文档库 最新最全的文档下载
当前位置:文档库 › 计数综合2 捆绑法 插空法 插板法

计数综合2 捆绑法 插空法 插板法

计数综合2 捆绑法 插空法 插板法
计数综合2 捆绑法 插空法 插板法

排列组合进阶(一)

知识点精讲

“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。

不相邻问题插空法,可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。

相同元素分组问题用插板法,且要求每一组均“非空”,也就是每组至少有一个。

插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。

应用插板法必须满足三个条件:

(1)这n个元素必须相同

(2)所分成的每一组至少分得一个元素

(3)分成的组别彼此相异

课堂例题与练习

捆绑法部分:

1.4男2女6个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法?

2.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?

3.有ABCDE共5个人并排站在一起,如果AB必须相邻,并B在A的右边,那么不同的排法有多少种

4.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?

5.一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?

6.将甲乙丙丁四名大学毕业生分到3个不同车间实习,每个车间至少分到一名,且甲乙两人不能分到同一个车间,则不同的分法种数为?

插空法:

7.7名学生站成一排,甲乙互不相邻有多少不同排法?

8.学校组织老师学生一起看电影,同一排电影票12张.8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?

9.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

10.把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?

11.在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?

12.停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?

13.3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?

14.路上有编号为1、2、……、9的九盏路灯,现为了节约用电,要将其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?

15.一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共可以有多少总方案?

插板法:

16.把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?

17.将12个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?

应用:

A.凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)

1 、把10个相同的小球放入3个不同的箱子,问有几种情况?

分析:

3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?

答案是:2

C

12

2、把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,

第三个箱子可以放空球,有几种情况?

分析:

我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法?

答案是:2

8

C

B.选板法

3、有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法?

分析:

o - o - o - o - o - o - o - o - o - o o代表10个糖,-代表9块板

10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉,这样一共就是92512

=。

C.分类插板

4、小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?

分析:

此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论

最多吃5天,最少吃1天

1:吃1天或是5天,各一种吃法一共2种情况

2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况?

c10 1=10

3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? c8 2=28

4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c6 3=20

所以一共是 2+10+28+20=60 种

D.二次插板法

5 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?

分析:

-o - o - o - o - o - o - 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用第三个节目去插9个空位

所以一共是111

789504

C C C

??=种.

6.将9台型号相同的电脑送给三所希望小学,每个学校至少分1台,共有多少种分法?

7.将13台型号相同的电脑送给三所希望小学,每个学校至少分2台,共有多少种分法?

8.将9台型号相同的电脑送给三所希望小学,每个学校至少分0台,共有多少种分法?

9.有9颗相同的糖,每天至少吃1颗,要4天吃完,有多少种吃法?

10.现有10个完全相同的篮球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?

11.将8个完全相同的球放到3个不同的盒子中,一共有多少种方法?

课后复习与检测

课后总结(提炼重点难点):

练习题:

1.5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法

2.有10本不同的书:其中数学书4本,外语书3本,语文书3本。若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种?

3.一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的

安排节目的顺序?

4.有9颗相同的糖,每天至少吃1颗,4天吃完。一共有多少种方法?

5.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?

6.有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?

7.有12块糖,小光要6天吃完,每天至少要吃一块,问共有种吃法.

8.某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?

9.节目表原有3套节目,现在新加入2套节目,共有几套播放方案

10.在一张节目表中原有8个节目,若保持原有的相对顺序不变,再增加三个节目,求共有多少种安排方法?

排列组合问题之捆绑法_插空法和插板法

“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。 例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法? 【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。又因为捆绑在一起的A、B两人也要排序,有种排法。根据分步乘法原理,总的排法有种。 例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种? 【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。 【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。解题过程是“先捆绑,再排列”。 “不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。

例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法? 【解析】:题目要求A和B两个人必须隔开。首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺ E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。由乘法原理,共有排队方法:。 例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种? 【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。 例4.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种? 【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。 【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。解题过程是“先排列,再插空”。 练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法?(国考2008-57)

