n a S --+?===,

又由1n =时,111S a ==,适合上式,

所以数列的{}n a 的前n 项和为1

3n n S -=;

又由11333

n

n n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】

本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 29.CD 【分析】

根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:

22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.

【详解】

因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈,

所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,

所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13

22122

?-?=,故错误; B. 令1n =时, 213122

S =+

=,而 111

22S =,故错误;

C. 当1n =时, 213122

S =+=,而 3113

2222-+=,成立,当2n ≥时,

211111...23521n n S S n =++++--,因为221n n >-,所以

11212n n >-,所以111111311...1 (352148222)

n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n

-=+++++++,令()1111

...1232f n n n n n

=+++++++,因为

()11111

1()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,

所以()()1

12

f n f ≥=,故正确;

故选:CD 【点睛】

本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 30.ABD 【分析】

由已知关系式可求1a 、n a ,进而求得{}21

n

a n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】

由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即2

21n a n =-,而122211

a =

=?-也成立, ∴2

21n a n =

-,*n N ∈,故数列{}21

n a n +通项公式为211(21)(21)2121n n n n =-+--+,

∴111111111121 (133557232121212121)

n n S n n n n n n =-

+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】

关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21

n

a n +的通项公式,利用裂项法求前n 项和n S . 31.ABC 【分析】

由11a >,781a a >,

871

01

a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】

11a >,781a a >,

871

01

a a -<-, 71a ∴>,801a <<,

∴A.01q <<,故正确;

B.2

798

1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.

D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】

本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 32.ABD 【分析】

由条件可得32

242q q q =+,解出q ,然后依次计算验证每个选项即可.

【详解】

由题意3

2

242q q q =+,得2

20q q --=,解得2q

(负值舍去),选项A 正确;

1222n n n a -=?=,选项B 正确;

()12212221

n n n S +?-=

=--,所以102046S =,选项C 错误;

13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.

故选:ABD

【点睛】

本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 33.BCD 【分析】

由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公

式可得n a ,1112211

(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】

解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,

可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,

则12n

n a +=,即21n n a =-,

又1112211

(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111

111212*********

n n n n T ++=-

+-+?+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】

本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 34.AB 【分析】

由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】

由题意,a n =1+2(n ﹣1)=2n ﹣1,1

2

n n b -=,

n n b c a ==2?2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,

其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21

+22

+ (2)

)﹣n (

)21212

n n -=

-=-2

n +1

﹣2﹣n .

当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】

本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分

析,转化划归,数学运算的能力,属于中档题. 35.ACD 【分析】

根据新定义进行判断. 【详解】

A .若数列{}n a 是单增数列,则11111

111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1

1

10n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;

B .31n a n =-,则1

3131n b n n =--

-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则1

3131

n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,

C 正确;

D .若112n

n a ??=-- ???,则111()121()2

n n n b =-----, 首先函数1

y x x

=-在(0,)+∞上是增函数,

当n 为偶数时,11()(0,1)2n

n a =-∈,∴10n n

n

b a a =-<, 当n 为奇数时,11()2

n

n a =+1>,显然n a 是递减的,因此1n n

n b a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为1325

0236

b =

-=>, ∴15

6b =

是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD . 【点睛】

本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.

相关文档