文档库 最新最全的文档下载
当前位置:文档库 › 最优化方法与自动控制选修课论文

最优化方法与自动控制选修课论文

最优化方法与自动控制选修课论文
最优化方法与自动控制选修课论文

最优化方法课程大作业论文最优化方法与控制工程

学生姓名:熊柳

学生学号:201422000182

专业名称:控制工程

这学期按照培养方案,我学习了最优化方法这门课程。顾名思义,从课程名字就可知道这是一门关于对一项工程或是任务设计具体方案使其尽可能达到最高效率的课程。上课后,老师逐渐讲解一些最优化方法的基本思想和算法,开始对最优化方法有了更深的认识。最优化方法其实也是数学的一个分支学科,但最优化方法不同于其他分支,更偏向于具体的工程应用,实用性很强。

通过课堂学习以及查资料,我了解到最优化方法的一些相关知识,最优化方法,也叫做运筹学方法,是近几十年形成的,它主要运用数学的方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。

最优化方法中具体的思想和算法大多数是以本科中学过的高数和线性代数中的知识为基础的,然后再接以现代的计算机编程技术来进行操作,例如C语言和Matlab,这样可以大大提高解决问题的效率和精准性,尤其对于石油院校的研究领域中的一些问题都是规模很大的工程问题,仅仅依靠人力基本无法计算,必须通过计算机来进行解决。老师开始给我们讲解一些最基础的最优化方法知识,例如:凸集和凸函数、范数等;然后介绍了最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用,例如:线性规划问题、求极值、无约束最优化问题、等式约束最优化问题、不等式约束最优化问题等。用最优化方法解决实际问题,一般可经过下列步骤:

①提出最优化问题,收集有关数据和资料;

②建立最优化问题的数学模型(最优化模型一般包括变量、约束条件和目标函数三要素),确定变量,列出目标函数和约束条件;

③分析模型,选择合适的最优化方法;

④求解,一般通过编制程序,用计算机求最优解;

⑤最优解的检验和实施。

在学习了最优化方法导论之后,发现它在我所学的专业领域有极为重要的应用。它在我所学习的专业控制工程中发展成为了一门专门的学科——最优控制。

最优控制(optimal control )是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。使一个系统的性能指标实现最优化可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。

最优控制问题,就是在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。也就是说最优控制就是要寻找容许的控制规律是动态系统从初始状态转移到某种要求的终端状态,且保证所规定的性能指

标达到最大值或是最小值。

最优控制问题本质其实是一变分学问题,变分学是处理函数变量的数学领域,和处理数学函数的普通微积分相对。经典变分理论只能解决一类简单的最优控制问题。现代变分理论中最常用的有两种方法。一种是动态规划法,另一种是极小值原理;他们实质上都属于解析法,都能够很好的解决控制有闭集约束的变分问题。此外,变分法、线性二次型控制法也属于解决最优控制问题的解析法。最优控制问题的研究方法除了解析法外,还包括数值计算法和梯度型法。

在查找最优控制的相关资料后,我找了一些在最优控制问题中很典型的问题,这些问题都是最优控制与具体实际工程结合非常紧密的问题。以下我选取了其中最具代表性的一个问题——最速下降问题做简要介绍。

最速下降问题。由于控制理论在航空制导方面的广泛应用,这个模型其实可以延伸为火箭的燃料最优利用(最小燃耗)问题,时间的最优控制便可实现对燃料的最优控制,1969年,美国阿波罗11号载人登月,就是最优控制(最小燃耗)的成功范例。下面便是最速下降问题的数学模型:

设有一物体M作垂直升降运动,如图所示。

外作用力u(t)是有限的。

设:u t≤u max(常数)

要求:物体M以最快的速度到

达地面,且到达地面时的速度为0。

求:u(t)=?

首先将这个问题的数学模型简化出来,这样我们就可以描述这个最优控制问题。

依据题意及示意图,设物体质量为m,显然根据物理关系可以得到:m d2x

dt2

=u t?mg。

设m=1,则d 2x

dt2

=u t?g,并设x1=x,x2=x。

则可以推导出系统状态方程为:x1=x2,x2=u?g。

又设t0表示初始时刻,t f表示终端时刻,x t=x1(t)表示物体距地面的高度,x t=x2(t)表示物体运行速度,那么有:

x1(t0)

x2(t0)表示初始状态,x1(t f)

x2(t f)表示终端状态。

所以,该最优控制问题可描述为:

对于系统

x1=x2

x2=u?g,在初始状态

x1(t0)

x2(t0)任意,终端状态

x1(t f)

x2(t f)=

的情

况下,求满足约束条件 u t ≤u max (常数)的u(t),使: dt t

f t 0=t f ?t 0最小。 由这个例子可以看出,最优控制问题的描述和我们这学期所学的最优化方法重的一些问题模型描述很相似,主要有这几个要素:1.数学模型;2.边界条件;