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

排列组合问题之捆绑法-插空法和插板法

行测答题技巧:排列组合问题之捆绑法,插空法和插板法 “相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再 考虑大元素内部各元素间排列顺序的解题策略。 例1 ?若有A、B、C、D E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法 【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“ A,B”、C D E “四个人”进行排列,有■< 种排法。又因为捆绑在一起的A、B两人也要排序,有I种排法。根据分步乘法原理,总的排法有I -种 例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。若 将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法 共有多少种 【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有丄种排法;又3 本数学书有丄种排法,2本外语书有雹种排法;根据分步乘法原理共有排法.<■'I - -- I 种。 【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑” 起来的大元素内部的顺序问题。解题过程是“先捆绑,再排列”。 “不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将 问题解决的策略。 例3.若有A、B、C、D E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法

【解析】:题目要求A和B两个人必须隔开。首先将C、D E三个人排列, 有「「种排法;若排成D C E,则D C E “中间”和“两端”共有四个空位置,也即是:?D C E ,此时可将 A B两人插到四个空位置中的任意两个位置,有q种插法。由乘法原理,共有排队方法:匚二 :-。 例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种 【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目 去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有「种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有」:.方法,由乘法原理得:所有不同的添加方法为匚-.,=504种。 例4.一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电, 可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种 【解析】:若直接解答须分类讨论,情况较复杂。故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有'种方法(请您想想为什么不是八),因此所有不同的关灯方法有'_「种。 【王永恒提示】:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。解题过程是“先排列,再插空”。 练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法(国考2008-57) A. 20 B . 12 C . 6 D . 4 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求

排列组合问题之 插板法应用小结!

数算]排列组合问题之插板法应用小结! 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。大家好好学习吧!最后,祝大家早日上岸。此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。 =================================================== 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法) 例1 :把10个相同的小球放入3个不同的箱子,问有几种情况? 3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入 1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况? 显然就是c12 2=66 ------------------------------------------------- 例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

排列组合--插板法、插空法、捆绑法32415

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空的数量) 【基本题型】 有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法? ”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的, 【总结】 需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。 注意:这样对于很多的问题,是不能直接利用插板法解题的。但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 e 二次插板法 例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况? -o - o - o - o - o - o - 三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共是c7 1×c8 1×c9 1=504种 【基本解题思路】 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。

(小学奥数)7-5-4 组合之插板法.教师版

1.使学生正确理解组合的意义;正确区分排列、组合问题; 2.了解组合数的意义,能根据具体的问题,写出符合要求的组合; 3.掌握组合的计算公式以及组合数与排列数之间的关系; 4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合 技巧,如排除法、插板法等. 一、组合问题 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某 项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元 素中取出m 个元素的一个组合. 从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合. 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的 组合数.记作m n C . 一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法. 根据乘法原理,得到m m m n n m P C P =?. 因此,组合数12)112321 m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()(). 这个公式就是组合数公式. 二、组合数的重要性质 一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤) 这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个 元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法. 例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n n C =,01n C =. 7-5-4.组合之插板法 知识要点 教学目标

高考数学专题七:排列组合二项式定理教师版教师原创 全国通用

高考数学专题七:排列、组合、二项式定理 一、高考考试说明 计数原理 (1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. (2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题. (3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. (4)会用二项式定理解决与二项展开式有关的简单问题. 二、核心知识点归纳: 一、分类加法计数原理与分步乘法计数原理 1.分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同方法. 2.分步乘法计数原理 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法. 注意: 1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的. 2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的. 二、排列与组合 1.排列与排列数 (1)排列: 从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出

m个元素的一个排列. (2)排列数: 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m 个元素的排列数,记作A错误!. 2.组合与组合数 (1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m 个元素的一个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C错误!. 3.排列数、组合数的公式及性质 注意: 1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关. 2.计算A错误!时易错算为n(n—1)(n—2)…(n—m). 3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数. 4.排列问题与组合问题的识别方法:

插板法插空法解排列组合问题

插板法、插空法解排列组合问题 华图教育 邹维丽 排列组合问题是行测数学运算中的经常碰到的一类问题,试题具有一定的灵活性、机敏性和综合性,也是考生比较头疼的问题。掌握排列组合问题的关键是明确基本概念,熟练基本题型。解决排列组合问题的方法很多,有插板法,捆绑法,优先法等等,本文主要介绍插板法、插空法在行测数学运算中的应用,以供大家参考。 所谓插板法,就是在n 个元素间的n-1个空中插入若干个(b )个板,可以把n 个元素分成b+1组的方法,共有b n C 1-种方法。 应用插板法必须满足三个条件: (1) 这n 个元素必须互不相异; (2) 所分成的每一组至少分得一个元素; (3) 分成的组别彼此相异 举个普通的例子来说明。 把8个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题 干满足条件(1),(2),(3),所以适用插板法。在8个小球间的7个空插入3个板,共有3537=C 种情况。 上面介绍的插板法主要是用解决相同元素的名额分配问题,而对于排列组合中常出现的几个元素的不相邻问题,我们可以用插空法来解决,对这种问题,可先将余下的元素进行排列,然后在这些元素形成的空隙中将不相邻的元素进行排列。 下面我们通过几道题来熟悉这两种方法的应用。 例1 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )(国2010 -46) A.7 B.9 C.10 D.12 【解析】C 。本题乍一看不满足应用插板法的条件,插板法的条件(2)要求所分成的每一组至少分得一个元素,可本题要求每个部门至少发放9份材料。事实上,我们可以分两步来解这道题: 1. 先给每个部门发放8份材料,则还剩下30-8*3=6份材料。 2. 本题即可转化为:将6份学习材料发放给3个部门,每个部门至少发放1份材料。 问一共有多少种不同的发放方法?应用插板法可得共有1035=C

人教版的高中的数学《排列组合的》教案设计

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

人教版高中数学排列组合教案设计

实用文档 排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

实用文档 2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法. 一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二类办法中有m种不同的方法,……,21在第n 类办法中有m种不同的方法.那么完成这件事共有N=m十m2n1十…十m种不同的方法.n(2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法? 板书:图

(推荐)排列组合问题之插板法

排列组合问题之插板法: 插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢? 例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法? 【解析】:题目中球的分法共三类: 第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。其分法种数为C37=35。 第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。其分法种数2*C27=42。第三类:有1个班分到4个球,其余的6个班每班分到1个球。其分法种数C17=7。 所以,10个球分给7个班,每班至少一个球的分法种数为84:。 由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。 将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。 由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。 由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以 下3个条件: ①所要分的元素必须完全相同; ②所要分的元素必须分完,决不允许有剩余; ③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。 下面再给各位看一道例题: 例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法. A.35 B.28 C.21 D.45 【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。例2和例1的最大区别是:例1的每组元素都要求“非空”,而例2则无此要求,即可以出现空盒子。

六年级奥数试题-排列组合(教师版)

第十九讲排列组合 一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n个不同的元素中取出m(m n ≤)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n个不同的元素中取出m(m n ≤)个元素的所有排列的个数,叫做从n个不同的元素 P. 的排列中取出m个元素的排列数,我们把它记做m n 根据排列的定义,做一个m元素的排列由m个步骤完成: 步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法; 步骤2:从剩下的(1 n-)种方法; n-)个元素中任取一个元素排在第二位,有(1

…… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有 11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????L L ()() . 在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算. 三、组合问题 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合. 从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合. 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取 出m 个不同元素的组合数.记作m n C . 一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法. 根据乘法原理,得到m m m n n m P C P =?.

排列组合--插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空得数量) 【基本题型】 有n个相同得元素,要求分到不同得m组中,且每组至少有一个元素,问有多少种分法? 图中“"表示相同得名额,“”表示名额间形成得空隙,设想在这几个空隙中插入六块“挡板",则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含得名额数分给第一、二、三……七所学校,则“挡板"得一种插法恰好对应了10 个名额得一种分配方法,反之,名额得一种分配方法也决定了档板得一种插法,即挡板得插法种数与名额得分配方法种数就是相等得, 【总结】?需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素得n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。? 注意:这样对于很多得问题,就是不能直接利用插板法解题得。但,可以通过一定得转变,将其变成符合上面3个条件得问题,这样就可以利用插板法解决,并且常常会产生意想不到得效果。 插板法就就是在n个元素间得(n—1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组得方法. 应用插板法必须满足三个条件: (1) 这n个元素必须互不相异 (2)所分成得每一组至少分得一个元素?(3)分成得组别彼此相异 举个很普通得例子来说明 把10个相同得小球放入3个不同得箱子,每个箱子至少一个,问有几种情况? 问题得题干满足条件(1)(2),适用插板法,c9 2=36 ?下面通过几道题目介绍下插板法得应用 e二次插板法?例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况??-o — o -o-o -o—o —三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共就是c71×c81×c9 1=504种 【基本解题思路】 将n个相同得元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m—1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序得m份,每个组依次按组序号分到对应位置得几个元素(可能就是1个、2个、3个、4个、…。),这样不同得插入办法就对应着n个相同得元素分到m组得一种分法,这种借助于这样得虚拟“档板”分配元素得方法称之为插板法。