3.控制约束;

4.性能指标。

从这个例子我也对最优控制有了一个大概的理解。为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程质量优劣的性能指标。通常,性能指标的好会取决于所选择的控制函数和相应的运动状态。系统的运动状态收到运动方程的约束,二控制函数只能在允许的范围内选取。最优控制研究的主要问题:根据已建立的被控对象的数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使给定的某一性能指标达到极限值。

由这个最速下降问题延伸可以应用在很多实际工程当中,例如最小时间控制可以应用在导弹拦截器的轨道转移问题,最小燃耗控制可以应用在航天工程中很常见的登月舱软着陆问题,最小能量控制和状态调节器问题都有很多实际应用。

通过这次大作业写论文的过程,尤其是在查阅资料的过程中,对最优化方法在控制工程中的应用有了一定了解,虽然只是浅显的接触,但觉得最优化方法在我的专业中有很大使用价值,应该在最优化方法这门课程的基础上再把最优控制方面的知识可以深入学习一下,感觉不管是对接下来的学习还是将来的实际工作都是非常有用的。

参考文献

[1] 符曦.系统最优化及控制[J].机械工业出版社,1995.

[2] 王贞荣.最优控制[J].冶金工业出版社,1989.

[3] 邢继祥.最优控制应用基础[J].科学出版社,2003.

[4] 解学书.最优控制—理论与应用[J].清华大学出版社,1986.

[5] 徐湘元.最优控制的要点[J].华南理工大学出版社,1997

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc

课 程 编 号 : 0 7 0 0 0 2 0 3 北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期 2005 级数学专业最优化方法终考试卷( A 卷) 1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为 x 1,x 2,x 3 ,其数学模型为: max z 3 x 1 2 x 2 5 x 3 1 2 x 2 3 430 ( A 资源限制 ) x x 3 x 1 2 x 3 460 ( B 资源限制 ) s.t 4 x 2 420 (C 资源限制 ) x x 1 , x 2 , x 3 0 请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为: x 1 2 x 2 3x 3 800 问最优解有何变化? 2. (12 分 )用 Newton 法求解 min f ( x ) 4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。 3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜 索,得 x 1 ( x 11 , x 21 , x 31 )T , 设 f ( x 1 ) 2, f ( x 1 ) 2 ,求从 x 1 出发的搜索方向 p 1 。 x 11 x 21 4. (15 分 ) 给定下面的 BFGS 拟 Newton 矩阵修正公式: H k 1 ( I s k y k T )H k ( I s k y k T )T s k s k T , y k T s k y k T s k y k T s k 其中 s k x k 1 x k , y k g k 1 g k 用对应的拟 Newton 法求解: min f ( x ) x 1 2 2x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。 5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。 6(12 分 ).求约束问题 在 x (0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来 1 7( 8 分)考察优化问题 min f ( x ) s.t. x , D 设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。 8( 8 分)设 min f ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为 2 x 0 x * p ,其中 R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。 课程编号 :07000203 北京理工大学 2008-2009 学年第一学期 2006 级数学专业最优化方法终考试卷( A 卷) 1. (15 分 ) 用单纯形法求解线性规划问题 2. (10 分 )写出线性规划问题 的对偶问题并证明该对偶问题没有可行解。 3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0 ( 1, 1)T 。( 1)采用精确一维搜索;( 2) 采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。 4. (15 分 )用 DFP 拟牛顿法求解 min f ( x) x 12 2x 22 初始点取为 x 0 1 ,初始矩阵 H 0 2 1 。 1 1 1 5. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1 x 2 6} 是凸集,并计算原点 (0,0) 到集合 S 的最短距离。 6. (15 分 ?) 考虑问题 (1)用数学表达式写出在点 ( 1 , 5)T 处的下降可行方向集。 3 3 ( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。 7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。

基于单纯形法的最优化方法的毕业设计论文

基于单纯形法的最优化方法的毕业设计论 文 Revised on November 25, 2020

摘要: 最优化方法普遍的应用于工业、农业、商业、交通运输、国防、通信、建设、等各个方面与我们的生活息息相关;最优化方法主要用来解决最优计划、最优决策、最优设计、最优分配等最优化问题。本文主要研究的内容是通过单纯形方法对最优化问题的解决进行归纳总结,分析最优化问题所涉及的原理和方法,使用软件对最优化问题进行实践仿真测试,并将最优化问题推广应用到生活当中去。 关键词: 最优化单纯形方法仿真 Abstract Optimization method is widely used in industry, agriculture, commerce, transportation, defense, communications, construction, and other aspects of our lives; the optimization method is used to solve the optimal planning, optimal decision-making, optimal design, optimal allocation optimization problem. The main research content of this paper is summarized by the simplex method to solve the optimization problem, the principle and method of optimization analysis of the problems involved in the use of software simulation test of practical optimization problems, and promote the use of the optimization problem to life. Keywords : optimization Simplex method Simulation