隔板法解决排列组合问题高高三

“隔板法”解决排列组合问题(高二、高三) 排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种? (2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种? (3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种? 解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”看成隔板,则如图001000010000100隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中 选出3个间隔的组合对应于一种放法,所以不同的放法有3 11 C=165种。 (2)法1:(分类)①装入一个盒子有1 44 C=种;②装入两个盒子,即12个相同的小 球装入两个不同的盒子,每盒至少装一个有21 41166 C C=种;③装入三个盒子,即12个相同 的小球装入三个不同的盒子,每盒至少装一个有32 411 C C=220种;④装入四个盒子,即12个 相同的小球装入四个不同的盒子,每盒至少装一个有3 11165 C=种;由加法原理得共有 4+66+220+165=455种。 法2:先给每个小盒装入一个球,题目中给定的12个小球任意装,即16个小球装入4 个不同的盒子,每盒至少装一个的装法有3 15455 C=种。 (3)法1:先给每个盒子装上与其编号数相同的小球,还剩2个小球,则这两个小球可 以装在1个盒子或两个盒子,共有12 4410 C C +=种。 法2:先给每个盒子装上比编号小1的小球,还剩6个小球,则转化为将6个相同的小 球装入4个不同的盒子,每盒至少装一个,由隔板法有3 510 C= 由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。

排列组合中染色问题(教师用)

排列组合中的染色问题 辅导教师:朱屿 电话: 染色问题的基本要求:每块区域只涂一种色,相邻区域不能涂相同颜色 注意问题:颜色的种类,是否有颜色限制。必要时可对颜色进行分类。 1.将A 、B 、C 三种不同的颜色,填到如图所示区域中,每块区域只涂一种色,相邻区域不能涂相同颜色,颜色不能有剩余,则不同的涂法种数为(90) 解:9061 21212121213=-C C C C C C (详解:先从三种不同的颜色中选出一种填到第一个小格 中,后面每小格都有两种不同的选法,所以共有1 21212121213C C C C C C 种,但由于每种颜色都用到且不能有剩余有以下重复的现象出现共六种,所以总计有:90种,) 如果方格数有变化,应该怎样解? 2.如图所示的花圃分成六个区域,现要栽四种不同的花,每一部分栽一种花色且相邻部分颜色不同,则不同的栽法种数为(120) 5 6 23 4 1 解:先安排1、2、3有243 4=A 种,不妨已分别栽A 、B 、C ,则4、5、6的栽法有 B-C-D B-D-C D-B-C D-B-D D-C-D 共计五种。所以共计有24*5=120种。 3.用五种不同的颜色涂如图所示的区域,每块区域只涂一种色,相邻区域不能涂相同颜色,则不同的填法种数为(260) 解:①.如果用4种颜色,有1204 5=A 种

1 43 2 ②.如果用3种颜色,选色的103 5=C ,填色方案有2*2*3=12种,共计10*12=120种, B B B C C C A A A B C A ③.用2色图,2022 5=?C ,综上共计120+120+20=260种。 4.用五种颜色涂如图所示的区域,有多少种不同的涂法?(180) 解: 1 4 3 2 ①.如果用3种颜色,603 335=?A C ; ②. .如果用4种颜色,有1204 5=A 种。所以共计180种。 5.用六种广告色着色图中区域,每块区域只涂一种色,相邻区域不能涂相同颜色。(480) 14 3 2 解:4804456=??? 6.用n 种不同的颜色涂如图所示的区域,每块区域只涂一种色,相邻区域不能涂相同颜色,不同的图法种数为120种,则n=(120)。