最优化方法与自动控制选修课论文

最优化方法课程大作业论文最优化方法与控制工程 学生姓名:熊柳 学生学号:201422000182 专业名称:控制工程

这学期按照培养方案,我学习了最优化方法这门课程。顾名思义,从课程名字就可知道这是一门关于对一项工程或是任务设计具体方案使其尽可能达到最高效率的课程。上课后,老师逐渐讲解一些最优化方法的基本思想和算法,开始对最优化方法有了更深的认识。最优化方法其实也是数学的一个分支学科,但最优化方法不同于其他分支,更偏向于具体的工程应用,实用性很强。 通过课堂学习以及查资料,我了解到最优化方法的一些相关知识,最优化方法,也叫做运筹学方法,是近几十年形成的,它主要运用数学的方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。 最优化方法中具体的思想和算法大多数是以本科中学过的高数和线性代数中的知识为基础的,然后再接以现代的计算机编程技术来进行操作,例如C语言和Matlab,这样可以大大提高解决问题的效率和精准性,尤其对于石油院校的研究领域中的一些问题都是规模很大的工程问题,仅仅依靠人力基本无法计算,必须通过计算机来进行解决。老师开始给我们讲解一些最基础的最优化方法知识,例如:凸集和凸函数、范数等;然后介绍了最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用,例如:线性规划问题、求极值、无约束最优化问题、等式约束最优化问题、不等式约束最优化问题等。用最优化方法解决实际问题,一般可经过下列步骤: ①提出最优化问题,收集有关数据和资料; ②建立最优化问题的数学模型(最优化模型一般包括变量、约束条件和目标函数三要素),确定变量,列出目标函数和约束条件; ③分析模型,选择合适的最优化方法; ④求解,一般通过编制程序,用计算机求最优解; ⑤最优解的检验和实施。 在学习了最优化方法导论之后,发现它在我所学的专业领域有极为重要的应用。它在我所学习的专业控制工程中发展成为了一门专门的学科——最优控制。 最优控制(optimal control )是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。使一个系统的性能指标实现最优化可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。 最优控制问题,就是在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。也就是说最优控制就是要寻找容许的控制规律是动态系统从初始状态转移到某种要求的终端状态,且保证所规定的性能指

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

作业:最优化方法课程设计

《最优化方法课程设计》——关于存贮论的 操作实践 存贮论(inventory theory)又称库存理论,是运筹学中发展较早的分支。现代化的生产和经营活动都离不开存贮,为了使生产和经营活动有条不紊地进行,一般的工商企业总需要一定数量的贮备物资来支持。在企业的生产经营或人们的日常生活中,通常需要把一定数量的物质,用品或食品暂时储存起来,以备将来使用和消费,这就是所谓的存贮现象。存贮的存在主要基于社会经济现象的不确定性。 一、存贮论的基本理论 存贮系统是由存贮、补充和需求三个基本要素所构成的资源动态系统,其基本形态如图所示。 以下就上述结构图的三个环节分别加以说明: 1.存贮(inventory) 企业的生产经营活动总是要消耗一定的资源,由于资源供给与需求在时间和空间上的矛盾,使企业贮存—定数量的资源成为必然,这些为满足后续生产经营需要而贮存下来的资源就称为存贮。 2.补充(replenishment) 补充即存贮的输入。由于后续生产经营活动的不断进行,原来建立起来的存贮逐步减少,为确保生产经营活动不间断,存贮必须得到及时的补充。补充的办法可以是企业外采购,也可以是企业内生产。若是企业外采购,从订货到货物进入“存贮”往往需要一定的时间,这一滞后时间称为采购时间。从另一个角度看,为了使存贮在某一时刻能得到补充,由于滞后时间的存在必须提前订货,那么这段提前的时间称为提前期。存贮论主要解决的问题就是“存贮系统多长时间补充一次和每次补充的数量是多少?”,对于这一问题的回答便构成了所谓的存贮策略。 3.需求(demand)