巧用隔板法解排列组合题

巧用隔板法解排列组合题 徐帮利 临沂市第二中学 解决排列组合问题的方法很多,从解题形式来看,可分为直接法和间接法两种;根据具体问题情景又有:相邻问题“捆绑法”;不相邻问题“插空法”;特殊定位“优限法”(优先排列受限制的位置或元素);同元问题“隔板法”等.这里我们重点看一下“隔板法”. “隔板法”适用于相同元素的分配问题,如投球进盒、名额或指标的分配、部分不定方程的整数解的组数等,解决时通常设计一个问题情景,构造一个隔板模型,将复杂的问题简单化,抽象的问题具体化,从而实现解题的目的.下举例述之. 例1.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽1辆,组成一个运输队,则不同的抽法有( )种. 解析:此题若使用其它方法,则需要分类,都比较麻烦,若用“隔板法”,则就轻而易举了.首先将10辆车排好,这样形成9个空,从这9个空中选6个,插入隔板,即将这10辆车分成7 份,每一种插法对应一种抽法,故共有6984C =种不同的抽法.所以选A. 例2.方程123410x x x x +++=共有多少组正整数解 解析:此题乍看上去,好象思路不太好找,那就只好列举了(麻烦啊!).殊不知,巧构隔板模型,即可化繁为简.将10个完全相同的小球排成一列,形成9个空,从中选3个,插入隔板,将球分成4份,每一种插法所得4份球的各份的数目,分别对应1234x x x x 、、、,即为原方程 的一组正整数解.故原方程组共有3984C =组不同的整数解. 例3.将10个相同的小球放入编号为1,2,3的三个盒子中,每个盒子中所放的球数不少于其编号数,问不同的放法有多少种 解析:由于条件要求每个盒子中所放的球数不少于其编号数,我们不妨先“找平了”,即先在第1,2,3个盒中各放0,1,2个球.问题即转化为求:将7个相同的小球放入编号为1,2,3的三个盒子中,每个盒中至少1个球的不同放法.将7个小球排成一排,形成6个空,从中选2个,插入隔板,把球分成三组,放入对应的盒子里,每一种插法,对应一种放法,故共有2615C =种不同的放法. 强化训练:

排列组合教学设计

全县小学骨干教师送 教下乡观摩研讨活动 」学设计~I数学广角一一排列组合 教学内容: 人教版数学三年级上册P112例1、例2。 教学分析: 排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测、操作可以 找出最简单的事物的排列数和组合数。本册教材就是在学生已有知识和经验 的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合 数。 教学目标: 1、学生通过观察、猜测、操作、合作交流等活动,找出简单事物的排列 数和组合数。 2、初步培养有序地全面地思考问题的能力,发展学生的符号感。 3、学生在丰富的生活情境中感受数学与生活的紧密联系,增强 对数学学习的兴趣和用数学的眼光观察生活的数学素养。 教学重点: 经历探索简单事物排列与组合规律的过程,能有序地找出简单事物的排列数和组合数。 教学难点:培养学生有序地、全面地思考问题的能力。 教具、学具准备:课件、数字卡片 教学过程: 、激情引趣

想和我一起去数学广角吗?相信凭借你们的智慧,今天一定会玩的非常开心! 二、操作探究 1、破译密码——体会排列。 (1)初步体会课件出示:请输入密码密码提示:用1、2、3 组成的三位数。 有多少种可能性? (2)深入探究用手中的数字卡片摆一摆,共有几种可能?一人摆数字卡片,一人写在答题卡上。 学生活动,教师巡视。实物投影仪展示不同写法。 (3)比较优化:你喜欢哪一种?为什么? (4)输入密码,开启数学广角 2、握手庆贺——体会组合 (1)实际感知同桌互相握手庆贺合作愉快。两个人握手几次?如果每两个人握一次手,三人一共要握手多少次呢?猜猜看? 现在四人一小组,请小组长作指挥,小组内的另外三个同学握一握,看看一共握手多少次? 学生活动,教师巡视。选择小组上台展示有序握手的方法。 (2)提炼符号有没有好方法把这个结果简单而有条理地记录下来呢?用自己喜欢的方式记录下来。 学生活动,教师巡视。 实物投影仪展示多种表示方法。学生互相评价比较优化——符号代替。 3、对比分析 为什么从3个数字可以摆成6个不同的三位数,而3个同学每两个握一次手,就一共只握了3 次呢? 小结:排数,交换数的位置,就变成另一个数了,这和顺序有关。

相关文档
相关文档 最新文档