需求即存贮的输出,它反映生产经营活动对资源的需要,即从存贮中提取的资源量。需求可以是间断式的,也可以是连续式的。 存贮系统所发生的费用包括存贮费用、采购费用和缺货费用。存贮费用(holding cost )是指贮存资源占用资本应付的利息,以及使用仓库、保管物、保管人力、货物损坏变质等支出的费用。采购费用(order cost )是指每次采购所需要的手续费、电信费、差旅费等,它的大小与采购次数有关而与每次采购的数量无关。存贮系统所发生的费用除存贮费用和采购费用之外,有时还会涉及缺货费用,缺货费用(stock-out cost )是指当存贮供不应求时所引起的损失,如机会损失、停工待料损失,以及不能履行合同而缴纳的罚款等。 确定性存贮模型 在讨论确定性模型前,首先对一些常用符号的含义作必要的说明。 C :单位时间平均运营费用(或称单位时间平均总费用), R :单位时间物品需求量(或称需求速度), P :单位时间物品生产量(或称生产速度), K :物品单价(外部订购)或单位物品成本费用(内部生产), Q :订货量(外部订购)或生产量(内部生产), C1:单位物品单位时间保管费用(简称单位保管费用), C2:单位物品单位时间缺货损失(简称单位缺货损失), C3:订购费用(外部订购)或生产准备费用(内部生产), 以上定货量(生产量)Q 和订购费用(生产准备费用)C3,都是对应于一次 订购(一次生产)而言的。 模型1,不允许缺货,且一次到货。 建立模型前,需要作一些假设: ① 缺货损失无穷大(即不允许缺货), ② 当存贮量降至零时,可以瞬间得到补充(即一次到货), ③ 需求是连续和均匀的,需求速度R 是固定的常数, ④ 每次订货量(生产量)Q 不变,订购费用(生产准备费用)C3不变。 存贮状态的变化情况可用图7—4表示: 易知:平均保管费用=平均存贮量×单位保管费用111122QC RtC = =, 平均订购费用3C t =, 平均物品成本费用QK RK t t ?= ==订购量单价。 由此可以推得模型1的单位时间平均运营费用函数:

13-14(1)最优化方法期末试卷

2013-2014学年第一学期 数学计算经数专业《最优化方法》(课程)期末试卷 试卷来源:自拟 送卷人:赵俊英 打印:赵俊英 乔凤云 校对:赵俊英 一.填空题(20分) 1.最优化问题的数学模型一般为:____________________________, 可行域D 可以表 为_____________________________, 若____________________,称* x 为问题的全局最优解. 2.()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则=?)(x f , =?)(2 x f . 3.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向. 4. 无约束最优化问题:min (),n f x x R ∈,若k x 是不满足最优性条件的第k 步迭代点,用共轭梯度法求解时,搜索方向k d =______________ 5. 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 . 6 .举出一个具有二次终止性的无约束二次规划算法: . 7.函数222 21 12313()226f x x x x x x x x =+++- (填是或不是) 严格凸函数. 二.(18分)简答题: 1. 设计求解无约束优化问题的一个下降算法,并叙述其优缺点. 2. 叙述单折线法的算法思想. 3. 写出以下线性规化问题的对偶: 1234123412341234134min ()2536..873411,762323,324712,0,0,0.f x x x x x s t x x x x x x x x x x x x x x x =-+-??-+++=?? +++≥??+++≤? ≤≥≥??

最优化方法论文

弹性约束下的线性规划之最优化方法 摘要:线性规划方法是解决最优化问题的有效方法之一,有着极其广泛的应用,在管理学的应用过程中也时常穿插着关于最优化的问题。本文将在古典的线性规划方法的基础上,引入弹性约束一词,以弹性约束下的线性规划类型为对象建立新的数学模型,在解决具体的管理学案例的过程中,寻求其最优化方法,同时为管理决策提供依据。 关键词:线性规划;最优化;单纯形法;弹性约束;保证率 前言 在生产过程、科学实验以及日常生活中,人们总希望用最少的人力、物力、财力和时间去办更多的事,活得最大的效益,在管理学中被看作是生产者的利润最大化和消费者的效用最大化,如果从数学的角度来看就被看作是“最优化问题”。在最优化的研究生教学中我们所说的最优化问题一般是在某些特定的“约束条件”下寻找某个“目标函数”的最大(或最小)值,其解法称为最优化方法。线性规划方法是最优化方法中的一个重要部分。但是,经典的线性规划方法,常将目标函数和约束条件都视为确定的。然而,在实际问题中不论目标函数还是约束条件都具有不同形式的不确定性。本文重点引入新的名词弹性约束,以弹性约束下的线性规划类型为对象建立新的数学模型,从而寻求其最优化方法。 1、问题的提出 某工厂生产甲、乙、丙、丁共4种产品,需用到A,B,C共3种原料,每种产品需要使用的各种原料的数量及其可能获得的利润如表1所示。又A,B两种原料供应量有限,单位生产周期内只能提供一定的数量,而C种原料一经开包使用就必须用足一定量后方可停止使用,且不能单独使用。现有关数据均见下表。问应如何安排生产,方能使该厂所获利润达到最大值? 表1:加工产品所需原料及可能获得的利润

相关文档
相关文档 最新文档